Preprint
Article

Using Incremental Ensemble Learning Techniques to Design Portable Intrusion Detection for Computationally Constraint Systems

Altmetrics

Downloads

466

Views

232

Comments

1

A peer-reviewed article of this preprint also exists.

Submitted:

06 September 2022

Posted:

07 September 2022

You are already at the latest version

Alerts
Abstract
Computers have evolved over the years and as the evolution continues, we have been ushered into an era where high-speed internet has made it possible for devices in our homes, hospital, energy and industry to communicate with each other. This era is what is known as the Internet of Things (IoT). IoT has several benefits in the health, energy, transportation and agriculture sectors of a country’s economy. These enormous benefits coupled with the computational constraint of IoT devices which makes it difficult to deploy enhanced security protocols on them make IoT devices a target of cyber-attacks. One approach that has been used in traditional computing over the years to fight cyber-attacks is Intrusion Detection System (IDS). However, it is practically impossible to deploy IDS meant for traditional computers in IoT environments because of the computational constraint of these devices. In this regard, this study proposes a lightweight IDS for IoT devices using an incremental ensemble learning technique. We used Gaussian Naive Bayes and Hoeffding tree to build our incremental ensemble model. The model was then evaluated on the TON IoT dataset. Our proposed model was compared with other state-of-the-art methods proposed and evaluated using the same dataset. The experimental results show that the proposed model achieved an average accuracy of 99.98\%. We also evaluated the memory consumption of our model which showed that our model achieved a lightweight model status of 650.11KB as the highest memory consumption and 122.38KB as the lowest memory consumption.
Keywords: 
Subject: Computer Science and Mathematics  -   Computer Networks and Communications
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated