Preprint
Article

TPE-RBF-SVM Model for Soybean Categories Recognition in Selected Hyperspectral Bands Based on Extreme Gradient Boosting Feature Importance Values

Altmetrics

Downloads

143

Views

131

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

11 July 2022

Posted:

19 July 2022

You are already at the latest version

Alerts
Abstract
Soybean with insignificant differences in appearance have large differences in their internal physical and chemical components, therefore follow-up storage, transportation and processing require targeted differential treatment. A fast and effective machine learning method based on hyperspectral data of soybean for pattern recognition of categories is designed as a non-destructive testing method in this paper. A hyperspectral-image dataset with 2299 soybean seeds in 4 categories is collected; Ten features is selected by extreme gradient boosting algorithm from 203 hyperspectral bands in range 400 to 1000 nm; A Gaussian radial basis kernel function support vector machine with optimization by the Tree-structured Parzen Estimator algorithm is built as TPE-RBF-SVM model for pattern recognition of soybean categories. The metrics of TPE-RBF-SVM are significantly improved compared with other machine learning algorithms. The accuracy is 0.9165 in the independent test dataset which is 9.786% higher for vanilla RBF-SVM model and 10.02% higher than the extreme gradient boosting model.
Keywords: 
Subject: Engineering  -   Automotive Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated