Preprint
Review

High-Definition Map Representation Techniques for Automated Vehicles

Altmetrics

Downloads

314

Views

87

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

31 August 2022

Posted:

05 September 2022

You are already at the latest version

Alerts
Abstract
Many studies in the field of robot navigation have focused on environment representation and localization. The goal of map representation is to summarize spatial information in topological and geometrical abstracts. By providing strong priors, maps improve the performance and reliability of automated robots. Due to the transition to fully automated driving in recent years, there has been a constant effort to design methods and technologies to improve the precision of road participants and the environment's information. Among these efforts is the High Definition (HD) Map concept. Making HD maps requires accuracy, completeness, verifiability, and extensibility. Because of the complexity of HD mapping, it is currently expensive and difficult to implement, particularly in an urban environment. In an urban traffic system, the road model is at least a map with sets of roads, lanes, and lane markers. While more research is being dedicated to mapping and localization, a comprehensive review of the various types of map representation is still required. This paper presents a brief overview of map representation, followed by a detailed literature review of HD Map for automated vehicles. The current state of AV mapping is encouraging, the field has matured to a point where detailed maps of complex environments are built in real-time and have been proved useful. Many existing techniques are robust to noise and can cope with a large range of environments. Nevertheless, there are still open problems for future research. AV mapping will continue to be a highly active research area essential to the goal of achieving full autonomy.
Keywords: 
Subject: Engineering  -   Automotive Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated