Preprint
Article

A Theory for Covid-19 Testing to Save Both Resources and Time

Altmetrics

Downloads

182

Views

291

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

14 September 2022

Posted:

15 September 2022

You are already at the latest version

Alerts
Abstract
In Los Angeles, at one point, the Covid-19 testing positivity rate was 6.25%, or one in sixteen. This translates to, on average, one in sixteen specimens testing positive and the vast majority testing negative. Usually, we run sixteen tests on sixteen specimens to identify the positive one(s). This process can be time consuming and expensive. Since a group of negative specimens pooled together for testing will produce a negative result, one single test could potentially eliminate many specimens. Only when the pooled specimen tests positive do we need further testing to identify the positive one(s). Based on this concept, we designed a strategy that will identify the positive specimen(s) efficiently. Assuming one in sixteen specimens is positive, we find that only four tests are needed. Furthermore, we can run them simultaneously, saving both resources and time. Although, in the real world, we cannot make the assumption of only one positive specimen, the same strategy works with slight modification and proves to be much more efficient than the conventional testing. Our strategy returns an answer 48% of the time in four tests and one time cycle. Overall, the average number of tests is seven or eight depending on the follow-up testing, and the average time cycle is about one and a half.
Keywords: 
Subject: Medicine and Pharmacology  -   Epidemiology and Infectious Diseases
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated