Preprint
Article

Modelling the Agricultural Soil Landscape of Germany – A Data Science Approach Involving Spatially Allocated Functional Soil Process Units

Altmetrics

Downloads

204

Views

90

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

20 September 2022

Posted:

22 September 2022

You are already at the latest version

Alerts
Abstract
The national-scale evaluation and modelling of the impact of agricultural management and cli-mate change on soils, crop growth, and the environment require soil information at a spatial res-olution addressing individual agricultural fields. This manuscript presents a data science ap-proach which agglomerates the soil parameter space into a limited number of functional soil pro-cess units (SPUs) which may be used to run agricultural process models. In fact, two unsupervised classification methods were developed to generate a multivariate 3D data product consisting of SPUs, each being defined by a multivariate parameter distribution along the depth profile from 0 to 100 cm. The two methods account for differences in variable types and distributions and in-volve genetic algorithm optimization to identify those SPUs with the lowest internal variability and maximum inter-unit difference with regards to both, their soil characteristics and landscape setting. The high potential of the methods was demonstrated by applying them to the agricultural German soil landscape. The resulting data product consists of twenty SPUs. It has a 100 m raster resolution in the 2D mapping space, and its resolution along the depth profile is 1 cm. It includes the soil properties texture, stone content, bulk density, hydromorphic properties, total organic carbon content, and pH.
Keywords: 
Subject: Environmental and Earth Sciences  -   Soil Science
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated