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Simple Summary: Breast cancer is the most common cancer which results in the death of 700,000
people around the world in 2020. Various imaging modalities have been utilized to detect and
analyze breast cancer. However, the manual detection of cancer from large-size images produced
by these imaging modalities is usually time-consuming and can be inaccurate. Early and accurate
detection of breast cancer play a critical role in improving the prognosis bringing the patient sur-
vival rate to 50%. Recently some artificial intelligence-based approaches such as deep learning al-
gorithms have shown remarkable advancements in early breast cancer diagnosis. This review fo-
cuses first, on introduction of various breast cancer imaging modalities and their available public
datasets; second, on proposing most recent studies considering deep learning-based models for
breast cancer analysis. This study systemically summarizes: various imaging modalities, relevant
public datasets, deep learning architectures used for different imaging modalities, model perfor-
mances for different tasks such as classification and segmentation, and research directions.

Abstract: Breast cancer is among the most common and fatal diseases for women, and no perma-
nent treatment has been discovered. Thus, early detection is a crucial step to control and cure breast
cancer that can save the lives of millions of women. For example, in 2020, more than 65% of breast
cancer patients were diagnosed in early-stage of cancer, from whom all survived cancer. Although
early detection is the most effective approach for cancer treatment, breast cancer screening con-
ducted by radiologists is very expensive and time-consuming. More importantly, conventional
methods of analyzing breast cancer images suffer from high false detection rates. Different breast
cancer imaging modalities are used to extract and analyze the key features affecting diagnosis and
treatment of breast cancer. These imaging modalities can be divided into subgroups such as mam-
mograms, ultrasound, magnetic resonance imaging, histopathological images, or any combination
of them. Radiologists or pathologists analyze images produced by these methods manually that
leads to increase the risk of wrong decisions for cancer detection. Thus, utilization of new automatic
methods to analyze all kinds of breast screening images to assist radiologists to interpret images is
required. Recently, artificial intelligence (AI) has been widely utilized to automatically improve the
early detection and treatment of different types of cancer, specifically breast cancer, thereby enhanc-
ing the survival chance of patients. Advances in Al algorithms, such as deep learning, and availa-
bility of datasets obtained from various imaging modalities have opened an opportunity to surpass
limitations of current breast cancer analysis methods. In this article, we first review breast cancer
imaging modalities, and their strengths and limitations. Then, we explore and summarize the most
recent studies that employed Al in breast cancer detection using various breast imaging modalities.
In addition, we report available datasets on the breast cancer imaging modalities which are im-
portant in developing Al-based algorithms and training deep learning models. In conclusion, this
review paper tries to provide a comprehensive resource to help researchers working in breast cancer
imaging analysis.
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1. Introduction

Breast cancer is the second biggest fatal disease in women, leading cause of death of
millions of women in the world [1]. According to the American cancer society, approxi-
mately 20% of women who have been diagnosed with breast cancer die [2], [3]. Generally,
breast tumors are divided into four groups: normal, benign, in-situ carcinoma, and inva-
sive carcinoma [1]. Benign is an abnormal but noncancerous collection of cells in which
minor changes in the structure of cells happen, and they cannot be considered cancerous
cells [1]. However, in-situ carcinoma and invasive carcinoma are classified as cancer [4].
In-situ carcinoma remains in its organ and does not affect other organs. On the other hand,
invasive carcinoma spreads to surrounding organs and causes the development of many
cancerous cells in the organs [5], [6]. Early detection of breast cancer is a determinative
step for treatment and critical to avoiding further advancement of cancer and its compli-
cations [7]. There are several well-known imaging modalities to detect and treat breast
cancer in early stage including Mammograms (MM) [8], Breast Thermography (BTD) [9],
Magnetic Resonance Imaging (MRI) [10], Positron Emission Tomography (PET) [11],
Computed Tomography (CT) [11], Ultrasound (US) [12], and Histopathology (HP) [14].
Among these modalities, mammograms (MMs) and histopathology (HP), which involve
image analysis of the removed tissue stained with Hematoxylin and eosin to increase vis-
ibility, are widely used [14], [15]. Mammography tries to filter a large-scale population for
initial breast cancer symptoms, while histopathology tries to capture microscopic images
with the highest possible resolution to find exact cancerous tissues at the molecular level
[16], [17]. In practice for breast cancer screening, radiologists or pathologists observe and
examine breast images manually for diagnosis, prognosis, and treatment decisions [7].
Such screening usually leads to over- or under-treatment because of inaccurate detection,
resulting in a prolonged diagnosis process. [18]. It is worth noting that only 0.6% to 0.7%
of cancer detections in women during the screening are validated and 15%-35% of cancer
screening fails due to errors related to the imaging process, quality of images, and human
fatigue [19]-[21]. Since several decades ago Computer-Aided Detection (CAD) systems
have been employed to assist radiologists in their decision-making. CAD systems gener-
ally analyze images alone or in combination with other clinical information. Also, based
on the statistical models, CADs can provide results about the probability of diseases like
breast cancer [22]. CAD systems have been widely used to help radiologists in patient
care processes such as cancer staging [22]. However, conventional CAD systems, which
are based on traditional image processing techniques, have been limited in their utility
and capability.

To tackle these problems and enhance efficiency as well as decrease false cancer de-
tection rates, precise automated methods are needed to complement the work of humans
or replace them. Al is one of the most effective approaches capturing much attention in
analyzing medical imaging, especially for automated analysis and extraction of much rel-
evant information from imaging modalities such as MMs and HPs [23], [24]. Many avail-
able Al-based tools for image recognition to detect breast cancer have exhibited better
performance than traditional CAD systems and manually examining images by expert
radiologists or pathologists due to the limitations of current manual approaches [25]. In
other words, Al-based methods avoid expensive and time-consuming manual inspection
and effectively extract key and determinative information from the high-resolution image
data [25], [26]. For example, a spectrum of diseases is associated with specific features,
such as mammographic features. Thus, Al can learn these types of features from the struc-
ture of image data and then detect the spectrum of the disease assisting radiologist or
histopathologist experts. It is worth noting that in contrast to human inspection, algo-
rithms are mainly similar to the black box and cannot understand the context, mode of
collection, or meaning of viewed images, resulting in the problem of “shortcut” learning
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[27], [28]. Thus, building interpretable Al-based models is necessary. Al models generally
can be categorized into two groups to interpret and extract information from image data:
1) Traditional machine learning algorithms which need to receive handcrafted features
derived from raw image data as preprocessing steps. 2) Deep learning algorithms that
process raw images and try to extract features by mathematical optimization and multi-
ple-level abstractions [29]. Although both approaches have shown promising results in
breast cancer detection, recently, the latter approach has attracted more interest mainly
because of its capability to learn the most salient representations of the data without hu-
man intervention to produce superior performance [30], [31]. This review assesses and
compresses recent datasets and Al-based models, specifically created by deep learning
algorithms, used on TBD, PET, MRI, US, HP, and MM in breast cancer screening and de-
tection. We also highlight the future direction in breast cancer detection via deep learning.
This study can be summarized as follows: 1) Reviewing different imaging modalities for
breast cancer screening. 2) Comparing different deep learning models proposed in the
most recent studies and their achieved performances on breast cancer classification, seg-
mentation, detection, and other analysis. 3) Lastly, concluding the paper and suggesting
future research directions.

2. Imaging modalities and available datasets for breast cancer

In this study, we summarize well-known imaging modalities for breast cancer diag-
nosis and analysis. As many existing studies have shown, there are several imaging mo-
dalities, including mammography, histopathology, ultrasound, magnetic resonance im-
aging, Positron Emission Tomography, Digital breast tomosynthesis, and a combination
of these modalities (multimodalities) [10], [31], [32]. There are various public or private
datasets for these modalities. Approximately 70% of available public datasets are related
to mammography and ultrasound modalities demonstrating the prevalence of these
methods, especially mammography, for breast cancer screening [31], [32]. On the other
hand, the researcher also widely utilized other modalities such as histopathology and
MRI to confirm cancer and deal with difficulties related to mammography and ultrasound
imaging modalities such as large variations in the image's shape, morphological structure,
and the density of breast tissues, etc. Here, we outline the aforementioned imaging mo-
dalities and available datasets for breast cancer detection.

2.1. Mammograms (MMs)

Mammograms' advantages, such as being cost-effective to detect tumors in the initial
stage before development, causes MMs to be the most promising imaging screening tech-
nique in clinical practice. MMs are generally images of breasts produced by low-intensity
x-ray (Figure 2) [32]. In this imaging modality, cancerous regions are brighter and more
clear than other parts of breast tissue, helping to detect small variations in the composi-
tion of the tissues; therefore it is used for diagnosis and analysis of breast cancer [33], [34]
(Figure 1). Although MMs are the standard approach for breast cancer analysis, it is an
inappropriate imaging modality for women with dense breasts [35], since the perfor-
mance of MMs highly depends on specific tumor morphological characteristics [35], [36].
To deal with this problem, using Automated Whole Breast Ultrasound (AWBU) or other
methods are suggested with MMs to produce a more detailed image of breast tissues [37].

For various tasks in breast cancer analysis, such as breast lesion detection and classi-
fication, MMs are generally divided into two forms: Screen Film Mammograms (SFM)
and Digital mammograms (DMM). DMM is widely categorized into three categories con-
sisting of Full Field Digital Mammograms (FFDM), Digital Breast Tomosynthesis (DBT),
and Contrast-Enhanced Digital Mammograms (CEDM) [38]-[43]. SFM was the standard
imaging method in MMs because of its high sensitivity (100%) in the analysis and detec-
tion of lesions in breasts composed primarily of fatty tissue [44]. However, it has many
drawbacks such as 1) SFM imaging needs to be repeated with a higher radiation dose
because some part of the image in SFM has lesser contrast, and cannot be further
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improved, and 2) various regions of the breast image are represented according to the
characteristic response of the SFM [19], [44]. Since 2010 DMM has replaced film as the
primary screening modality. The main advantages of digital imaging over file systems are
the higher contrast resolution and the ability to enlarge the image or change the contrast
and brightness. These advantages help radiologists to detect subtle abnormalities, partic-
ularly in a background of dense breast tissue, more easily. Most studies comparing digital
and film mammography performance have found little difference in cancer detection rates
[45]. Digital mammography increases the chance of detecting invasive cancer in premen-
opausal and perimenopausal women and women with dense breasts. However, it in-
creases false-positive findings as well [45]. Randomized Mammographic Trials/Random-
ized Controlled Trials (RMT/RCT) is the most important usage of MMs, through which
large-scale screening for breast cancer analysis is performed. Despite the great capability
of MMs for early-stage cancer detection, it is difficult to use MMs alone for detection. Be-
cause it requires additional screening tests along with mammographic trials/RMT such as
breast self-examination (BSE) and Clinical Breast Examination (CBE), which are more fea-
sible methods to detect breast cancer at early stages to improve breast cancer survival [37],
[46], [47]. Also, BSE and CBE avoid tremendous harm due to MMs screening, such as re-
peating the imaging process. More details about the advantages and disadvantages of
MMs are provided in Table 1.

Figure 1. Example of breast cancer images using traditional film MMs [48].

2.2. Digital Breast Tomosynthesis (DBT)

DBT is a novel imaging modality making 3D images of breasts by utilization of x-
rays captured from different angles [49]. This method is similar to what has been done in
mammograms, except the tube with x-ray moves in a circular arc around the breast [50]-
[52] (Figure 2). Repeated exposures to the breast tissue at different angles produce DBT
images in half-millimeter slices. In this method, computational methods are utilized to
collect information received from x-ray images to produce z-stack breast images and 2D
reconstruction images [52], [53]. In contrast to the conventional FSM method, DBT can
easily cover the imaging of tumors from small to large size, especially in the case of small
lesions and dense breasts [54]. However, the main challenging issue regarding the DBT is
the long reading time because of the number of mammograms, the z-stack of images, and
the number of recall rates for architectural distortion type of breast cancer abnormality
[55]. After FFDM, DBT is the commonly used method for imaging modalities. Many stud-
ies recently used this imaging modality for breast cancer detection due to its favorable
sensitivity and accuracy in screening and producing better details of tissue in breast can-
cer [56]-[59]. Table 1 states details of the pros and cons of DBT for breast cancer analysis.
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Figure 2. Images of cancerous breast tissue by DBT imaging modality [60].

2.3. Ultrasound (US)

All aforementioned modalities can endanger patients and radiologists because of
possible overdosage of ionizing radiation, making these approaches slightly risky and un-
healthy for certain sensitive patients [61]. Also, these methods show low specificity, mean-
ing the low ability to correctly determine a tissue without disease as a negative case.
Therefore, although the aforementioned imaging modalities are highly used for early
breast cancer detection, the US as a safe imaging modality has been used [61]-[64],[65],
[66] (Figure 3). Compared to MMs, the US is a more convenient method for women with
dense breasts. It is also useful to characterize abnormal regions and negative tumors de-
tected by MMs [67]. Some studies showed the high accuracy of the US for detecting and
discriminating benign and malignant masses [68]. US images are used in three broad
combinations, i.e., i) simple two-dimensional grayscale US images, ii) color US images
with Shear Wave Elastography (SWE) added features, and iii) Nakagami colored US im-
ages without any need for ionizing radiation [69], [70]. It is worth noting that Nakagami-
colored US images are responsible for the region of interest extraction by better detection
of irregular masses in the breast. Moreover, US can be used as a complement of MMs
owing to its availability, inexpensiveness compared to other modalities, and well tolerated
by patients [69], [71], [72]. In a recent retrospective study, US breast imaging has shown a
high predictive value when combined with MMs images [73]. US images, along with
MMs, improved overall detection by about 20% and decreased unnecessary biopsy tasks
by 40% in total [66]. However, the US represents some limitations. For instance, inter-
pretation of US images is highly difficult and needs an expert radiologist to comprehen-
sively understand these images. It is because of the complex nature of US images and the
presence of speckle noise [74], [75]. To deal with this issue, new technologies have been
introduced in breast US imaging, such as automated breast ultrasound (ABUS). ABUS
produces 3D images using wider probes. Shin et al. [76] improved how ABUS allows more
appropriate image evaluation for large breast mass compared to conventional breast US.
On the other hand, ABUS showed the lowest reliability in the prediction of residual tumor
size and pCR(pathological complete response) [77]. Table 1 highlights more details about
the weaknesses and strengths of the US imaging modality.
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Normal Benign Malignant

Figure 3. Ultrasound images from breast tissue for normal, benign, and malignant [78].

2.4. Magnetic Resonance Imaging (MRI)

MRI creates images of the whole breast and presents it as thin slices that cover the
entire breast volume. It works based on radio frequency absorption of nuclei in the exist-
ence of potent magnetic fields. MRI uses a magnetic field along with radio waves to cap-
ture multiple breast images at different angles from a tissue [79]-[81] (Figure 4). By the
combination of these images together, clear and detailed images of tissues are produced.
Hence, MRI creates much clearer images for breast cancer analysis than other imaging
modalities [82]. For instance, the MRI image shows many details clearly, leading to easy
detection of lesions that are considered benign in other imaging modalities. Also, MRI is
the most favorable method for breast cancer screening in women with dense breasts with-
out any ionizing and other health risks, which we have seen in other modalities such as
MMs [83], [84]. Another interesting issue about MRI is its capability for producing high-
quality images with a more clear view via the utilization of a contrast agent before taking
MRI images [85], [86]. Furthermore, MRI is more accurate than MM, DBT, and the US in
evaluating residual tumors and predicting pCR [77], [87] which helps clinicians to select
appropriate patients for avoiding surgery after Neoadjuvant chemotherapy (first-line
treatment of breast cancer) when pCR is obtained [88]. Even though MRI exhibits prom-
ising advantages, such as high sensitivity, it shows low specificity, and it is time-consum-
ing and expensive, especially since its reading time is long [89], [90]. It is worth noting
that some new MRI-based methods, such as Ultrafast Breast MRI (UF-MRI), create much
more efficient images with high screening specificity with short reading time [91], [92].
Also, diffusion-weighted MR imaging (DWI-MRI) and dynamic contrast-enhanced MRI
(DCE-MRI) provide higher volumetric resolution for better lesion visualization and lesion
temporal pattern enhancement to use in breast cancer diagnosis and prognosis and corre-
lation with genomics [52], [79], [93]-[95]. Details about various MRI-based methods and
their pros and cons are available in Table 1.

Figure 4. Dense cancerous breast tissue images conducted by MRI method in different angles A)
normal B) malignant [80].

2.5. Histopathology
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Recently, various studies have confirmed that the gold standard for confirmation of
breast cancer diagnosis, treatment, and management is given by the histopathological
analysis of a section of the suspected area by a pathologist [96]-[98]. Histopathology con-
sists of examining tissue lesion samples stained, for example, with Hematoxylin and Eosin
(H&E) to produce colored histopathologic (HP) images for better visualization and de-
tailed analysis of tissues [99]-[101] (Figure 5). Generally, HP images are obtained from a
piece of suspicious tissue human to be tested and analyzed by a pathologist [102]. HP
images are defined as gigapixel whole slide images (WSI) from which some small patches
are extracted to enhance analyzing these WSI (Figure 5). In other words, pathologists try
to extract small patches related to ROI from WSI to diagnose breast cancer subtypes,
which is a great advantage of HPs, enabling them to classify multiple classes of breast
cancer [103], [104] for prognosis and treatment. Also, much more meaningful ROI can be
derived from HPs, in contrast to other imaging modalities confirming outstanding au-
thenticity for breast cancer classification, especially breast cancer subtype classification.
Despite these advantages, HPs have some limitations. For example, analyzing multiple
biopsy sections, such as converting an invasive biopsy to digital images, is a lengthy pro-
cess requiring a high concentration level due to the cell structures’ microscopic size [105].
More drawbacks and advantages of the HP imagining modality are summarized in Table

Figure 5. Images of the breast from H & E (Haemotoxylin & Eosin) stained image of a benign case
provided by histopathology imaging modality [102].

2.6. Positron Emission Tomography (PET)

PET uses radiotracers for visualizing and measuring the changes in metabolic pro-
cesses and other physiological activities, like blood flow, regional chemical composition,
and absorption. PET is a recent effective imaging method showing the promising capabil-
ity to measure tissues' in vivo cellular, molecular, and biochemical properties (Figure 6).
One of the key applications of PET is the analysis of breast cancer [106]. Studies high-
lighted that PET is a handy tool in staging advanced and inflammatory breast cancer and
evaluating response to treatment of the recurrent disease [34], [35]. In contrast to the ana-
tomic imaging method, PET highlights a more specific targeting of breast cancer with a
larger margin between tumor and normal tissue, representing one step forward in cancer
detection besides anatomic modalities [109]. Thus, the PET approach is used in hybrid
modalities with CT for specific organ imaging to encourage the advantages of PET and
improve spatial resolution, which is one of this modality's strengths. Also, PET uses the
integration of radionuclides with some elements or pharmaceutical compounds to form
radiotracers, improving the performance of PET [110]. Fluorodeoxyglucose (FDG), a glu-
cose analog, is most commonly used for most breast cancer imaging studies as an effective
radiotracer developed for PET imaging [111]. Recent studies clarified a specific correlation
between the degree of FDG uptake and several phenotypic features containing a tumor
histologic type and grade, cell receptor expression, and cellular proliferation [112], [113].
These correlations lead to making the FDG-PET system for breast cancer analysis such as
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diagnosis, staging, re-staging, and treatment response evaluation [107], [114], [115]. An-
other PET system is a breast-dedicated high-resolution PET system designed in a hanging
breast imaging modality. Some studies demonstrate that these PET-based modalities can
detect almost all breast lesions and cancerous regions [116]. Table 1 summarizes some of
PET-based imaging modalities' limitations and advantages.

Figure 6. Example of PET images for breast cancer analysis [114].

Table 1. Advantages and limitations of various imaging modalities.

Advantages

Limitations

MM

More than 70% of studies (computational and experimental) for
breast cancer analysis.

Time and cost-effective approach for image capturing and pro-
cessing compared to other modalities

No needs to highly professional radiologists for diagnosis and
cancer detection compared to other methods

MM

Cannot capture micro-calcification because MMs are created via
low-dose x-ray

Limited capability for diagnosis of cancer dense breasts

Needs more testing for accurate diagnosis

Needs various pre-processing for classification because of consider-
ing many factors and structures such as the border of the breast,
fibrous strands, hypertrophied lobules, etc. which may cause mis-
understanding Problems in the visualization of cancer in high
breast density

Produces color coded images that helps to detect cancer sub-
types and early detection of cancer
Widely used in cancer diagnosis similar to MMs

e US e US
¢ The very efficient approach in reducing false negative rates for | ® Capturing low-quality images for examination of the larger amount
diagnosis because of its capability in capturing images from dif- of tissues
ferent views and angles. ¢ Difficult to understanding SWE images
¢ A highly safe and most efficient approach for a routine checkup | ¢ Single Nakagami parametric image cannot detect cancerous tissues
because the US is a non-invasive method e Proper ROI estimation is very difficult because of the shadowing
¢ Ability the detection of invasive cancer areas effect making the tumor contour unclear
¢ Highly recommended for identification of breast lesion ROI be-
cause of its additional features such as color-coded SWE images
e MRI e MRI
¢ Safe method due to no exposing to harmful ionizing radiation | ¢ Miss some tumors but can be used as the compliment of MMs
¢ Capture images with more details ¢ Increase body temperature
¢ Capture more suspicious areas for further analysis compared to | ¢ May lead to some allergies
other modalities ¢ Invasive method and dangerous
¢ Can be improved by adding contrast agents to represent images
with more details
e HP e HP

Expensive and time-consuming method to analyze and need
highly expert pathologist
It is tedious to extract ROI and analysis, so it may lead to
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e Shows tissues in two forms including WSI and ROI extracted | ¢ decrease the accuracy of analysis because of fatigue
from WSI o Analysis of HPs highly depends on many factors such as fixation,
¢ Enables to provide more reliable results for diagnosis than any lab protocols, sample orientations, human expertise in tissue prep-
other imaging modalities aration, color variation
e ROl increase accuracy of cancer diagnosis and analysis e The hardest imaging modalities for applying a DL approach for the
¢ Can be stored for future analysis classification of cancers and it needs high computational resources
for analysis
e DBT e DBT
¢ Increases cancer detection rate ¢ Time consuming and expensive because of making 3D images
¢ Can find cancers that were entirely missed on MMs o Lack of proper data curation and labeling
¢ Presents a unique opportunity for Al systems to help develop | ¢ Decreasing accuracy of analysis when using 2D slices instead of 3D
DBT-based practices from the ground up. images
o Captures a more detailed view of tissues by rotating the x-ray | ® Looking only at 2D slices, it is still unclear whether AIModels oper-
emitter to receive multiple images ate better using abnormalities labeled
¢ Has great capability to distinguish small lesions which may ob- | e Using bounding boxes or tightly-drawn margins of lesions
scure in the projections obtained using MMs ¢ DBT studies easily require more storage than MMs by order of
e magnitude or more.
e PET e PET
¢ An efficient method in the analysis of small lesions e Poor detection rates for small or non-invasive breast cancers
e Great capability to detect metastasis at different sites and or- | ¢ Miss osteoblastic metastases showed lower metabolic activity
gans.
e Checks up the entire patient for local recurrence, lymph node
metastases, and distant metastases using a single injection of ac-
tivity
¢ Highly recommended for patients with dense breast or implants
e The best approach for detecting the primary tumor in patients

Table 2. Public datasets for different imaging modalities for breast cancer analysis

Imaging mo- Public datasets Link of dataset Information about dataset
dality
MM e BCDR e https://www.medicmind.tech/cancer-imaging-data e 426 benign and 310 malignant mass le-
¢ IRMA e https://www.medicmind.tech/cancer-imaging-data sions
¢ MIAS o https://www.medicmind.tech/cancer-imaging-data e 1865 typical cases and 932 abnormal
¢ DDSM e https://www.medicmind.tech/cancer-imaging-data ¢ 133 images abnormal and 189 of normal
o INBreast e http://marathon.csee.usf.edu/Mammography/Data- class
base.html ¢ 912 benign and 784 malignant

¢ 410 malignant

Us e MBUD o https://www.kaggle.com/datasets/aryashah2k/breast-ul- e 472 normal 278 abnormal

trasound-images-dataset

¢ OASBUD o http://bluebox.ippt.gov.pl/~hpiotrzk/ e 48 benign 52 malignant
e BUSI e https://scholar.cu.edu.eg/?q=afahmy/pages/dataset e 620 benign 210 malignant
e MT-small e https://www.kaggle.com/datasets/mohammedtgadal- e 200 benign 200 malignant

lah/mt-small-dataset

o UDIAT e https://datasets.bifrost.ai/info/1320 e 110 benign 53 malignant
e STUHospital e https://github.com/xbhlk/STU-Hospital e 42 malignant
MRI e DCE-MRI e https://mridiscover.com/dce-mri/ e 559 malignant
e DWI e https://radiopaedia.org/articles/diffusion-weighted-im- e 328 lesions

aging-2?lang=us
e RIDER ¢ 500 malignant
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https://scholar.cu.edu.eg/?q=afahmy/pages/dataset
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e https://wiki.cancerimagingarchive.net/display/Pub-

e DMR-IR lic/RIDER+Collections e 267 normal 44 abnormal

e TCIA e http://visual.ic.uff.br/dmi/ ¢ 91 malignant

e https://www.cancerimagingarchive.net/

HP e BreaKHis e https://www.kaggle.com/datasets/ambarish/breakhis e 2480 benign and 5429 malignant
e Camelyon e https://camelyonl6.grand-challenge.org/Data/ e 240 benign 160 malignant
e TUPAC e https://github.com/DeepPathology/TUPAC16 Alterna- e 50 benign 23 malignant
tiveLabels
e BACH o https://zenodo.org/record/3632035#.YxI8gnbMK3 A e 37 benign 38 malignant
e ICPR 2012 e http://icpr2012.or e 50 malignant
e IDC e https://imaging.datacommons.cancer.gov/ e 162 malignant
e Wisconsin o https://archive.ics.uci.edu/ml/datasets/Breast+Can- e 357 benign and 212 malignant

cer+Wisconsint+%28Diagnostic%29

e DRYAD e https://datadryad.org/stash/da- e 173 malignant

taset/d0i:10.5061/dryad.05qfttf4t

e CRC e https://paperswithcode.com/dataset/crc e 2031 normal 1974 malignant
e AMIDA e https:// www.amida.com/index.html e 23 malignant
DBT e BCS-DBT e https://sites.duke.edu/mazurowski/resources/digital- e 22032 whole data

breast-tomosynthesis-database/

3. Artificial Intelligence in Medical Image Analysis

Artificial intelligence (AI) has become very popular in the past few years because it
adds human capabilities, e.g. learning, reasoning, and perception, to the software accu-
rately and efficiently and as the result, computers gain the ability to do tasks that are usu-
ally done by humans. The recent advances in computing resources and availability of
large datasets, as well as the development of the new Al algorithms, have opened the path
to the use of Al in many different areas, including but not limited to Image Synthesis [117],
Speech Recognition [118] [119] and Engineering [120]-[122]. Al has been also employed
in healthcare industries for applications such as protein engineering [123]-[126], cancer
detection [127], and drug discovery [128], [129]. More specifically, Al algorithms have
shown an outstanding capability to discover complex patterns and extract discriminative
features from medical images, providing higher quality analysis and better quantitative
results efficiently and automatically. Al has been a great help for physicians in imaging-
related tasks, i.e., disease detection and diagnosis, to accomplish more accurate results
[130].

3.1. Benefits of using Al for medical image analysis

Comparing the healthcare area with others, it is safe to say that the decision-making
process is much more crucial in healthcare systems than in other areas since it directly
affects people's lives. For example, a wrong decision by a physician in diagnosing a dis-
ease can lead to the death of a patient. Complex and constrained clinical environments
and workflows make physician's decision-making very challenging, especially for image-
related tasks since they require high visual perception and cognitive ability [131]. In these
situations, Al can be a great tool to decrease false diagnosis rates by extracting specific
and known features from the images or even help the physician by giving an initial guess
for the solution. Nowadays, more and more health care providers are encouraged to use
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Al algorithms due to the availability of computing resources, advancement in image anal-
ysis tools, and the great performance shown by Al methods.

3.2. Deep learning models for breast cancer detection

Deep learning (DL) [29] is part of a broader family of Al which imitates the way hu-
mans learn. DL uses multiple layers to gain knowledge, and the complexity of the
learned features increases hierarchically. DL algorithms have been applied in many ap-
plications and in some of them, they could outperform humans. DL algorithms have also
been used in various categories in the realm of cancer diagnosis using cancer images from
different modalities, including detecting cancer cells, cancer type classification, lesion seg-
mentation, etc. To learn more about DL we refer the interested readers to [132].This section
briefly discusses the deep learning algorithms applied to images from each breast cancer
modality.

3.2.1. Digital Mammography & Digital Breast Tomosynthesis (MM -DBT)

With the recent technology developments, the MM images follow the same trend and
take more advanced forms, i.e., Digital Breast Tomosynthesis (DBT). Each MM form has
been widely used for breast cancer detection and classification. One of the first attempts
to use deep learning for MMs was done by [133]. The authors in [133] used a Convolu-
tional Neural Network (CNN)-based model to learn features from mammography images
before feeding them to a support vector machine (SVM) classifier. Their algorithm could
achieve 86% AUC in lesion classification, which had about 6% improvements compared
to the best conventional approach before this paper. Following [133], more studies [134]-
[136] have also used CNN-based algorithms for lesion classification. However, in these
papers, the region of interest was extracted without the help of a deep learning algorithm,
i.e., by employing traditional image processing methods [135] or by an expert [136]. More
specifically, the authors in [134] first divided MM images into patches and extracted the
features from the patches using a conventional image processing algorithm, and then used
the random forest classifier to choose good candidate patches for their CNN algorithm.
Their approach could achieve an AUC of 92.9%, which is slightly better than the baseline
method based on a conventional method with an AUC of 91%. With the advancement in
DL algorithms and the availability of complex and powerful DL architectures, DL meth-
ods have been used to extract ROIs from full MM images. As a result, the input to the
algorithm is no longer the small patches, and the full MM image could be used as input.
For example, the proposed method in [127] uses YOLO [137], a well-known algorithm for
detection and classification, to simultaneously extract and classify ROIs in the whole im-
age. Their results show that their algorithm performs similarly to a CNN model trained
on small patches with an AUC of 97%. Figure 7 shows the overall structure of the pro-
posed model in [127].

To increase the accuracy of cancer detection, DBT has emerged as a predominate
breast imaging modality. It has been shown that DBT increases cancer detection rate
(CDR) while decreasing recall rates (RR) when compared to FFDM [138]-[140]. Following
the same logic, some DL algorithms have been proposed to apply to DBT images for can-
cer detection [141]-[145]. For instance, the authors in [146] proposed a deep learning
model based on ResNet architecture to classify the input images into normal, benign,
high-risk, or malignant. They trained the model on an FFDM dataset, then, they fine-tuned
the model using 2D reconstruction of DBT images obtained by applying the 2D maximum
intensity projection (MIP) method. Their method achieved an AUC of 84.7% on the DBT
dataset. A deep CNN has been developed in [141] that uses DBT volumes to classify the
masses. Their proposed approach obtained an AUC of 84.7%, which is about 2% higher
than the current CAD method with hand-crafted features.

Although deep learning models perform very well in medical image analysis, their
major bottleneck is the thirst for training datasets. In the medical field, collecting and la-
beling data is very expensive. So some studies used transfer learning to overcome this
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problem. In the study by [147], the authors developed a two-stage transfer learning ap-
proach to classify DBT images as mass or normal. In the first stage, the authors fine-tuned
a pretrained AlexNet [148] using FFDM images, and then the fine-tuned model was used
to train a model using DBT images. The CNN model in the second stage was used as the
feature extractor for DBT images, and the random forest classifier was used to classify the
extracted features as mass or normal. They obtained an AUC of 90% on their test dataset.
In another work in [149], the authors used a VGG19[150] network trained on the
ImageNet dataset as a feature extractor for FFDM and DBT images for malignant and be-
nign classification. The extracted features were fed to an SVM classifier to estimate the
probability of malignancy. Their method obtained an AUC of 98% and 97% on the DBT
images in CC and MLO view, respectively. These methods show that by using a relatively
small training dataset and employing transfer learning techniques deep learning models
can perform well. Most of the aforementioned studies compare their DL algorithms with
traditional CAD methods. However, the best way to evaluate the performance of a DL
method is to compare that with a radiologist directly. For example, the performance of DL
systems on FFDM and DBT has been investigated in [151]. The study shows that a DL
system can achieve comparable sensitivity as radiologists in FFDM images while decreas-
ing the recall rate. Also, on DBT images, an Al system can have the same performance as
radiologists, although the recall rate has increased.

Table 3 shows the list of recent DL-based models used for MM and DBT with their
performances. The application of DL in breast cancer detection is not limited to mammog-
raphy images. In the following section, we discuss the DL application in the other breast
cancer imaging modalities.

ROIs Detection

Final YOLO

Mammogram Results

Deep Learning YOLO

Malignant

_< Class Probability

for ROIs

Figure 7. Schematic diagram of the proposed YOLO-based CAD system in [127].

Table 3: The summary of the studies that used MM and DBT datasets

Paper Year | Task Model Type | Dataset Evaluation
Agnes et al.[142] 2020 | Classification Multiscale  All | MM MIAS Acc=96.47%
CNN
Shu et al.[152] 2020 | Classification CNN MM INbreast INbreast: Acc=92.2%
CBIS-DDSM
CBIS: Acc="76.7%
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Singh et al. [146] 2020 | Classification CNN FFD Private FFDM: AUC=0.9
M & DBT: AUC = 0.85
DBT
Boumaraf et al.[153] | 2020 | Classification DBN (Deep Be- | MM DDSM Acc=284.5%
lief Network)
Matthews et al.[154] | 2021 | Classification Transfer learn- | DBT Private AUC=0.9
ing based on
ResNet
Zhang et al.[155] 2021 | Classification GNN  (Graph | MM MIAS Acc=96.1%
Neural Net-
work) + CNN
Li et al.[156] 2021 | Classification SVM  (Support | MM INbreast Acc=84.6%
Vector Machine)
Saber et al.[157] 2021 | Classification CNN/Transfer MM MIAS Acc=98.87%
learning
F-score = 99.3%
Malebary et al.[158] | 2021 | Classification CNN MM DDSM DDSM: Acc=97%MIAS: Acc=97%
MIAS
Li et al.[159] 2021 | Classification CNN-RNN (Re- | MM DDSM ACC =94.7%, Recall = 94.1% AUC
current Neural =0.968
Network)
Ueda et al.[160] 2022 | Classification CNN MM Private AUC=0.93
DDSM
Mota et al. [161] 2022 | Classification CNN DBT VICTRE AUC =0.941
Bai et al. [162] 2022 | Classification GCN (Graph | DBT BCS-DBT Acc=284%
Convolutional Private AUC=0.87
Network)
Zhu et al.[163] 2018 | Mass Segmentation FCN (Fully Con- | MM INbreast INbreast: Dice = 90.97%
volutional Net- DDSM-
worlk) + CRE BCRP DDSM-BCRP: Dice = 91.3%
(Conditional
Random Field)
Wang et al.[164] 2019 | Mass Segmentation MNPNet MM INbreast INbreast: Dice = 91.1%
(Multi-Level DDSM-
DDSM-BCRP: Dice = 91.69%
Nested Pyramid BCRP
Network)
Saffari et al.[165] 2020 | Dense tissue Segmen- | cGAN and CNN | MM INbreast S: Acc=98%
tation /Classification
C: Acc=97.85%
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Ahmed et al.[166] 2020 | Tumor Segmentation/ | DeepLab/ mask | MM MIAS DeepLab: C: Acc=95%
Classification RCNN CBIS-DDSM
S: MAP =72%
Mask RCNN: C: Acc =98%
S: MAP = 80%
Buda et al. [167] 2020 | Lesion detection CNN DBT Private Sensitivity = 65%
Cheng et al.[168] 2020 | Mass Segmentation Spatial En- | MM DDSM Dice = 84.3%
hanced Rotation
10U =73.95%
Aware Net
Chen et al.[169] 2020 | Mass Segmentation Modified U-Net | MM INbreast INbreast: Dice = 81.64%
CBIS-DDSM
CBIS: Dice = 82.16%
Soleimani et al.[170] | 2020 | Breast-Pectoral Seg- | CNN MM MIAS MIAS: Dice = 97.59%
mentation CBIS-DDSM
CBIS: Dice = 97.69%
INbreast
INbreast: Dice = 96.39%
Al-antari et al.[171] 2020 | Breast lesions Seg- | YOLO MM DDSM S:
mentation/ Classifica- INDbreast
DDSM: Fl1-score = 99.28%
tion
INbreast: F1-score = 98.02%
C:
DDSM: Acc=97.5%
INbreast: Acc=95.32%
Lietal.[172] 2020 | Mass Segmentation Siamese-Faster- | MM INbreast INbreast: TP = 0.88,
RCNN BCPKUPH(p
. BCPKUPH:
rivate)
TXMD(pri- | TP =0.85
vate)
TXMD:
TP =0.85
Peng et al.[173] 2020 | Mass Segmentation Faster RCNN MM CBIS-DDSM | CBIS:
INbreast
TP =0.93
INbreast:

TP =0.95
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Kavitha et al.[174] 2021 | Mass Segmentation/ | CapsNet MM MIAS MIAS: Acc =98.5%

Classification DDSM
DDSM:

Acc=97.55%

Shoshan et al. [175] 2021 | Lesion detection CNN DBT DBTex chal- | Avg. sensitivity =0.91
lenge

Hossain et al. [176] 2022 | Lesion detection CNN DBT DBTex chal- | Avg. sensitivity = 0.815
lenge

Hossain et al. [177] 2022 | Lesion detection CNN DBT DBTex chal- | Avg. sensitivity = 0.84
lenge

Atrey et al.[178] 2022 | Breast lesion Segmen- | CNN MM DDSM Dice =65 %

tation

3.2.2. Ultrasound (US)

As it has been explained in section 2, the ultrasound performs much better in detect-
ing cancers and reduces unnecessary biopsy operations [179]. Therefore, it is not surpris-
ing to see that the researchers use this type of image in their DL models for cancer detec-
tion [180]-[182]. For instance, a GoogleNet [183]-based CNN has been trained on the sus-
picious ROIs of US images in [180]. The proposed method in [180] achieved an AUC of
96%, which is 6% higher than the CAD-based method with hand-crafted features. The
authors in [184]-[186] trained CNN models directly with whole US images without ex-
tracting the ROIs. For example, authors in [186], combined VGG19 and ResNet152 and
trained the ensemble network on US images. Their proposed method achieved an AUC
of 95% on a balanced, independent test dataset. Figure 8 represents an example of CNN
models for breast cancer subtypes classification.

In comparison with datasets for mammography images, there are fewer datasets for
US images, and they usually contain much fewer images. Therefore, most of the proposed
DL models use some kind of data augmentation method, such as rotation, to increase the
size of training data and improve the model performance. However, one should be careful
about how to augment US images since some augmentation may decrease the model per-
formance. For example, it has been shown in [182] that performing the image rotation or
shift in the longitudinal direction can affect the model performance negatively. The gen-
erative adversarial networks (GANSs) can also be used to generate synthetic US images
with or without tumors [187]. These images can be added to the original training images
to improve the model's accuracy.

The US images have also been used in lesion detection in which giving the image, the
CAD system decides whether the lesion is present. One of the challenges that the re-
searcher faces in this type of problem with normal US images is that there is a need for a
US doctor to manually select the images that have lesions for the models. This depends
on the doctors' availability and is usually expensive and time-consuming. It also adds
human errors to the system [188]. To solve this problem, a method has been developed in
[189] to detect the lesions in real time during US scanning. Another type of US imaging is
called the 3D Automated Breast US scan, which captures the entire breast [190], [191]. The
authors in [191] developed a CNN model based on VGGNet, ResNet [192], and DenseNet
[193] networks. Their approach obtained an AUC of 97% on their private dataset and an
AUC of 97.11% on the Breast Ultrasound Image(BUSI) dataset [78].

Some methods combined the detection and classification of lesions in US images in
one step [194]. An extensive study in [195] compares different DL architectures for US


https://doi.org/10.20944/preprints202210.0096.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 October 2022 doi:10.20944/preprints202210.0096.v1

image detection and classification. Their results show that the DenseNet is a good candi-
date for classification analysis of US images, which provides accuracies of 85% and 87.5%
for full image classification and pre-defined ROls, respectively. The authors in [196] de-
veloped a weakly-supervised DL algorithm based on VGG16, ResNet34, and GoogleNet
trained using 1000 unannotated US images. They have reported an average AUC of 88%.

Some studies validate the performance of DL algorithms [197]-[199] using expert in-
ference, showing that DL algorithms can greatly help radiologists. This is mostly in cases
where the lesion was already detected by an expert, and the DL model is used to classify
them. However, unlike the mammography studies, most of the studies are not validated
by multiple physicians and do not show the generalizability of their method on multiple
datasets which should be addressed in future validations. Table 4 shows the list of recent
algorithms used for US images and their performances.

Table 4. The summary of the studies that used ultrasound dat.aset

Paper Year Task Model Dataset Evaluation
Byra et al. 2019 Classification Transfer learning based on VGG-19 & InceptionV3 | OASBUD VGG19: AUC =0.822
[200] InceptionV3: AUC =0.857
Byra et al. 2019 Classification Transfer learning based on VGG 19 Private AUC=0.936
[182]
Hijab et al. 2019 Classification Transfer learning based on VGG16 Private Acc=97.4%
[201] AUC=0.98
Zhang et al. 2019 Classification Deep Polynomial Network (DPN) Private Acc=95.6%
[202] AUC=0.961
Fujioka et al. 2020 Classification CNN Private AUC=0.87
[203]
Wu et al. 2020 Classification Random Forest (RF) Private Acc=286.97%
[204]
Wu et al. 2020 Classification Generalized Regression Neural Network (GRNN) | Private Acc=87.78%
[205] F1 score = 86.15%
Gong et al. 2020 Classification Multi-view Deep Neural Network Support Vector | Private Acc=86.36%
Machine (MDNNSVM)
[206] AUC=0.908
Moon et al. 2020 Classification VGGNet + ResNet + DenseNet (Ensemble loss) SNUH SNUH:
BUSI

[191] Acc=91.1%

AUC=0.9697
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BUSI:
Acc=94.62%
AUC=09711
Zhang et al. 2020 Classification CNN Private AUC=1
[207]
Yousef Kalaf et | 2021 Classification Modified VGG16 Private Acc=93%
al.
F1 score = 94%
[208]
Misra et al. 2022 Classification Transfer learning based on AlexNet & ResNet Private Acc=90%
[209]
Vakanski etal. | 2020 Tumor Segmen- CNN BUSI Acc=98%
tation
[210] Dice score = 90.5%
Byra et al. 2020 Mass Segmenta- CNN Private Acc=97%
tion
[211] Dice score = 82.6%
Singh et al. 2020 Tumor Segmen- | CNN Mendeley Mendeley: Dice = 0.9376
tation UDIAT
[212] UDIAT: Dice = 86.82%
Han et al. 2020 Lesion Segmenta- | GAN Private Dice =87.12%
tion
[213]
Wang et al. 2021 Lesion Segmenta- | Residual Feedback Network 1-Ultra- 1-Dice = 86.91%
tion soundcases.info & | 2- Dice =81.79%
[214] .
BUSI 3- Dice =87%
2- UDIAT
3- Radiopaedia
Wang et al. 2021 Segmentation CNN Ultra- Ultrasoundcases: Dice =
soundcases.info 84.71%
[215]
BUSI
CDico = 0,
STUHospital BUSI: Dice = 83.76%
STUHospital: Dice =
86.52%
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Lietal. 2022 Tumor Segmen- DeepLab3 Private S: Dice=77.3%
tation + Classifi-
[216] C: Acc=94.8%
cation
Byra et al. 2022 Mass Segmenta- Y-Net Private S: Dice= 64.0%
tion + Classifica-
[217] C: AUC=0.87
tion
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Figure 8. Example of a model architecture for breast cancer subtypes classification from US images
via CNN models [218].

3.2.3. Magnetic Resonance Imaging (MRI)

As explained in section 2, MRI has higher sensitivity for breast cancer detection in
dense breasts [219] than MM and US images. However, the big difference between MRI
and MM or US images is that the MRI is a 3D scan, but MM and US are 2D images. More-
over, MRI sequences are captured over time, increasing the MRI dimensionality to 4D
(dynamic contrast-enhanced (DCE)-MRI). This makes MRI images more challenging for
DL algorithms compared to MM and US images, as most of the current DL algorithms are
built for 2D images. One way to address this challenge is to convert the 3D image to 2D
by either dividing 3D MRIs into 2D slices [220], [221] or using MIP to build a 2D represen-
tation [222]. Moreover, most DL algorithms have been developed for colored images,
which are 3D images whose third dimension represents the color channels. However, the
MRIs are grayscale images. So some developed MRI models put three consecutive slices
of grayscale MRI together and build a 3D image[223], [224]. Some other approaches mod-
ify the current 2D DL architecture to make them appropriate for MRI 3D scans [225].

All the above approaches have been used in lesion classification DL algorithms. For
example, [226] uses 2D slices of the ROIs as input to their CNN model. They obtained an
accuracy of 85% on their test dataset. The MIP technique is used in [227] which obtained
an AUC of 89.5%. In the study done by Zhou et al. [225], the authors put the grayscale
MRIs together and built 3D images for their DL methods. Their algorithm obtained an
AUC of 92%. In another study done in [189], the proposed algorithm uses the actual 3D
MRI scans obtaining an AUC of 85.9% by the 3D version of DenseNet [193]. Itis worth
mentioning that the performance of 2D and 3D approaches cannot be compared since they
used different datasets. However, some mentioned studies compared their proposed
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methods with radiologists' interpretations [224], [225]. Figure 9 shows a schematic of a
framework for cancer subtype classification with MRIL

Like in MM and US images, the DL methods have been widely used in lesion detec-
tion and segmentation problems in MRI images. A CNN algorithm based on RetinaNet
[228] has been developed in [229] for detecting lesions from the 4D MR scans. Their
method obtained a sensitivity of 95%. A study [230] uses a mask-guided hierarchical
learning (MHL) framework for breast tumor segmentation based on U-net architecture.
Their method achieved the Dice similarity coefficient (DSC) of 0.72 for lesion segmenta-
tion. In another work [231], the authors proposed a U-net-based CNN model called 3TP
U-net for the lesion segmentation task. Their algorithm obtained a Dice Similarity Coeffi-
cient of 61.24%. Alternatively, authors in [232] developed a CNN-based segmentation
model by refining the U-net architecture to segment the lesions in MRIs. Their proposed
method achieved a Dice Similarity Coefficient of 86.5%. It has to be noted that in most
lesion segmentation algorithms, there is a need for a mask that shows the pixels that be-
long to the breast as ground truth for training. These masks can help the models to focus
on the right place and ignore the areas that do not have any information. Table 5  shows
the list of recent algorithms used for MRI images and their performances.

: 2 |—— @@@ %‘{% Training from scratch

Deep features

Figure 9. A model architecture for cancer subtypes prediction via ResNet 50 and CNN models from
MRI images[233].

Table 5: The summary the studies that used MRI datasets

Paper Year | Task Model Dataset Evaluation
Haetal. 2019 | Classification CNN Private Acc=70%
[234]

Haetal. 2019 | Classification CNN Private Acc=88%
[235]

Fang et al. 2019 | Classification CNN Private Acc=70.5%
[236]

Zheng et al. 2020 | Classification CNN TCIA Acc=97.2%
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[237]
Holste et al.[238] 2021 | Classification Fusion Deep learning Private AUC=09
Winkler et al.[239] 2021 | Classification CNN Private ACC=92.8%
Fujioka et al.[240] 2021 | Classification CNN Private AUC =0.89
Liu et al. 2022 | Classification Weakly ResNet-101 Private AUC=0.92
[241] ACC =94%
Bie et al. [242] 2022 | Classification CNN Private ACC=92%
Specificity =94%
Jing et al. [243] 2022 | Classification U-NET & ResNet 34 Private AUC=0.81
Wu et al. [244] 2022 | Classification CNN Private Acc=877%
AUC=91.2%
Verburg et al. [245] 2022 | Classification CNN Private AUC=0.83
Dutta et al. [246] 2021 | Tumor Segmentation Multi-contrast D- | Private F1 score =95%
R2UNet
Carvalho et al. [247] 2021 | Tumor Segmentation SegNet & UNet QIN Dice =97.6%
Breast
10U =95.39
DCE-MRI OU =95.3%
Wang et al. [248] 2021 | Lesion Segmentation CNN Private Dice =76.4%
Nowakowska et al. [249] | 2022 | Segmentation of BPE area and non-en- | CNN Private Dice =76 %
hancing tissue
Khaled et al. [250] 2022 | Lesion segmentation 3D U-Net TCGA- Dice = 68%
BRCA
Yue et al. [251] 2022 | Segmentation Res_U-Net Private Dice = 89%
Rahimpour et al. [252] 2022 | Tumor Segmentation 3D U-Net Private Dice = 78%
Zhu et al. [253] 2022 | Lesion Segmentation/ Classification V-Net Private S:
Dice = 86%
C:

Avg. AUC=0.84

3.2.4. Histopathology

In contrast to other modalities, histopathology images are colored images that are
provided either as the Whole Slide images (WSI) or the extracted image patches from the
WSI, i.e., ROIs that are extracted by pathologists. The histopathology images are a great
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means of diagnosing breast cancer types that are impossible to find with radiology im-
ages, i.e., MRIs. Moreover, these images have been used to detect cancer subtypes because
of the details they have about the tissue. Therefore, they are widely used with DL algo-
rithms for cancer detection. For example, [254] employed a CNN-based DL algorithm to
classify the histopathology images into four classes: normal tissue, benign lesion, in situ
carcinoma, and invasive carcinoma. They combine the classification results of all the im-
age patches to obtain the final image-wise classification. They also used their model to
classify the images into two classes, carcinoma, and non-carcinoma. An SVM has been
trained on the features extracted by a CNN to classify the images. Their method obtained
an accuracy of 77.8% on four-class classification and an accuracy of 83.3% on binary clas-
sification. In another work proposed in [255], two CNN models have been developed, one
for predicting malignancy and the other for predicting malignancy and image magnifica-
tion levels simultaneously. They used images of size 700 x 460 with different magnifica-
tion levels. Their average binary classification for benign/malignant is 83.25%. A novel
framework was proposed in [256] that uses a hybrid attention-based mechanism to clas-
sify histopathology images. The attention mechanism helps to find the useful regions from
raw images automatically.

The transfer learning approach has also been employed in analyzing histopathology
images since the histopathology image datasets suffer from the lack of a large amount of
data required for deep learning models. For example, the method developed in [257] uses
pretrained Inception-V3 [183] and Inception-ResNet-V2 [258] and fine-tunes them for
both binary and multiclass classification on histology images. Their approach obtained an
accuracy of 97.9% in binary classification and an accuracy of 92.07% in the multi-classifi-
cation task. In another work [259], the authors developed a framework for classifying ma-
lignant and benign cells that extracted the features from images using GoogLeNet, VGG-
Net, and ResNet and then combined those features to use them in the classifier. Their
framework obtained an average accuracy of 97%. The authors in [260] used a fine-tuned
GoogleNet to extract features from the small patches of pathological images. The extracted
features were fed to a bidirectional Long Short-Term Memory (LSTM) layer for classifica-
tion. Their approach obtained an accuracy of 91.3%. Figure 10 shows the overview of the
method proposed in [260]. GANs have also been combined with transfer learning to fur-
ther increase classification accuracy. In work done in [261], StyleGAN [262] and Pix2Pix
[263] have been used to generate fake images. Then, VGG-16 and VGG-19 were fine-tuned
to classify images. Their proposed method achieved an accuracy of 98.1% in binary clas-
sification.

Histopathology images have been widely used for nuclei detection and segmenta-
tion. For instance, in the work presented in [264], a novel framework called HASHI has
been developed that automatically detects invasive breast cancer in the whole slide im-
ages. Their framework obtained the dice coefficient of 76% on their independent test da-
taset. In the other work done in [265] for nuclei detection, a series of handcrafted features
and features extracted from CNN were combined for better detection. The method used
three different datasets and obtained an F-score of 90%. The authors in [266] presented a
fully automated workflow for nuclei segmentation in histopathology images based on
deep learning and the morphological properties extracted from the images. Their work-
flow achieved accuracy and Fl-score of %95.4 and %80.5, respectively. In another work
by [267], the authors first extract the small patches from the high-resolution whole slides.
Then each small patch was segmented using a CNN along with an encoder-decoder. Fi-
nally, to combine the local segmentation result, they used an improved merging strategy
based on a fully connected Conditional Random Field. Their algorithm obtained a seg-
mentation accuracy of 95.6%. Table 6 shows the performance of recently developed DL
methods in histology images.
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Figure 10. Prediction of breast cancer grades from extracted patches from histopathology images
via patch-wise LSTM architecture [260].

3.2.5. Positron emission tomography (PET)/computed tomography (CT)

PET/CT is a nuclear medicine imaging technique that helps increase the effectiveness
of detecting and classifying axillary lymph nodes and distant staging [268]. However, they
have trouble detecting early-stage breast cancer. Therefore, it is not surprising that
PET/CT is barely used with DL algorithms. However, PET/CT has some important appli-
cations that DL algorithms can be applied. For example, as discussed in [269], breast can-
cer is one of the reasons for most cases of bone metastasis. A CNN-based algorithm was
developed in [270] to detect breast cancer metastasis on whole-body scintigraphy scans.
Their algorithm obtained 92.5% accuracy in the binary classification of whole-body scans.

In the other application, PET/CT can be used to quantify the whole-body metabolic
tumor volume (MTV) to reduce the labor and cost of obtaining MTV. For example, in the
work presented in [271], a model trained on the MTV of lymphoma and lung cancer pa-
tients is used to detect the lesions in PET/CT scans of breast cancer patients. Their algo-
rithm could detect 92% of the measurable lesions.

Table 6: The summary of the studies that used Histopathology datasets

Paper Year | Task Model Dataset Evaluation
Zainudin et | 2019 Breast Cancer Cell | CNN MITOS Acc=84.5%
al. [272] Detection /Classi-
. TP = 80.55%
fication
FP=11.6%
Lietal. [273] | 2019 Breast Cancer Cell | Deep cascade CNN MITOSIS MITOSIS:
Detection /Classi- AMIDA13
- = 00
fication TUPACI6 F-score =56.2%
AMIDA13:
F-score = 67.3%
TUPACI16:
F-score = 66.9%
Das et al. | 2019 Breast Cancer | CNN MITOS MITOS:
[274] Cell Detection ATYPIA14
L F1-score = 84.05%
/Classification

ATYPIA14:
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Fl-score = 59.76%

Gour et al. | 2020 Classification CNN BreakHis Acc=92.52%
[275]
F1 score =93.45%
Saxena et al. | 2020 | Classification CNN BreakHis Avg. Acc=88%
[276]
Hirra et al. | 2021 Classification DBN DRYAD Acc=86%
[277]
Senan et al. | 2021 Classification CNN BreakHis Acc=95%
[278]
AUC =99.36%
Zewdie et | 2021 Classification CNN Private Binary Acc=96.75%
al. [279] BreakHis
Grade classification Acc =
Zendo
93.86%
Kushwaha | 2021 Classification CNN BreakHis Acc =97%
et al. [280]
Gheshlaghi | 2021 Classification Auxiliary Classifier GAN | BreakHis Binary Acc=90.15%
et al. [281]
Sub-type classification Acc =
86.33%
Reshma t al. | 2022 Classification Genetic Algorithm with | BreakHis Acc=289.13%
[282] CNN
Joseph et al. | 2022 | Classification CNN BreakHis Avg. Multiclass Acc =97%
[283]
Ahmad et | 2022 Classification CNN BreakHis Avg. Binary Acc=99%
al. [284]
Avg. Multiclass Acc =95%
Mathew et | 2022 Breast Cancer Cell | CNN ATYPIA
al. [285] Detection /Classi- MITOS
F1 score =61.91%
fication
Singh and | 2022 | Classification Inception ResNet BHI BHIL:
BreakHis

Kumar [286]

Acc=85.21%
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BreakHis:

Avg. Acc=84%

Mejbri et al. | 2019 | Tissue-level Seg- | DNNs Private U-Net: Dice = 86%,
[287] mentation
SegNet: Dice = 87%,
FCN: Dice = 86%,

DeepLab: Dice = 86%

Guo et al. | 2019 Cancer Regions | Transfer learning based on | Camelyon16 10U = 80.4%
[288] Segmentation Inception-V3 and ResNet-

AUC=96.2%

101

Priego- 2020 | Tumor Segmenta- | CNN Private Acc=95.62%
Torres et al. tion

10U =92.52%
[267]
Budginaite | 2021 Cell Nuclei Seg- | Micro-Net Private Dice = 81%
et al. [289] mentation
Pedersen et | 2022 Tumor Segmenta- | CNN Norwegian cohort [291] | Dice =93.3%
al. [290] tion
Khalil et al. | 2022 Lymph node Seg- | CNN Private F1 score = 84.4%
[292] mentation 10U =74.9%

4, Discussion and Conclusion

Breast cancer plays a crucial role in the mortality of women in the world. Cancer
detection in its early stage is an essential task to reduce mortality. Recently many imaging
modalities have been used to give more detailed insights into breast cancer. However,
manual analysis of these imaging modalities with a huge number of images is a difficult
and time-consuming task leading to inaccurate diagnoses and an increased false detection
rate. Thus, to tackle these problems, an automated approach is needed. The most effective
and reliable approach for medical image analysis is CAD. CAD systems have been de-
signed to help physicians to reduce their errors in analyzing medical images. A CAD sys-
tem highlights the suspicious features in images (e.g., masses) and helps radiologists to
reduce false negative readings. Moreover, CAD systems usually detect more false features
than true marks and this is the radiologist’s responsibility to evaluate the results. This
characteristic of CAD systems increases the reading time and limits the number of cases
that radiologists can evaluate. Recently, the advancement of Al, especially DL-based
methods, could effectively speed up the image analysis process and help radiologists in
early breast cancer diagnosis.

Considering the importance of DL-based CAD systems for breast cancer detection
and diagnosis, here in this paper, we have discussed the applications of different DL al-
gorithms in breast cancer detection. We first reviewed the imaging modalities used for
breast cancer screening and diagnosis. Besides a comprehensive discussion, we discussed
the advantage and limitations of each imaging modality and summarize the public da-
tasets available for each modality with the links to the datasets. Then we reviewed the
recent DL algorithms used for breast imaging analysis along with the detail of their
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datasets and results. The studies presented promising results from DL-based CAD sys-
tems. However, the DL-based CAD tools still face many challenges that prohibit them
from clinical usage. Here we discussed some of these challenges as well as the future di-
rection for cancer detection studies.

One of the main obstacles to having a robust DL-based CAD tool is the cost of col-
lecting medical images. The medical images used for DL algorithms should contain relia-
ble annotated images from different patients. Data collection would be very costly for suf-
ficient abnormal data compared to normal cases since the number of abnormal cases is
much lower than the normal cases (e.g., several abnormal cases per thousand patients in
the breast cancer screening population). The data collection also depends on the number
of patients that takes a specific examination and the availability of equipment and proto-
cols in different clinical settings. For example, MM datasets are usually very large da-
tasets, including thousands of patients. However, the MRI or PET/CT datasets contain
much fewer patients. Due to the existence of a large public dataset for MM, much more
DL algorithms have been developed and validated for the MM modality than other da-
tasets. One way to create a big dataset for different image modalities is multi-institutional
collaboration. The dataset obtained from these collaborations covers a large group of pa-
tients with different characteristics, different imaging equipment, and clinical settings and
protocols. These datasets make the DL algorithms more robust and reliable.

Currently available medical image datasets usually contain a small amount of data.
On the other hand, employing DL and exploiting its capabilities on a small amount of
training data is challenging. Because the DL algorithms should be trained on a large da-
taset to have a good performance. Some possible solutions can help to overcome the prob-
lems related to small datasets. For example, the datasets from different medical centers
can be combined to create a bigger one. However, there are usually some patient privacy
policies that should be addressed. Another solution to this problem is using federated
learning [293] in which the algorithm is trained on datasets locally, but it should travel
between the centers and be trained on the datasets in each center. The federated learning
algorithms are not popular yet, and they are not widely implemented. In most cases, the
training data cannot be publicly shared, therefore there is no way to evaluate the DL meth-
ods and regenerate the results in the studies. Many studies used transfer learning to over-
come the problem of small datasets. Some of the studies used a pre-trained model to ex-
tract features from the medical images and then, they used the extracted features to train
a DL model for target tasks. However, other studies initialized their model with pre-
trained model weights and then fine-tuned their models with the medical image datasets.
Although transfer learning shows some improvement for the small datasets, the perfor-
mance of the target model highly depends on the difference between the characteristics of
source datasets and target datasets. In these cases, the negative transfer [294] may occur
in which the source domain reduces the learning performance in the target domain. Some
studies used data augmentation rather than transfer learning to increase the size of the
dataset artificially and improve the model performance. However, one should note that
augmenting data does not introduce the independent features to the model therefore it
does not provide much new knowledge for DL model compared to new independent im-
ages.

The shortage of datasets with comprehensive and fully labeled/annotated data is also
another challenge that DL-based CAD systems face. Most of the DL methods are super-
vised algorithms and they need fully labeled/annotated datasets. However, creating a
large fully annotated dataset is a very challenging task since annotating medical images
is time-consuming and may have human errors. To avoid the need for annotated datasets,
some papers used unsupervised algorithms, but they obtained less accurate results com-
pared to supervised algorithms.

Another important challenge is the generalizability of the DL algorithms. Most of the
proposed approaches work on the datasets obtained with specific imaging characteristics
and cannot be used for the datasets obtained from different populations, different clinical
settings, or different imaging equipment and protocols. This is an obstacle to the wide use
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of Al methods in cancer detection in medical centers. Each health clinic should design and
conduct a testing protocol for DL-based CAD systems using the data obtained from the
local patient population before any clinical usage of these systems. During the testing pe-
riod, the user should find the weaknesses and strengths of the system based on the output
of the system for different input cases. The user should know that what is the characteris-
tics of the failed and correct output and recognize when the system makes mistake and
when it works fine. This testing procedure not only evaluates DL-based CAD models but
also teaches the user the best way to use DL-based CAD systems.

Another limitation can be the interpretability of DL algorithms. Most DL algorithms
are like a black box, and there are no suitable explanations for the decision, and feature
selection happens during the training and learning processes. Radiologists usually do not
prefer these uninterpretable DL algorithms because they need to understand the physical
meaning of the decisions taken by the algorithms and which parts of images are highly
discriminative. Recently, some DL-based algorithms like DeepSHAP [295], have been in-
troduced to define an interpretable model to give more insight into the decision-making
of DL algorithms in medical image analysis. Therefore, to increase physicians' confidence
and reliability of the decision made by DL tools, utilization of interpretable approaches
and proper explanation of DL algorithms is required for breast cancer analysis, helping
widely used DL technology in clinical care applications such as breast cancer analysis.
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