When present in specific amounts in the air, the colorless, odorless, and tasteless gases monoxide and carbon dioxide may either replace oxygen in red blood cells (CO) or increase the respiratory rate causing cardiac arrhythmias (CO2), leading to death. Commercial sensors take around 8 h to detect levels of CO (50 PPM), causing moderate poisoning. SnO2 presents controlled interactions with the atmosphere using conductance and vacancy adjustments to capture electrical properties. However, the selectivity of gas detection by SnO2 can still be improved, thus also increasing the application possibilities. The present study aimed to optimize the sensing of CO and CO2 in SnO2 using palladium functionalization. The vapor-liquid-solid method synthesized a network of SnO2 nanobelts decorated with palladium nanoparticles. The sensitivity of the sensors for CO and CO2 were evaluated, characterizing parameters such as response time, a wide range of CO and CO2 concentrations, and temperature. In the seventh measurement cycle, the sensor response for different concentrations of gases in consecutive cycles showed a sensitivity of up to 125% for CO in 60 s. Furthermore, we observed increased sensor sensitivity with material doping with nanoparticles from 130 ppm to 1360 ppm in 30 seconds to CO. Conclusion: The results provide a better understanding of the sensitivity of SnO2 in palladium-decorated nanoparticles, offering insights for detecting low CO concentrations quickly. The behavior of these doped nanosensors showed us the importance of considering them as a practical possibility for detecting these gases of importance to human health.
Keywords:
Subject: Chemistry and Materials Science - Nanotechnology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.