A total $m$-labelling $\alpha$ on graph $\Gamma$ is called an edge irregular total $m$-labelling if for any two different edges of $\Gamma$, their weights respect to $\alpha$ are distinct, where the weight of any edge is defined as the sum of its label and the labels of its end vertices. We determine the minimum $m$ such that $\Gamma$ can be labelled by an edge irregular total $m$-labelling whenever $\Gamma$ is an odd staircase graph or an even staircase graph.
Keywords:
Subject: Computer Science and Mathematics - Computer Vision and Graphics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.