Preprint
Article

Modeling Patient-Specific CAR-T Cell Dynamics: Multiphasic Kinetics Via Phenotypic Differentiation

Altmetrics

Downloads

161

Views

172

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

23 September 2022

Posted:

23 September 2022

You are already at the latest version

Alerts
Abstract
Chimeric Antigen Receptor (CAR)-T cell immunotherapy revolutionized cancer treatment and consists of the genetic modification of T lymphocytes with a CAR gene, aiming to increase their ability to recognize and kill antigen-specific tumor cells. The dynamics of CAR-T cell responses in patients presents a multiphasic kinetics with distribution, expansion, contraction, and persistence phases. The characteristics and duration of each phase depend on the tumor type, the infused product, and on patient-specific characteristics. We present a mathematical model which describes the multiphasic CAR-T cell dynamics resulting from the interplay between CAR-T and tumor cells, considering patient and product heterogeneities. The CAR-T cell population is divided into functional (distributed and effector), memory, and exhausted CAR-T cell phenotypes. The model is able to describe the diversity of CAR-T cell dynamic behaviors in different patients and hematological cancers as well as their therapy outcomes. Our results indicate that the joint assessment of the area under the concentration-time curve in the first 28 days and the corresponding fraction of non-exhausted CAR-T cells may be considered as potential markers to classify therapy responses. Overall, the analysis of different CAR-T cell phenotypes can be a key aspect for a better understanding of the whole CAR-T cell dynamics.
Keywords: 
Subject: Computer Science and Mathematics  -   Applied Mathematics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated