Preprint
Article

TEGDMA-Functionalized Dicalcium Phosphate Dihydrate Resin-Based Composites Prevent Secondary Caries in An In-Vitro Biofilm Model

Altmetrics

Downloads

135

Views

29

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

21 September 2022

Posted:

23 September 2022

You are already at the latest version

Alerts
Abstract
This study evaluated the efficacy of experimental TEGDMA-functionalized dicalcium phosphate dihydrate (T-DCPD) filler-based resin-based composites (RBC) in preventing caries lesions around the restoration margins (secondary caries”, SC). Standardized Class-II cavities were made in sound molars having the cervical margin in dentin. Cavities were filled with a commercial resin-modified glass-ionomer cement (RMGIC) or experimental RBCs containing a BisGMA-TEGDMA resin blend and one of the following inorganic fractions: 60 wt.% Ba glass (RBC-0); 40 wt.% Ba glass, 20 wt.% T-DCPD (RBC-20); 20 wt.% Ba glass, 40 wt.% T-DCPD (RBC-40). An open-system bioreactor produced S. mutans biofilm-driven SC. Specimens were scanned using micro-CT to evaluate demineralization depths. Scanning Electron Microscopy and Energy-dispersive X-ray Spectroscopy characterized the specimens’ surfaces, while antimicrobial activity, buffering effect, and ion uptake by the biofilms were also evaluated. ANOVA and Tukey’s test were applied at p<0.05. RBC-0 and RBC-20 showed SC development in dentin, while RBC-40 and RMGIC significantly reduced the lesion depth at the restoration margin (p<0.0001). Initial enamel demineralization could be observed only around RBC-0 and RBC-20 restorations. A direct antibiofilm activity could explain SC reduction by RMGIC, while a buffering effect on biofilm’s acidogenicity explained the behavior of RBC-40. Experimental RBC with CaP-releasing functionalized T-DCPD filler could prevent SC with the same efficacy as F-releasing materials.
Keywords: 
Subject: Chemistry and Materials Science  -   Biomaterials
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated