A peer-reviewed article of this preprint also exists.
Abstract
According to the World Health Organization, about 15% of the world’s population has some form of disability. Assistive Technology, in this context, contributes directly to the overcoming of difficulties encountered by people with disabilities in their daily lives, allowing them to receive education and become part of the labor market and society in a worthy manner. Assistive Technology has made great advances in its integration with Artificial Intelligence of Things (AIoT) devices. AIoT processes and analyzes the large amount of data generated by IoT devices and applies Artificial Intelligence models, specifically Machine Learning, to discover patterns for generating insights and assisting in decision making. Based on a systematic literature review, this article aims at identifying the Machine Learning models used in multiple different research about Artificial Intelligence of Things applied to Assistive Technology. The survey of the topics approached in this article also highlights the context of such research, their application, IoT devices used, and gaps and opportunities for further development. Survey results show that 50% of the analyzed research address visual impairment, and for this reason, most of the topics cover issues related to computational vision. Portable devices, wearables, and smartphones constituted the majority of IoT devices. Deep Neural Networks represent 81% of the Machine Learning models applied in the reviewed research.
Keywords:
Subject:
Computer Science and Mathematics - Information Systems
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Alerts
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.