Preprint
Article

Framework of Ensemble Parmeter Adapted Evolutionary Algorithm for Solving Constrained Optimization Problems

Altmetrics

Downloads

274

Views

173

Comments

0

Submitted:

16 August 2022

Posted:

17 August 2022

You are already at the latest version

Alerts
Abstract
Real-world optimization problems are often governed by one or more constraints. Over the last few decades, extensive research has been performed in Constrained Optimization Problems (COPs) fueled by advances in computational intelligence. In particular, Evolutionary Algorithms (EAs) are a preferred tool for practitioners for solving these COPs within practicable time limits. We propose an ensemble of multi- method hybrid EA framework with four mutation operators, two crossover operators, multi-search [Differential Evolution (DE) & Gaining Sharing Knowledge (GSK)] optimization algorithm, and ensemble of constraint handling techniques to solve global real- world constrained optimization problem. The proposed frame- work FEPEA has an ascendancy of multiple adaptation strategies concerning the control parameters, search mechanisms, two sub-populations as well as uses knowledge sharing mechanism between junior and senior phases. The algorithm also combines the power of four popular constraint handling techniques (CHT) and uses a voting mechanism to select any particular CHT. On top of that, this algorithm also uses both linear and non- linear population size reduction in every step of the evolutionary process. We test our method on 57 real-world problems provided as part of the CEC 2020 special session & competition on real- world constrained optimization benchmark suite. Experimental results indicate that FEPEA is able to achieve state-of-the- art performance on real-world constrained global optimization when compared against other well-known real-world constrained optimizers.
Keywords: 
Subject: Computer Science and Mathematics  -   Data Structures, Algorithms and Complexity
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated