Effective prediction of wastewater treatment is beneficial for precise control of wastewater treatment processes. The nonlinearity of pollutant indicators such as COD and TP makes the model difficult to fit and has low prediction accuracy. The classical deep learning methods have been shown to perform nonlinear modeling. However, there are enormous numerical differences between multi-dimensional data in the prediction problem of wastewater treatment, such as COD above 3000 mg/L and TP around 30 mg/L. It will make current normalization methods challenging to handle effectively, leading to the training failing to converge and the gradient disappears or exploding. This paper proposes a multi-factor prediction model based on deep learning. The model consists of a combined normalization layer and a codec. The combined normalization layer combines the advantages of three normalization calculation methods: z-score, Interval, and Max, which can realize the adaptive processing of multi-factor data, fully retain the characteristics of the data, and finally cooperate with the codec to learn the data characteristics and output the prediction results. Experiments show that the proposed model can overcome data differences and complex nonlinearity in predicting industrial wastewater pollutant indicators and achieve better prediction accuracy than classical models.
Keywords:
Subject: Computer Science and Mathematics - Applied Mathematics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.