Preprint
Article

Prediction of Potential Seagrass Habitat Using Remote Sensing Big Data and Machine Learning

This version is not peer-reviewed.

Submitted:

14 September 2022

Posted:

15 September 2022

You are already at the latest version

A peer-reviewed article of this preprint also exists.

Abstract
Globally, seagrass meadows provide critical ecosystem services. However, seagrasses are globally degraded at an accelerated rate. The lack of information on seagrass spatial distribution and seagrass health status seriously hinders seagrass conservation and management. Therefore, this study proposes to combine remote sensing big data with a new hybrid machine learning model (RF-SWOA) to predict potential seagrass habitats. The multivariate remote sensing data is used to train the machine learning model, which can improve the prediction accuracy of the model. This study shows that a hybrid machine learning model (RF-SWOA) can predict potential seagrass habitats more accurately and effectively than traditional models. At the same time, it has been shown that the most important factors influencing the potential habitat of seagrass in the Hainan region were the distance from land (38.2%) and the depth of the ocean (25.9%). This paper provides a more accurate machine learning model approach for predicting the distribution of marine species, which can help develop seagrass conservation strategies to restore healthy seagrass ecosystems.
Keywords: 
Subject: 
Environmental and Earth Sciences  -   Oceanography
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Alerts
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated