Preprint
Communication

G-Net Light: A Lightweight Modified Google Net for Retinal Vessel Segmentation

Altmetrics

Downloads

147

Views

134

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

01 September 2022

Posted:

05 September 2022

You are already at the latest version

Alerts
Abstract
Convolutional neural network architectures have become increasingly complex, which has improved the performance slowly on well-known benchmark datasets in the recent years. In this research, we have analyzed the true need for such complexity. We have introduced G-Net light, a lightweight modified GoogleNet with improved filter count per layer to reduce feature overlaps and complexity. Additionally, by limiting the amount of pooling layers in the proposed architecture, we have exploited the skip connections to minimize the spatial information loss. The investigations on the proposed architecture are evaluated on three retinal vessel segmentation publicly available datasets. The proposed G-Net light outperforms other vessel segmentation architectures by reducing the number of trainable parameters..
Keywords: 
Subject: Computer Science and Mathematics  -   Artificial Intelligence and Machine Learning
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated