Preprint
Brief Report

A Simple Convolutional Neural Network for Precise and Automated Identification of COVID-19

Altmetrics

Downloads

151

Views

131

Comments

0

This version is not peer-reviewed

Submitted:

26 July 2022

Posted:

27 July 2022

You are already at the latest version

Alerts
Abstract
To solve two key problems in the identification of people who are infected with COVID-19: the first problem is that the identification accuracy is not high enough. The second problem is that present identification method such as nucleic acid testing is expensive in many countries. Methods: So, I decided to design a fast identification method for COVID-19 patients which is based on deep learning. After the model (CoughNet) learns more than 6,000 cough spectrograms of both COVID-19 patients and normal people, the accuracy rate of identification of COVID-19 patients and normal people is higher than 99% in the test set. Structure: This paper is mainly divided into three parts: the first part introduces the main background and research status of the research; The second part introduces the research methods; The third part introduces the specific process of the experiment.
Keywords: 
Subject: Computer Science and Mathematics  -   Artificial Intelligence and Machine Learning
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated