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Simple Summary: Breast cancer is the most common cancer which results in the death of 700,000 
people around the world in 2020.  Various imaging modalities have been utilized to detect and 
analyze breast cancer. However, the manual detection of cancer from large-size images produced 
by these imaging modalities is usually time-consuming and can be inaccurate. Early and accurate 
detection of breast cancer play a critical role in improving the prognosis bringing the patient sur-
vival rate to 50%. Recently some artificial intelligence-based approaches such as deep learning al-
gorithms have shown remarkable advancements in early breast cancer diagnosis. This review fo-
cuses first, on introduction of various breast cancer imaging modalities and their available public 
datasets; second, on proposing most recent studies considering deep learning-based models for 
breast cancer analysis. This study systemically summarizes: various imaging modalities, relevant 
public datasets, deep learning architectures used for different imaging modalities, model perfor-
mances for different tasks such as classification and segmentation, and research directions. 

Abstract: Breast cancer is among the most common and fatal diseases for women, and no perma-
nent treatment has been discovered. Thus, early detection is a crucial step to control and cure breast 
cancer that can save the lives of millions of women. For example, in 2020, more than 65% of breast 
cancer patients were diagnosed in early-stage of cancer, from whom all survived cancer. Although 
early detection is the most effective approach for cancer treatment, breast cancer screening con-
ducted by radiologists is very expensive and time-consuming. More importantly, conventional 
methods of analyzing breast cancer images suffer from high false detection rates. Different breast 
cancer imaging modalities are used to extract and analyze the key features affecting diagnosis and 
treatment of breast cancer. These imaging modalities can be divided into subgroups such as mam-
mograms, ultrasound, magnetic resonance imaging, histopathological images, or any combination 
of them. Radiologists or pathologists analyze images produced by these methods manually that 
leads to increase the risk of wrong decisions for cancer detection. Thus, utilization of new automatic 
methods to analyze all kinds of breast screening images to assist radiologists to interpret images is 
required. Recently, artificial intelligence (AI) has been widely utilized to automatically improve the 
early detection and treatment of different types of cancer, specifically breast cancer, thereby enhanc-
ing the survival chance of patients. Advances in AI algorithms, such as deep learning, and availa-
bility of datasets obtained from various imaging modalities have opened an opportunity to surpass 
limitations of current breast cancer analysis methods. In this article, we first review breast cancer 
imaging modalities, and their strengths and limitations. Then, we explore and summarize the most 
recent studies that employed AI in breast cancer detection using various breast imaging modalities. 
In addition, we report available datasets on the breast cancer imaging modalities which are im-
portant in developing AI-based algorithms and training deep learning models. In conclusion, this 
review paper tries to provide a comprehensive resource to help researchers working in breast cancer 
imaging analysis. 

Keywords: Artificial intelligence; Breast cancer; Deep learning; Histopathology; Imaging modality; 
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1. Introduction 
Breast cancer is the second biggest fatal disease in women, leading cause of death of 

millions of women in the world [1]. According to the American cancer society, approxi-
mately 20% of women who have been diagnosed with breast cancer die [2], [3]. Generally, 
breast tumors are divided into four groups: normal, benign, in-situ carcinoma, and inva-
sive carcinoma [1]. Benign is an abnormal but noncancerous collection of cells in which 
minor changes in the structure of cells happen, and they cannot be considered cancerous 
cells [1]. However, in-situ carcinoma and invasive carcinoma are classified as cancer [4]. 
In-situ carcinoma remains in its organ and does not affect other organs. On the other hand, 
invasive carcinoma spreads to surrounding organs and causes the development of many 
cancerous cells in the organs [5], [6].  Early detection of breast cancer is a determinative 
step for treatment and critical to avoiding further advancement of cancer and its compli-
cations [7]. There are several well-known imaging modalities to detect and treat breast 
cancer in early stage including Mammograms (MM) [8], Breast Thermography (BTD) [9], 
Magnetic Resonance Imaging (MRI) [10], Positron Emission Tomography (PET) [11], 
Computed Tomography (CT) [11], Ultrasound (US) [12], and Histopathology (HP) [14]. 
Among these modalities, mammograms (MMs) and histopathology (HP), which involve 
image analysis of the removed tissue stained with Hematoxylin and eosin to increase vis-
ibility, are widely used [14], [15]. Mammography tries to filter a large-scale population for 
initial breast cancer symptoms, while histopathology tries to capture microscopic images 
with the highest possible resolution to find exact cancerous tissues at the molecular level 
[16], [17]. In practice for breast cancer screening, radiologists or pathologists observe and 
examine breast images manually for diagnosis, prognosis, and treatment decisions [7]. 
Such screening usually leads to over- or under-treatment because of inaccurate detection, 
resulting in a prolonged diagnosis process. [18]. It is worth noting that only 0.6% to 0.7% 
of cancer detections in women during the screening are validated and 15%-35% of cancer 
screening fails due to errors related to the imaging process, quality of images, and human 
fatigue [19]–[21]. Since several decades ago Computer-Aided Detection (CAD) systems 
have been employed to assist radiologists in their decision-making. CAD systems gener-
ally analyze images alone or in combination with other clinical information. Also, based 
on the statistical models, CADs can provide results about the probability of diseases like 
breast cancer [22].  CAD systems have been widely used to help radiologists in patient 
care processes such as cancer staging [22]. However, conventional CAD systems, which 
are based on traditional image processing techniques, have been limited in their utility 
and capability.  

To tackle these problems and enhance efficiency as well as decrease false cancer de-
tection rates, precise automated methods are needed to complement the work of humans 
or replace them. AI is one of the most effective approaches capturing much attention in 
analyzing medical imaging, especially for automated analysis and extraction of much rel-
evant information from imaging modalities such as MMs and HPs [23], [24]. Many avail-
able AI-based tools for image recognition to detect breast cancer have exhibited better 
performance than traditional CAD systems and manually examining images by expert 
radiologists or pathologists due to the limitations of current manual approaches [25]. In 
other words, AI-based methods avoid expensive and time-consuming manual inspection 
and effectively extract key and determinative information from the high-resolution image 
data [25], [26]. For example, a spectrum of diseases is associated with specific features, 
such as mammographic features. Thus, AI can learn these types of features from the struc-
ture of image data and then detect the spectrum of the disease assisting radiologist or 
histopathologist experts. It is worth noting that in contrast to human inspection, algo-
rithms are mainly similar to the black box and cannot understand the context, mode of 
collection, or meaning of viewed images, resulting in the problem of “shortcut” learning 
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[27], [28]. Thus, building interpretable AI-based models is necessary. AI models generally 
can be categorized into two groups to interpret and extract information from image data: 
1) Traditional machine learning algorithms which need to receive handcrafted features 
derived from raw image data as preprocessing steps. 2) Deep learning algorithms that 
process raw images and try to extract features by mathematical optimization and multi-
ple-level abstractions [29]. Although both approaches have shown promising results in 
breast cancer detection, recently, the latter approach has attracted more interest mainly 
because of its capability to learn the most salient representations of the data without hu-
man intervention to produce superior performance [30], [31]. This review assesses and 
compresses recent datasets and AI-based models, specifically created by deep learning 
algorithms, used on TBD, PET, MRI, US, HP, and MM in breast cancer screening and de-
tection. We also highlight the future direction in breast cancer detection via deep learning. 
This study can be summarized as follows: 1) Reviewing different imaging modalities for 
breast cancer screening. 2) Comparing different deep learning models proposed in the 
most recent studies and their achieved performances on breast cancer classification, seg-
mentation, detection, and other analysis. 3) Lastly, concluding the paper and suggesting 
future research directions. 

2. Imaging modalities and available datasets for breast cancer  
In this study, we summarize well-known imaging modalities for breast cancer diag-

nosis and analysis. As many existing studies have shown, there are several imaging mo-
dalities, including mammography, histopathology, ultrasound, magnetic resonance im-
aging, Positron Emission Tomography, Digital breast tomosynthesis, and a combination 
of these modalities (multimodalities) [10], [31], [32]. There are various public or private 
datasets for these modalities. Approximately 70% of available public datasets are related 
to mammography and ultrasound modalities demonstrating the prevalence of these 
methods, especially mammography, for breast cancer screening [31], [32]. On the other 
hand, the researcher also widely utilized other modalities such as histopathology and 
MRI to confirm cancer and deal with difficulties related to mammography and ultrasound 
imaging modalities such as large variations in the image's shape, morphological structure, 
and the density of breast tissues, etc.  Here, we outline the aforementioned imaging mo-
dalities and available datasets for breast cancer detection. 

2.1. Mammograms (MMs) 
Mammograms' advantages, such as being cost-effective to detect tumors in the initial 

stage before development, causes MMs to be the most promising imaging screening tech-
nique in clinical practice. MMs are generally images of breasts produced by low-intensity 
x-ray (Figure 2) [32]. In this imaging modality, cancerous regions are brighter and more 
clear than other parts of breast tissue, helping to detect small variations in the composi-
tion of the tissues; therefore it is used for diagnosis and analysis of breast cancer [33], [34] 
(Figure 1). Although MMs are the standard approach for breast cancer analysis, it is an 
inappropriate imaging modality for women with dense breasts [35], since the perfor-
mance of MMs highly depends on specific tumor morphological characteristics [35], [36]. 
To deal with this problem, using Automated Whole Breast Ultrasound (AWBU) or other 
methods are suggested with MMs to produce a more detailed image of breast tissues [37].  

For various tasks in breast cancer analysis, such as breast lesion detection and classi-
fication, MMs are generally divided into two forms:  Screen Film Mammograms (SFM) 
and Digital mammograms (DMM). DMM is widely categorized into three categories con-
sisting of Full Field Digital Mammograms (FFDM), Digital Breast Tomosynthesis (DBT), 
and Contrast-Enhanced Digital Mammograms (CEDM) [38]–[43]. SFM was the standard 
imaging method in MMs because of its high sensitivity (100%) in the analysis and detec-
tion of lesions in breasts composed primarily of fatty tissue [44]. However, it has many 
drawbacks such as  1) SFM imaging needs to be repeated with a higher radiation dose 
because some part of the image in SFM has lesser contrast, and cannot be further 
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improved, and  2) various regions of the breast image are represented according to the 
characteristic response of the SFM  [19], [44]. Since 2010 DMM has replaced film as the 
primary screening modality. The main advantages of digital imaging over file systems are 
the higher contrast resolution and the ability to enlarge the image or change the contrast 
and brightness. These advantages help radiologists to detect subtle abnormalities, partic-
ularly in a background of dense breast tissue, more easily. Most studies comparing digital 
and film mammography performance have found little difference in cancer detection rates 
[45]. Digital mammography increases the chance of detecting invasive cancer in premen-
opausal and perimenopausal women and women with dense breasts. However, it in-
creases false-positive findings as well [45]. Randomized Mammographic Trials/Random-
ized Controlled Trials (RMT/RCT) is the most important usage of MMs, through which 
large-scale screening for breast cancer analysis is performed. Despite the great capability 
of MMs for early-stage cancer detection, it is difficult to use MMs alone for detection. Be-
cause it requires additional screening tests along with mammographic trials/RMT such as 
breast self-examination (BSE) and Clinical Breast Examination (CBE), which are more fea-
sible methods to detect breast cancer at early stages to improve breast cancer survival [37], 
[46], [47]. Also, BSE and CBE avoid tremendous harm due to MMs screening, such as re-
peating the imaging process. More details about the advantages and disadvantages of 
MMs are provided in Table 1. 

 

 
Figure 1. Example of breast cancer images using traditional film MMs [48]. 

2.2. Digital Breast Tomosynthesis (DBT) 
DBT is a novel imaging modality making 3D images of breasts by utilization of x-

rays captured from different angles [49]. This method is similar to what has been done in 
mammograms, except the tube with x-ray moves in a circular arc around the breast [50]–
[52] (Figure 2).  Repeated exposures to the breast tissue at different angles produce DBT 
images in half-millimeter slices. In this method,  computational methods are utilized to 
collect information received from x-ray images to produce z-stack breast images and 2D 
reconstruction images [52], [53]. In contrast to the conventional FSM method, DBT can 
easily cover the imaging of tumors from small to large size, especially in the case of small 
lesions and dense breasts [54]. However, the main challenging issue regarding the DBT is 
the long reading time because of the number of mammograms, the z-stack of images, and 
the number of recall rates for architectural distortion type of breast cancer abnormality 
[55]. After FFDM, DBT is the commonly used method for imaging modalities. Many stud-
ies recently used this imaging modality for breast cancer detection due to its favorable 
sensitivity and accuracy in screening and producing better details of tissue in breast can-
cer [56]–[59]. Table 1 states details of the pros and cons of DBT for breast cancer analysis. 
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Figure 2. Images of cancerous breast tissue by DBT imaging modality [60]. 

2.3. Ultrasound (US) 
All aforementioned modalities can endanger patients and radiologists because of 

possible overdosage of ionizing radiation, making these approaches slightly risky and un-
healthy for certain sensitive patients [61]. Also, these methods show low specificity, mean-
ing the low ability to correctly determine a tissue without disease as a negative case. 
Therefore, although the aforementioned imaging modalities are highly used for early 
breast cancer detection, the US as a safe imaging modality has been used [61]–[64],[65], 
[66] (Figure 3). Compared to MMs, the US is a more convenient method for women with 
dense breasts. It is also useful to characterize abnormal regions and negative tumors de-
tected by MMs [67]. Some studies showed the high accuracy of the US for detecting and 
discriminating benign and malignant masses [68].  US images are used in three broad 
combinations, i.e., i) simple two-dimensional grayscale US images, ii) color US images 
with Shear Wave Elastography (SWE) added features, and iii) Nakagami colored US im-
ages without any need for ionizing radiation [69], [70]. It is worth noting that Nakagami-
colored US images are responsible for the region of interest extraction by better detection 
of irregular masses in the breast. Moreover, US can be used as a complement of MMs 
owing to its availability, inexpensiveness compared to other modalities, and well tolerated 
by patients [69], [71], [72]. In a recent retrospective study, US breast imaging has shown a 
high predictive value when combined with MMs images [73]. US images, along with 
MMs, improved overall detection by about 20% and decreased unnecessary biopsy tasks 
by 40%  in total [66]. However, the US represents some limitations. For instance, inter-
pretation of US images is highly difficult and needs an expert radiologist to comprehen-
sively understand these images. It is because of the complex nature of US images and the 
presence of speckle noise [74], [75]. To deal with this issue, new technologies have been 
introduced in breast US imaging, such as automated breast ultrasound (ABUS). ABUS 
produces 3D images using wider probes. Shin et al. [76] improved how ABUS allows more 
appropriate image evaluation for large breast mass compared to conventional breast US. 
On the other hand, ABUS showed the lowest reliability in the prediction of residual tumor 
size and pCR(pathological complete response) [77]. Table 1 highlights more details about 
the weaknesses and strengths of the US imaging modality. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 October 2022                   doi:10.20944/preprints202210.0096.v1

https://doi.org/10.20944/preprints202210.0096.v1


 

 

 
Figure 3. Ultrasound images from breast tissue for normal, benign, and malignant [78]. 

2.4. Magnetic Resonance Imaging (MRI) 
MRI creates images of the whole breast and presents it as thin slices that cover the 

entire breast volume. It works based on radio frequency absorption of nuclei in the exist-
ence of potent magnetic fields. MRI uses a magnetic field along with radio waves to cap-
ture multiple breast images at different angles from a tissue [79]–[81] (Figure 4). By the 
combination of these images together, clear and detailed images of tissues are produced. 
Hence, MRI creates much clearer images for breast cancer analysis than other imaging 
modalities [82]. For instance, the MRI image shows many details clearly, leading to easy 
detection of lesions that are considered benign in other imaging modalities. Also, MRI is 
the most favorable method for breast cancer screening in women with dense breasts with-
out any ionizing and other health risks, which we have seen in other modalities such as 
MMs [83], [84]. Another interesting issue about MRI is its capability for producing high-
quality images with a more clear view via the utilization of a contrast agent before taking 
MRI images [85], [86]. Furthermore, MRI is more accurate than MM, DBT, and the US in 
evaluating residual tumors and predicting pCR [77], [87] which helps clinicians to select 
appropriate patients for avoiding surgery after Neoadjuvant chemotherapy (first-line 
treatment of breast cancer) when pCR is obtained [88].  Even though MRI exhibits prom-
ising advantages, such as high sensitivity, it shows low specificity, and it is time-consum-
ing and expensive, especially since its reading time is long [89], [90]. It is worth noting 
that some new MRI-based methods, such as Ultrafast Breast MRI (UF-MRI), create much 
more efficient images with high screening specificity with short reading time [91], [92]. 
Also, diffusion-weighted MR imaging (DWI-MRI) and dynamic contrast-enhanced MRI 
(DCE-MRI) provide higher volumetric resolution for better lesion visualization and lesion 
temporal pattern enhancement to use in breast cancer diagnosis and prognosis and corre-
lation with genomics [52], [79], [93]–[95]. Details about various MRI-based methods and 
their pros and cons are available in Table 1. 

. 

Figure 4. Dense cancerous breast tissue images conducted by MRI method in different angles A) 
normal B) malignant [80]. 

2.5. Histopathology  
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Recently, various studies have confirmed that the gold standard for confirmation of 
breast cancer diagnosis, treatment, and management is given by the histopathological 
analysis of a section of the suspected area by a pathologist [96]–[98]. Histopathology con-
sists of examining tissue lesion samples stained, for example, with Hematoxylin and Eosin 
(H&E) to produce colored histopathologic (HP) images for better visualization and de-
tailed analysis of tissues [99]–[101] (Figure 5). Generally, HP images are obtained from a 
piece of suspicious tissue human to be tested and analyzed by a pathologist [102]. HP 
images are defined as gigapixel whole slide images (WSI) from which some small patches 
are extracted to enhance analyzing these WSI (Figure 5). In other words, pathologists try 
to extract small patches related to ROI from WSI to diagnose breast cancer subtypes, 
which is a great advantage of HPs, enabling them to classify multiple classes of breast 
cancer [103], [104] for prognosis and treatment. Also, much more meaningful ROI can be 
derived from HPs, in contrast to other imaging modalities confirming outstanding au-
thenticity for breast cancer classification, especially breast cancer subtype classification. 
Despite these advantages, HPs have some limitations. For example, analyzing multiple 
biopsy sections, such as converting an invasive biopsy to digital images, is a lengthy pro-
cess requiring a high concentration level due to the cell structures' microscopic size [105]. 
More drawbacks and advantages of the HP imagining modality are summarized in Table 
1. 

 
Figure 5. Images of the breast from H & E (Haemotoxylin & Eosin) stained image of a benign case 
provided by histopathology imaging modality [102]. 

2.6. Positron Emission Tomography (PET) 
PET uses radiotracers for visualizing and measuring the changes in metabolic pro-

cesses and other physiological activities, like blood flow, regional chemical composition, 
and absorption. PET is a recent effective imaging method showing the promising capabil-
ity to measure tissues' in vivo cellular, molecular, and biochemical properties (Figure 6). 
One of the key applications of PET is the analysis of breast cancer [106]. Studies high-
lighted that PET is a handy tool in staging advanced and inflammatory breast cancer and 
evaluating response to treatment of the recurrent disease [34], [35]. In contrast to the ana-
tomic imaging method, PET highlights a more specific targeting of breast cancer with a 
larger margin between tumor and normal tissue, representing one step forward in cancer 
detection besides anatomic modalities [109]. Thus, the PET approach is used in hybrid 
modalities with CT for specific organ imaging to encourage the advantages of PET and 
improve spatial resolution, which is one of this modality's strengths. Also, PET uses the 
integration of radionuclides with some elements or pharmaceutical compounds to form 
radiotracers, improving the performance of PET [110]. Fluorodeoxyglucose (FDG), a glu-
cose analog, is most commonly used for most breast cancer imaging studies as an effective 
radiotracer developed for PET imaging [111]. Recent studies clarified a specific correlation 
between the degree of FDG uptake and several phenotypic features containing a tumor 
histologic type and grade, cell receptor expression, and cellular proliferation [112], [113].  
These correlations lead to making the FDG-PET system for breast cancer analysis such as 
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diagnosis, staging, re-staging, and treatment response evaluation [107], [114], [115]. An-
other PET system is a breast-dedicated high-resolution PET system designed in a hanging 
breast imaging modality. Some studies demonstrate that these PET-based modalities can 
detect almost all breast lesions and cancerous regions [116]. Table 1 summarizes some of 
PET-based imaging modalities' limitations and advantages. 

 

 
Figure 6. Example of PET images for breast cancer analysis [114]. 

Table 1. Advantages and limitations of various imaging modalities. 

Advantages Limitations 
• MM 
• More than 70% of studies (computational and experimental) for 

breast cancer analysis. 
• Time and cost-effective approach for image capturing and pro-

cessing compared to other modalities 
• No needs to highly professional radiologists for diagnosis and 

cancer detection compared to other methods 

• MM 
• Cannot capture micro-calcification because MMs are created via 

low-dose x-ray 
• Limited capability for diagnosis of cancer dense breasts 
• Needs more testing for accurate diagnosis  
• Needs various pre-processing for classification because of consider-

ing many factors and structures such as the border of the breast, 
fibrous strands, hypertrophied lobules, etc. which may cause mis-
understanding Problems in the visualization of cancer in high 
breast density 

• US 
• The very efficient approach in reducing false negative rates for 

diagnosis because of its capability in capturing images from dif-
ferent views and angles. 

• A highly safe and most efficient approach for a routine checkup 
because the US is a non-invasive method  

• Ability the detection of invasive cancer areas 
• Highly recommended for identification of breast lesion ROI be-

cause of its additional features such as color-coded SWE images  

• US 
• Capturing low-quality images for examination of the larger amount 

of tissues  
• Difficult to understanding SWE images 
• Single Nakagami parametric image cannot detect cancerous tissues 
• Proper ROI estimation is very difficult because of the shadowing 

effect making the tumor contour unclear 

• MRI 
• Safe method due to no exposing to harmful ionizing radiation 
• Capture images with more details 
• Capture more suspicious areas for further analysis compared to 

other modalities 
• Can be improved by adding contrast agents to represent images 

with more details 

• MRI 
• Miss some tumors but can be used as the compliment of MMs 
• Increase body temperature 
• May lead to some allergies  
• Invasive method and dangerous 

• HP 
• Produces color coded images that helps to detect cancer sub-

types and early detection of cancer  
• Widely used in cancer diagnosis similar to MMs 

• HP 
• Expensive and time-consuming method to analyze and need  
• highly expert pathologist  
• It is tedious to extract ROI and analysis, so it may lead to  
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 Table 2. Public datasets for different imaging modalities for breast cancer analysis 

Imaging mo-

dality 

Public datasets Link of dataset Information about dataset 

MM • BCDR 

• IRMA 

• MIAS 

• DDSM 

• INBreast 

• https://www.medicmind.tech/cancer-imaging-data 

• https://www.medicmind.tech/cancer-imaging-data 

• https://www.medicmind.tech/cancer-imaging-data 

• https://www.medicmind.tech/cancer-imaging-data 

• http://marathon.csee.usf.edu/Mammography/Data-

base.html, 

• 426 benign and 310 malignant mass le-

sions 

• 1865 typical cases and 932 abnormal  

• 133 images abnormal and 189 of normal 

class 

• 912 benign and 784 malignant 

• 410 malignant 

US • MBUD 

 

• OASBUD 

• BUSI 

• MT-small 

 

• UDIAT 

• STUHospital 

• https://www.kaggle.com/datasets/aryashah2k/breast-ul-

trasound-images-dataset 

• http://bluebox.ippt.gov.pl/~hpiotrzk/  

• https://scholar.cu.edu.eg/?q=afahmy/pages/dataset 

• https://www.kaggle.com/datasets/mohammedtgadal-

lah/mt-small-dataset 

• https://datasets.bifrost.ai/info/1320 

• https://github.com/xbhlk/STU-Hospital 

• 472 normal 278 abnormal 

 

• 48 benign 52 malignant  

• 620 benign 210 malignant  

• 200 benign 200 malignant 

 

• 110 benign 53 malignant  

• 42 malignant  

MRI • DCE-MRI 

• DWI 

 

• RIDER 

• https://mridiscover.com/dce-mri/ 

• https://radiopaedia.org/articles/diffusion-weighted-im-

aging-2?lang=us 

• 559 malignant  

• 328 lesions 

 

• 500 malignant 

• Shows tissues in two forms including WSI and ROI extracted 
from WSI  

• Enables to provide more reliable results for diagnosis than any 
other imaging modalities 

• ROI increase accuracy of cancer diagnosis and analysis 
• Can be stored for future analysis 

• decrease the accuracy of analysis because of fatigue  
• Analysis of HPs highly depends on many factors such as fixation, 

lab protocols, sample orientations, human expertise in tissue prep-
aration, color variation 

• The hardest imaging modalities for applying a DL approach for the 
classification of cancers and it needs high computational resources 
for analysis 

• DBT 
• Increases cancer detection rate  
• Can find cancers that were entirely missed on MMs 
• Presents a unique opportunity for AI systems to help develop 

DBT-based practices from the ground up. 
• Captures a more detailed view of tissues by rotating the x-ray 

emitter to receive multiple images  
• Has great capability to distinguish small lesions which may ob-

scure in the projections obtained using MMs 

• DBT 
• Time consuming and expensive because of making 3D images 
• Lack of proper data curation and labeling 
• Decreasing accuracy of analysis when using 2D slices instead of 3D 

images  
• Looking only at 2D slices, it is still unclear whether AIModels oper-

ate better using abnormalities labeled  
• Using bounding boxes or tightly-drawn margins of lesions  
• DBT studies easily require more storage than MMs by order of 
• magnitude or more. 

• PET 
• An efficient method in the analysis of small lesions 
• Great capability to detect metastasis at different sites and or-

gans. 
• Checks up the entire patient for local recurrence, lymph node 

metastases, and distant metastases using a single injection of ac-
tivity 

• Highly recommended for patients with dense breast or implants  
• The best approach for detecting the primary tumor in patients  

• PET 
• Poor detection rates for small or non-invasive breast cancers  
• Miss osteoblastic metastases showed lower metabolic activity 
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https://mridiscover.com/dce-mri/
https://radiopaedia.org/articles/diffusion-weighted-imaging-2?lang=us
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• DMR-IR 

• TCIA 

• https://wiki.cancerimagingarchive.net/display/Pub-

lic/RIDER+Collections 

• http://visual.ic.uff.br/dmi/ 

• https://www.cancerimagingarchive.net/ 

 

• 267 normal 44 abnormal  

• 91 malignant  

HP • BreaKHis 

• Camelyon  

• TUPAC  

 

• BACH 

• ICPR 2012 

• IDC 

• Wisconsin 

 

• DRYAD 

 

• CRC 

• AMIDA 

 

• https://www.kaggle.com/datasets/ambarish/breakhis 

• https://camelyon16.grand-challenge.org/Data/ 

• https://github.com/DeepPathology/TUPAC16_Alterna-

tiveLabels 

• https://zenodo.org/record/3632035#.Yxl8gnbMK3A 

• http://icpr2012.org/ 

• https://imaging.datacommons.cancer.gov/ 

• https://archive.ics.uci.edu/ml/datasets/Breast+Can-

cer+Wisconsin+%28Diagnostic%29 

• https://datadryad.org/stash/da-

taset/doi:10.5061/dryad.05qfttf4t 

• https://paperswithcode.com/dataset/crc 

• https://www.amida.com/index.html 

• 2480 benign and 5429 malignant  

• 240 benign 160 malignant  

• 50 benign 23 malignant  

 

• 37 benign 38 malignant  

• 50 malignant  

• 162 malignant  

• 357 benign and 212 malignant 

 

• 173 malignant 

 

• 2031 normal 1974 malignant  

• 23 malignant   

 

DBT • BCS-DBT • https://sites.duke.edu/mazurowski/resources/digital-

breast-tomosynthesis-database/ 

• 22032 whole data 

 

3. Artificial Intelligence in Medical Image Analysis 
Artificial intelligence (AI) has become very popular in the past few years because it 

adds human capabilities, e.g. learning, reasoning, and perception, to the software accu-
rately and efficiently and as the result, computers gain the ability to do tasks that are usu-
ally done by humans. The recent advances in computing resources and availability of 
large datasets, as well as the development of the new AI algorithms, have opened the path 
to the use of AI in many different areas, including but not limited to Image Synthesis [117], 
Speech Recognition [118] [119] and  Engineering [120]–[122]. AI has been also employed 
in healthcare industries for applications such as protein engineering [123]–[126], cancer 
detection [127], and drug discovery [128], [129]. More specifically, AI algorithms have 
shown an outstanding capability to discover complex patterns and extract discriminative 
features from medical images, providing higher quality analysis and better quantitative 
results efficiently and automatically. AI has been a great help for physicians in imaging-
related tasks, i.e., disease detection and diagnosis, to accomplish more accurate results 
[130]. 

3.1. Benefits of using AI for medical image analysis 
Comparing the healthcare area with others, it is safe to say that the decision-making 

process is much more crucial in healthcare systems than in other areas since it directly 
affects people's lives. For example, a wrong decision by a physician in diagnosing a dis-
ease can lead to the death of a patient. Complex and constrained clinical environments 
and workflows make physician's decision-making very challenging, especially for image-
related tasks since they require high visual perception and cognitive ability [131]. In these 
situations, AI can be a great tool to decrease false diagnosis rates by extracting specific 
and known features from the images or even help the physician by giving an initial guess 
for the solution. Nowadays, more and more health care providers are encouraged to use 
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AI algorithms due to the availability of computing resources, advancement in image anal-
ysis tools, and the great performance shown by AI methods. 

3.2. Deep learning models for breast cancer detection 
Deep learning (DL) [29] is part of a broader family of AI which imitates the way hu-

mans learn.  DL uses multiple layers to gain knowledge, and the complexity of the 
learned features increases hierarchically. DL algorithms have been applied in many ap-
plications and in some of them, they could outperform humans.  DL algorithms have also 
been used in various categories in the realm of cancer diagnosis using cancer images from 
different modalities, including detecting cancer cells, cancer type classification, lesion seg-
mentation, etc. To learn more about DL we refer the interested readers to [132].This section 
briefly discusses the deep learning algorithms applied to images from each breast cancer 
modality. 

3.2.1. Digital Mammography & Digital Breast Tomosynthesis (MM -DBT) 
With the recent technology developments, the MM images follow the same trend and 

take more advanced forms, i.e., Digital Breast Tomosynthesis (DBT). Each MM form has 
been widely used for breast cancer detection and classification. One of the first attempts 
to use deep learning for MMs was done by [133]. The authors in [133] used a Convolu-
tional Neural Network (CNN)-based model to learn features from mammography images 
before feeding them to a support vector machine (SVM) classifier. Their algorithm could 
achieve 86% AUC in lesion classification, which had about 6% improvements compared 
to the best conventional approach before this paper. Following [133], more studies [134]–
[136] have also used CNN-based algorithms for lesion classification. However, in these 
papers, the region of interest was extracted without the help of a deep learning algorithm, 
i.e., by employing traditional image processing methods [135] or by an expert [136]. More 
specifically, the authors in [134] first divided MM images into patches and extracted the 
features from the patches using a conventional image processing algorithm, and then used 
the random forest classifier to choose good candidate patches for their CNN algorithm. 
Their approach could achieve an AUC of 92.9%, which is slightly better than the baseline 
method based on a conventional method with an AUC of 91%. With the advancement in 
DL algorithms and the availability of complex and powerful DL architectures, DL meth-
ods have been used to extract ROIs from full MM images. As a result, the input to the 
algorithm is no longer the small patches, and the full MM image could be used as input. 
For example, the proposed method in [127] uses YOLO [137], a well-known algorithm for 
detection and classification, to simultaneously extract and classify ROIs in the whole im-
age. Their results show that their algorithm performs similarly to a CNN model trained 
on small patches with an AUC of 97%. Figure 7 shows  the overall structure of the pro-
posed model in [127]. 

To increase the accuracy of cancer detection, DBT has emerged as a predominate 
breast imaging modality.  It has been shown that DBT increases cancer detection rate 
(CDR) while decreasing recall rates (RR) when compared to FFDM [138]–[140]. Following 
the same logic, some DL algorithms have been proposed to apply to DBT images for can-
cer detection [141]–[145]. For instance, the authors in [146] proposed a deep learning 
model based on ResNet architecture to classify the input images into normal, benign, 
high-risk, or malignant. They trained the model on an FFDM dataset, then, they fine-tuned 
the model using 2D reconstruction of DBT images obtained by applying the 2D maximum 
intensity projection (MIP) method. Their method achieved an AUC of 84.7% on the DBT 
dataset. A deep CNN has been developed in [141] that uses DBT volumes to classify the 
masses. Their proposed approach obtained an AUC of 84.7%, which is about 2% higher 
than the current CAD method with hand-crafted features. 

Although deep learning models perform very well in medical image analysis, their 
major bottleneck is the thirst for training datasets. In the medical field, collecting and la-
beling data is very expensive. So some studies used transfer learning to overcome this 
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problem. In the study by [147], the authors developed a two-stage transfer learning ap-
proach to classify DBT images as mass or normal. In the first stage, the authors fine-tuned 
a pretrained AlexNet [148] using FFDM images, and then the fine-tuned model was used 
to train a model using DBT images. The CNN model in the second stage was used as the 
feature extractor for DBT images, and the random forest classifier was used to classify the 
extracted features as mass or normal. They obtained an AUC of 90% on their test dataset. 
In another work in  [149], the authors used a  VGG19[150] network trained on the 
ImageNet dataset as a feature extractor for FFDM and DBT images for malignant and be-
nign classification. The extracted features were fed to an SVM classifier to estimate the 
probability of malignancy. Their method obtained an AUC of 98% and 97% on the DBT 
images in CC and MLO view, respectively. These methods show that by using a relatively 
small training dataset and employing transfer learning techniques deep learning models 
can perform well. Most of the aforementioned studies compare their DL algorithms with 
traditional CAD methods. However, the best way to evaluate the performance of a DL 
method is to compare that with a radiologist directly. For example, the performance of DL 
systems on FFDM and DBT has been investigated in [151]. The study shows that a DL 
system can achieve comparable sensitivity as radiologists in FFDM images while decreas-
ing the recall rate. Also, on DBT images, an AI system can have the same performance as 
radiologists, although the recall rate has increased.  

Table 3 shows the list of recent DL-based models used for MM and DBT with their 
performances. The application of DL in breast cancer detection is not limited to mammog-
raphy images. In the following section, we discuss the DL application in the other breast 
cancer imaging modalities.  

 
Figure 7. Schematic diagram of the proposed YOLO-based CAD system in [127]. 

Table 3: The summary of the studies that used MM and DBT datasets 

Paper Year Task Model Type Dataset Evaluation 

Agnes et al.[142] 2020 Classification Multiscale All 

CNN  

MM MIAS Acc = 96.47% 

Shu et al.[152] 2020 Classification CNN MM INbreast  

CBIS-DDSM 

INbreast: Acc = 92.2% 

CBIS: Acc = 76.7% 
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Singh et al. [146] 2020 Classification CNN FFD

M & 

DBT 

Private FFDM: AUC = 0.9 

DBT: AUC = 0.85 

Boumaraf et al.[153] 2020 Classification DBN (Deep Be-

lief Network) 

MM DDSM Acc = 84.5% 

Matthews et al.[154] 2021 Classification Transfer learn-

ing based on 

ResNet 

DBT Private AUC = 0.9 

Zhang et al.[155] 2021 Classification GNN (Graph 

Neural Net-

work) + CNN 

MM MIAS Acc = 96.1% 

Li et al.[156] 2021 Classification SVM (Support 

Vector Machine) 

MM INbreast Acc = 84.6% 

Saber et al.[157] 2021 Classification CNN/Transfer 

learning 

MM MIAS Acc = 98.87% 

F-score = 99.3%   

Malebary et al.[158] 2021 Classification CNN MM DDSM 

MIAS 

 

DDSM: Acc= 97%MIAS: Acc = 97% 

 

Li et al.[159] 2021 Classification CNN-RNN (Re-

current Neural 

Network) 

MM DDSM ACC =94.7%, Recall = 94.1% AUC 

=0.968 

Ueda et al.[160] 2022 Classification CNN MM Private 

DDSM 

AUC = 0.93 

Mota et al. [161] 2022 Classification CNN DBT VICTRE AUC = 0.941 

Bai et al. [162] 2022 Classification GCN (Graph 

Convolutional 

Network) 

DBT BCS-DBT 

Private 

Acc = 84% 

AUC = 0.87 

Zhu et al.[163] 2018 Mass Segmentation FCN (Fully Con-

volutional Net-

work) + CRF 

(Conditional 

Random Field) 

MM INbreast 

DDSM-

BCRP 

INbreast: Dice = 90.97% 

DDSM-BCRP: Dice = 91.3% 

Wang et al.[164] 2019 Mass Segmentation MNPNet 

(Multi-Level 

Nested Pyramid 

Network) 

MM INbreast 

DDSM-

BCRP 

INbreast: Dice = 91.1% 

DDSM-BCRP: Dice = 91.69% 

Saffari et al.[165] 2020 Dense tissue Segmen-

tation /Classification 

cGAN and CNN MM INbreast S: Acc = 98% 

C: Acc = 97.85% 
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Ahmed et al.[166] 2020 Tumor Segmentation/ 

Classification 

DeepLab/ mask 

RCNN 

MM MIAS 

CBIS-DDSM 

DeepLab: C: Acc = 95% 

S: MAP = 72% 

Mask RCNN: C: Acc = 98% 

S: MAP = 80% 

Buda et al. [167] 2020 Lesion detection CNN DBT Private Sensitivity = 65% 

Cheng et al.[168] 2020 Mass Segmentation Spatial En-

hanced Rotation 

Aware Net 

MM DDSM Dice = 84.3% 

IOU = 73.95% 

Chen et al.[169] 2020 Mass Segmentation Modified U-Net MM INbreast 

CBIS-DDSM 

INbreast: Dice = 81.64% 

CBIS: Dice = 82.16% 

Soleimani et al.[170] 2020 Breast-Pectoral Seg-

mentation 

CNN MM MIAS 

CBIS-DDSM 

INbreast 

MIAS: Dice = 97.59% 

CBIS: Dice = 97.69% 

INbreast: Dice = 96.39% 

Al-antari et al.[171] 2020 Breast lesions Seg-

mentation/ Classifica-

tion 

YOLO MM DDSM 

INbreast 

S: 

DDSM: F1-score = 99.28% 

INbreast: F1-score = 98.02% 

C: 

DDSM: Acc = 97.5% 

INbreast: Acc = 95.32% 

Li et al.[172] 2020 Mass Segmentation Siamese-Faster-

RCNN 

MM INbreast 

BCPKUPH(p

rivate) 

TXMD(pri-

vate) 

INbreast: TP = 0.88, 

BCPKUPH: 

TP = 0.85 

TXMD: 

TP = 0.85 

Peng et al.[173] 2020 Mass Segmentation Faster RCNN MM CBIS-DDSM 

INbreast 

CBIS: 

TP = 0.93 

INbreast: 

TP = 0.95 
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Kavitha et al.[174] 2021 Mass Segmentation/ 

Classification 

CapsNet MM MIAS 

DDSM 

MIAS: Acc = 98.5% 

DDSM:  

Acc = 97.55% 

Shoshan et al. [175] 2021 Lesion detection CNN DBT DBTex chal-

lenge 

Avg. sensitivity = 0.91 

Hossain et al. [176] 2022 Lesion detection CNN DBT DBTex chal-

lenge 

Avg. sensitivity = 0.815 

Hossain et al. [177] 2022 Lesion detection CNN DBT DBTex chal-

lenge 

Avg. sensitivity = 0.84 

Atrey et al.[178] 2022 Breast lesion Segmen-

tation  

CNN MM DDSM Dice = 65 % 

 

3.2.2. Ultrasound (US) 
As it has been explained in section 2, the ultrasound performs much better in detect-

ing cancers and reduces unnecessary biopsy operations [179]. Therefore, it is not surpris-
ing to see that the researchers use this type of image in their DL models for cancer detec-
tion [180]–[182]. For instance, a GoogleNet [183]-based CNN has been trained on the sus-
picious ROIs of US images in [180]. The proposed method in [180] achieved an AUC of 
96%, which is 6% higher than the CAD-based method with hand-crafted features. The 
authors in [184]–[186] trained CNN models directly with whole US images without ex-
tracting the ROIs. For example, authors in [186], combined VGG19 and ResNet152 and 
trained the ensemble network on US images. Their proposed method achieved an AUC 
of 95% on a balanced, independent test dataset. Figure 8 represents an example of CNN 
models for breast cancer subtypes classification.  

In comparison with datasets for mammography images, there are fewer datasets for 
US images, and they usually contain much fewer images. Therefore, most of the proposed 
DL models use some kind of data augmentation method, such as rotation, to increase the 
size of training data and improve the model performance. However, one should be careful 
about how to augment US images since some augmentation may decrease the model per-
formance. For example, it has been shown in [182] that performing the image rotation or 
shift in the longitudinal direction can affect the model performance negatively. The gen-
erative adversarial networks (GANs) can also be used to generate synthetic US images 
with or without tumors [187]. These images can be added to the original training images 
to improve the model's accuracy. 

The US images have also been used in lesion detection in which giving the image, the 
CAD system decides whether the lesion is present. One of the challenges that the re-
searcher faces in this type of problem with normal US images is that there is a need for a 
US doctor to manually select the images that have lesions for the models. This depends 
on the doctors' availability and is usually expensive and time-consuming. It also adds 
human errors to the system [188]. To solve this problem, a method has been developed in 
[189] to detect the lesions in real time during US scanning. Another type of US imaging is 
called the 3D Automated Breast US scan, which captures the entire breast [190], [191]. The 
authors in [191] developed a CNN model based on VGGNet, ResNet [192], and DenseNet 
[193] networks. Their approach obtained an AUC of  97% on their private dataset and an 
AUC of 97.11% on the Breast Ultrasound Image(BUSI) dataset [78]. 

Some methods combined the detection and classification of lesions in US images in 
one step [194]. An extensive study in [195] compares different DL architectures for  US 
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image detection and classification. Their results show that the DenseNet is a good candi-
date for classification analysis of US images, which provides accuracies of 85% and 87.5% 
for full image classification and pre-defined ROIs, respectively. The authors in [196] de-
veloped a weakly-supervised DL algorithm based on VGG16, ResNet34, and GoogleNet 
trained using 1000 unannotated US images. They have reported an average AUC of 88%. 

Some studies validate the performance of DL algorithms [197]–[199] using expert in-
ference, showing that DL algorithms can greatly help radiologists. This is mostly in cases 
where the lesion was already detected by an expert, and the DL model is used to classify 
them. However, unlike the mammography studies, most of the studies are not validated 
by multiple physicians and do not show the generalizability of their method on multiple 
datasets which should be addressed in future validations. Table 4 shows the list of recent 
algorithms used for US images and their performances. 

Table 4. The summary of the studies that used ultrasound dat.aset 

Paper Year Task Model Dataset Evaluation 

Byra et al. 

[200] 

2019 Classification Transfer learning based on VGG-19 & InceptionV3  OASBUD VGG19: AUC = 0.822 

InceptionV3: AUC = 0.857  

Byra et al. 

[182] 

2019 Classification Transfer learning based on VGG 19  Private AUC = 0.936 

Hijab et al.  

[201] 

2019 Classification Transfer learning based on VGG16  Private Acc = 97.4% 

AUC = 0.98 

Zhang et al. 

[202] 

2019 Classification Deep Polynomial Network (DPN) Private Acc = 95.6% 

AUC = 0.961 

Fujioka et al. 

[203] 

2020 Classification CNN Private AUC = 0.87 

Wu et al. 

[204] 

2020 Classification Random Forest (RF) Private Acc = 86.97% 

Wu et al. 

[205] 

2020 Classification Generalized Regression Neural Network (GRNN) Private Acc = 87.78% 

F1 score = 86.15% 

Gong et al. 

[206] 

2020 Classification Multi-view Deep Neural Network Support Vector 

Machine (MDNNSVM) 

Private Acc = 86.36% 

AUC = 0.908 

Moon et al. 

[191] 

2020 Classification VGGNet + ResNet +  DenseNet (Ensemble loss) SNUH 

BUSI 

SNUH: 

Acc = 91.1% 

AUC = 0.9697 
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BUSI: 

Acc = 94.62% 

AUC = 0.9711 

Zhang et al. 

[207] 

2020 Classification CNN Private AUC = 1 

Yousef Kalaf et 

al. 

[208] 

2021 Classification Modified VGG16 Private Acc = 93% 

F1 score = 94% 

Misra et al. 

[209] 

2022 Classification Transfer learning based on AlexNet & ResNet Private Acc = 90% 

Vakanski et al. 

[210] 

2020 Tumor Segmen-

tation 

CNN BUSI Acc = 98% 

Dice score = 90.5% 

Byra et al. 

[211] 

2020 Mass Segmenta-

tion 

CNN Private Acc = 97% 

Dice score = 82.6% 

Singh et al. 

[212] 

2020 Tumor Segmen-

tation 

CNN Mendeley  

UDIAT  

Mendeley: Dice = 0.9376 

UDIAT: Dice = 86.82% 

Han et al. 

[213] 

2020 Lesion Segmenta-

tion 

GAN Private Dice = 87.12% 

Wang et al. 

[214] 

2021 Lesion Segmenta-

tion 

Residual Feedback Network 

 

1-Ultra-

soundcases.info & 

BUSI 

2- UDIAT 

3- Radiopaedia 

1-Dice = 86.91% 

2- Dice = 81.79% 

3- Dice = 87% 

Wang et al. 

[215] 

2021 Segmentation CNN Ultra-

soundcases.info 

BUSI 

STUHospital 

Ultrasoundcases: Dice = 

84.71% 

BUSI: Dice = 83.76% 

STUHospital: Dice = 

86.52% 
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Li et al. 

[216] 

2022 Tumor Segmen-

tation + Classifi-

cation 

DeepLab3 Private S: Dice= 77.3% 

C: Acc = 94.8% 

Byra et al. 

[217] 

2022 Mass Segmenta-

tion + Classifica-

tion 

Y-Net Private S: Dice= 64.0% 

C: AUC = 0.87 

 
 

 
Figure 8. Example of a model architecture for breast cancer subtypes classification from US images 
via CNN models [218]. 

3.2.3. Magnetic Resonance Imaging (MRI) 
As explained in section 2, MRI has higher sensitivity for breast cancer detection in 

dense breasts [219] than MM and US images. However, the big difference between MRI 
and MM or US images is that the MRI is a 3D scan, but MM and US are 2D images. More-
over, MRI sequences are captured over time, increasing the MRI dimensionality to 4D 
(dynamic contrast-enhanced (DCE)-MRI). This makes MRI images more challenging for 
DL algorithms compared to MM and US images, as most of the current DL algorithms are 
built for 2D images. One way to address this challenge is to convert the 3D image to 2D 
by either dividing 3D MRIs into 2D slices [220], [221] or using MIP to build a 2D represen-
tation [222].   Moreover, most DL algorithms have been developed for colored images, 
which are 3D images whose third dimension represents the color channels. However, the 
MRIs are grayscale images. So some developed MRI models put three consecutive slices 
of grayscale MRI together and build a 3D image[223], [224]. Some other approaches mod-
ify the current 2D DL architecture to make them appropriate for MRI 3D scans [225].     

All the above approaches have been used in lesion classification DL algorithms. For 
example, [226] uses 2D slices of the ROIs as input to their CNN model. They obtained an 
accuracy of 85% on their test dataset. The MIP technique is used in [227] which obtained 
an AUC of 89.5%. In the study done by Zhou et al. [225], the authors put the grayscale 
MRIs together and built 3D images for their DL methods. Their algorithm obtained an 
AUC of 92%. In another study done in [189], the proposed algorithm uses the actual 3D 
MRI scans obtaining an AUC of  85.9%  by the 3D version of DenseNet [193].  It is worth 
mentioning that the performance of 2D and 3D approaches cannot be compared since they 
used different datasets. However, some mentioned studies compared their proposed 
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methods with radiologists' interpretations [224], [225]. Figure 9 shows a schematic of a 
framework for cancer subtype classification with MRI.  

Like in MM and US images, the DL methods have been widely used in lesion detec-
tion and segmentation problems in MRI images. A CNN algorithm based on RetinaNet 
[228] has been developed in [229] for detecting lesions from the 4D MR scans. Their 
method obtained a sensitivity of 95%. A study [230] uses a mask-guided hierarchical 
learning (MHL) framework for breast tumor segmentation based on U-net architecture. 
Their method achieved the Dice similarity coefficient (DSC) of 0.72 for lesion segmenta-
tion. In another work  [231], the authors proposed a U-net-based CNN model called 3TP 
U-net for the lesion segmentation task. Their algorithm obtained a Dice Similarity Coeffi-
cient of 61.24%. Alternatively, authors in [232] developed a CNN-based segmentation 
model by refining the U-net architecture to segment the lesions in MRIs. Their proposed 
method achieved a Dice Similarity Coefficient of 86.5%. It has to be noted that in most 
lesion segmentation algorithms, there is a need for a mask that shows the pixels that be-
long to the breast as ground truth for training. These masks can help the models to focus 
on the right place and ignore the areas that do not have any information. Table 5   shows 
the list of recent algorithms used for MRI images and their performances. 

 
Figure 9. A model architecture for cancer subtypes prediction via ResNet 50 and CNN models from 
MRI images[233]. 

Table 5: The summary the studies that used MRI datasets 

Paper Year Task Model Dataset Evaluation 

Ha et al. 

[234] 

2019 Classification CNN Private Acc = 70% 

Ha et al. 

[235] 

2019 Classification CNN Private Acc = 88% 

Fang et al. 

[236] 

2019 Classification CNN Private Acc = 70.5% 

Zheng et al. 2020 Classification CNN TCIA Acc = 97.2% 
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[237] 

Holste et al.[238] 2021 Classification Fusion Deep learning  Private AUC = 0.9 

 

Winkler et al.[239] 2021 Classification CNN Private ACC = 92.8% 

Fujioka et al.[240] 2021 Classification CNN Private AUC = 0.89 

Liu et al. 

[241] 

2022 Classification Weakly ResNet-101 Private AUC =0.92 

ACC = 94% 

Bie et al. [242] 2022 Classification CNN Private ACC = 92% 

Specificity = 94% 

Jing et al. [243] 2022 Classification U-NET & ResNet 34 Private AUC = 0.81 

Wu et al. [244] 2022 Classification CNN Private Acc = 87.7% 

AUC = 91.2% 

Verburg et al. [245] 2022 Classification CNN Private AUC =0.83 

Dutta et al. [246] 2021 Tumor Segmentation  Multi-contrast D-

R2UNet 

Private F1 score = 95% 

Carvalho et al. [247] 2021 Tumor Segmentation SegNet & UNet QIN 

Breast 

DCE-MRI 

Dice = 97.6% 

IOU = 95.3% 

Wang et al. [248] 2021 Lesion Segmentation CNN Private Dice = 76.4% 

Nowakowska et al. [249] 2022 Segmentation of BPE area and non-en-

hancing tissue  

CNN Private Dice = 76 % 

Khaled et al. [250] 2022 Lesion segmentation 3D U-Net TCGA-

BRCA 

Dice = 68% 

Yue et al. [251] 2022 Segmentation Res_U-Net Private Dice = 89% 

Rahimpour et al. [252] 2022 Tumor Segmentation 3D U-Net Private Dice = 78% 

Zhu et al. [253] 2022 Lesion Segmentation/ Classification V-Net Private S: 

Dice = 86% 

C: 

Avg. AUC = 0.84 
 

3.2.4. Histopathology 
In contrast to other modalities, histopathology images are colored images that are 

provided either as the Whole Slide images (WSI) or the extracted image patches from the 
WSI, i.e., ROIs that are extracted by pathologists. The histopathology images are a great 
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means of diagnosing breast cancer types that are impossible to find with radiology im-
ages, i.e., MRIs. Moreover, these images have been used to detect cancer subtypes because 
of the details they have about the tissue. Therefore, they are widely used with DL algo-
rithms for cancer detection. For example, [254] employed a CNN-based DL algorithm to 
classify the histopathology images into four classes: normal tissue, benign lesion, in situ 
carcinoma, and invasive carcinoma. They combine the classification results of all the im-
age patches to obtain the final image-wise classification. They also used their model to 
classify the images into two classes, carcinoma, and non-carcinoma. An SVM has been 
trained on the features extracted by a CNN to classify the images. Their method obtained 
an accuracy of 77.8% on four-class classification and an accuracy of 83.3% on binary clas-
sification. In another work proposed in [255], two CNN models have been developed, one 
for predicting malignancy and the other for predicting malignancy and image magnifica-
tion levels simultaneously. They used images of size 700 x 460 with different magnifica-
tion levels. Their average binary classification for benign/malignant is 83.25%. A novel 
framework was proposed in [256] that uses a hybrid attention-based mechanism to clas-
sify histopathology images. The attention mechanism helps to find the useful regions from 
raw images automatically. 

The transfer learning approach has also been employed in analyzing histopathology 
images since the histopathology image datasets suffer from the lack of a large amount of 
data required for deep learning models. For example, the method developed in [257] uses 
pretrained  Inception-V3 [183] and Inception-ResNet-V2 [258] and fine-tunes them for 
both binary and multiclass classification on histology images. Their approach obtained an 
accuracy of 97.9% in binary classification and an accuracy of 92.07% in the multi-classifi-
cation task. In another work [259], the authors developed a framework for classifying ma-
lignant and benign cells that extracted the features from images using GoogLeNet, VGG-
Net, and ResNet and then combined those features to use them in the classifier. Their 
framework obtained an average accuracy of 97%. The authors in [260] used a fine-tuned 
GoogleNet to extract features from the small patches of pathological images. The extracted 
features were fed to a bidirectional Long Short-Term Memory (LSTM) layer for classifica-
tion. Their approach obtained an accuracy of 91.3%. Figure 10 shows the overview of the 
method proposed in [260]. GANs have also been combined with transfer learning to fur-
ther increase classification accuracy. In work done in [261], StyleGAN [262] and Pix2Pix 
[263] have been used to generate fake images. Then, VGG-16 and VGG-19 were fine-tuned 
to classify images. Their proposed method achieved an accuracy of 98.1% in binary clas-
sification. 

Histopathology images have been widely used for nuclei detection and segmenta-
tion. For instance, in the work presented in [264], a novel framework called HASHI has 
been developed that automatically detects invasive breast cancer in the whole slide im-
ages. Their framework obtained the dice coefficient of 76% on their independent test da-
taset. In the other work done in [265] for nuclei detection, a series of handcrafted features 
and features extracted from CNN were combined for better detection. The method used 
three different datasets and obtained an F-score of 90%. The authors in [266] presented a 
fully automated workflow for nuclei segmentation in histopathology images based on 
deep learning and the morphological properties extracted from the images. Their work-
flow achieved accuracy and F1-score of %95.4 and %80.5, respectively. In another work 
by [267], the authors first extract the small patches from the high-resolution whole slides. 
Then each small patch was segmented using a CNN along with an encoder-decoder. Fi-
nally, to combine the local segmentation result, they used an improved merging strategy 
based on a fully connected Conditional Random Field. Their algorithm obtained a seg-
mentation accuracy of 95.6%. Table 6 shows the performance of recently developed DL 
methods in histology images. 
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Figure 10. Prediction of breast cancer grades from extracted patches from histopathology images 
via patch-wise LSTM architecture [260]. 

3.2.5. Positron emission tomography (PET)/computed tomography (CT)  
PET/CT is a nuclear medicine imaging technique that helps increase the effectiveness 

of detecting and classifying axillary lymph nodes and distant staging [268]. However, they 
have trouble detecting early-stage breast cancer. Therefore, it is not surprising that 
PET/CT is barely used with DL algorithms. However, PET/CT has some important appli-
cations that DL algorithms can be applied. For example, as discussed in [269], breast can-
cer is one of the reasons for most cases of bone metastasis. A CNN-based algorithm was 
developed in [270] to detect breast cancer metastasis on whole-body scintigraphy scans. 
Their algorithm obtained 92.5% accuracy in the binary classification of whole-body scans.  

In the other application, PET/CT can be used to quantify the whole-body metabolic 
tumor volume (MTV) to reduce the labor and cost of obtaining MTV. For example, in the 
work presented in [271], a model trained on the MTV of lymphoma and lung cancer pa-
tients is used to detect the lesions in PET/CT scans of breast cancer patients. Their algo-
rithm could detect 92% of the measurable lesions.  

Table 6: The summary of the studies that used Histopathology datasets 

Paper Year Task Model Dataset Evaluation 

Zainudin et 

al. [272] 

2019 Breast Cancer Cell 

Detection /Classi-

fication 

CNN MITOS Acc = 84.5% 

TP = 80.55% 

FP = 11.6% 

Li et al. [273] 2019 Breast Cancer Cell 

Detection /Classi-

fication 

Deep cascade CNN MITOSIS 

AMIDA13 

TUPAC16 

MITOSIS: 

F-score = 56.2% 

AMIDA13: 

F-score = 67.3% 

TUPAC16: 

F-score = 66.9% 

Das et al. 

[274] 

2019  Breast Cancer 

Cell Detection 

/Classification 

CNN MITOS 

ATYPIA14 

MITOS:  

F1-score = 84.05% 

ATYPIA14: 
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F1-score = 59.76% 

Gour et al. 

[275] 

2020 Classification CNN BreakHis Acc = 92.52% 

F1 score = 93.45% 

Saxena et al. 

[276] 

2020 Classification CNN BreakHis Avg. Acc = 88% 

Hirra et al. 

[277] 

2021 Classification DBN DRYAD Acc = 86% 

Senan et al. 

[278] 

2021 Classification CNN  BreakHis Acc = 95% 

AUC = 99.36%  

Zewdie et 

al. [279] 

2021 Classification CNN  Private 

BreakHis 

Zendo 

Binary Acc = 96.75% 

Grade classification Acc = 

93.86% 

 

Kushwaha 

et al. [280] 

2021 Classification CNN BreakHis Acc =97% 

Gheshlaghi 

et al. [281] 

2021 Classification Auxiliary Classifier GAN BreakHis Binary Acc = 90.15% 

Sub-type classification Acc = 

86.33% 

 

Reshma t al. 

[282] 

2022 Classification Genetic Algorithm with 

CNN 

BreakHis Acc = 89.13% 

Joseph et al. 

[283] 

2022 Classification CNN BreakHis Avg. Multiclass Acc =97% 

Ahmad et 

al. [284] 

2022 Classification CNN BreakHis Avg. Binary Acc = 99% 

Avg. Multiclass Acc =95% 

Mathew et 

al. [285] 

2022 Breast Cancer Cell 

Detection /Classi-

fication 

CNN ATYPIA 

MITOS 

 

F1 score = 61.91% 

Singh and 

Kumar [286] 

2022 Classification  Inception ResNet BHI 

BreakHis 

BHI: 

Acc = 85.21% 
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BreakHis: 

Avg. Acc = 84% 

Mejbri et al. 

[287] 

2019 Tissue-level Seg-

mentation 

DNNs Private U-Net: Dice = 86%, 

SegNet: Dice = 87%,  

FCN: Dice = 86%,  

DeepLab: Dice = 86% 

Guo et al. 

[288] 

2019 Cancer Regions 

Segmentation 

Transfer learning based on 

Inception-V3 and ResNet-

101 

Camelyon16 IOU = 80.4% 

AUC = 96.2% 

Priego-

Torres et al. 

[267] 

2020 Tumor Segmenta-

tion 

CNN Private Acc = 95.62% 

IOU = 92.52% 

Budginaitė 

et al. [289] 

2021 Cell Nuclei Seg-

mentation 

Micro-Net Private Dice = 81% 

Pedersen et 

al. [290] 

2022 Tumor Segmenta-

tion 

CNN Norwegian cohort [291] Dice = 93.3% 

Khalil et al. 

[292] 

2022 Lymph node Seg-

mentation 

CNN Private F1 score = 84.4% 

IOU = 74.9% 

 

4. Discussion and Conclusion 
Breast cancer plays a crucial role in the mortality of women in the world. Cancer 

detection in its early stage is an essential task to reduce mortality. Recently many imaging 
modalities have been used to give more detailed insights into breast cancer. However, 
manual analysis of these imaging modalities with a huge number of images is a difficult 
and time-consuming task leading to inaccurate diagnoses and an increased false detection 
rate. Thus, to tackle these problems, an automated approach is needed. The most effective 
and reliable approach for medical image analysis is CAD. CAD systems have been de-
signed to help physicians to reduce their errors in analyzing medical images. A CAD sys-
tem highlights the suspicious features in images (e.g., masses) and helps radiologists to 
reduce false negative readings. Moreover, CAD systems usually detect more false features 
than true marks and this is the radiologist’s responsibility to evaluate the results. This 
characteristic of CAD systems increases the reading time and limits the number of cases 
that radiologists can evaluate. Recently, the advancement of AI, especially DL-based 
methods, could effectively speed up the image analysis process and help radiologists in 
early breast cancer diagnosis. 

Considering the importance of DL-based CAD systems for breast cancer detection 
and diagnosis, here in this paper, we have discussed the applications of different DL al-
gorithms in breast cancer detection. We first reviewed the imaging modalities used for 
breast cancer screening and diagnosis. Besides a comprehensive discussion, we discussed 
the advantage and limitations of each imaging modality and summarize the public da-
tasets available for each modality with the links to the datasets. Then we reviewed the 
recent DL algorithms used for breast imaging analysis along with the detail of their 
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datasets and results. The studies presented promising results from DL-based CAD sys-
tems. However, the DL-based CAD tools still face many challenges that prohibit them 
from clinical usage. Here we discussed some of these challenges as well as the future di-
rection for cancer detection studies. 

One of the main obstacles to having a robust DL-based CAD tool is the cost of col-
lecting medical images. The medical images used for DL algorithms should contain relia-
ble annotated images from different patients. Data collection would be very costly for suf-
ficient abnormal data compared to normal cases since the number of abnormal cases is 
much lower than the normal cases (e.g., several abnormal cases per thousand patients in 
the breast cancer screening population). The data collection also depends on the number 
of patients that takes a specific examination and the availability of equipment and proto-
cols in different clinical settings. For example, MM datasets are usually very large da-
tasets, including thousands of patients. However, the MRI or PET/CT datasets contain 
much fewer patients. Due to the existence of a large public dataset for MM, much more 
DL algorithms have been developed and validated for the MM modality than other da-
tasets. One way to create a big dataset for different image modalities is multi-institutional 
collaboration. The dataset obtained from these collaborations covers a large group of pa-
tients with different characteristics, different imaging equipment, and clinical settings and 
protocols. These datasets make the DL algorithms more robust and reliable.   

Currently available medical image datasets usually contain a small amount of data. 
On the other hand, employing DL and exploiting its capabilities on a small amount of 
training data is challenging. Because the DL algorithms should be trained on a large da-
taset to have a good performance. Some possible solutions can help to overcome the prob-
lems related to small datasets. For example, the datasets from different medical centers 
can be combined to create a bigger one. However, there are usually some patient privacy 
policies that should be addressed. Another solution to this problem is using federated 
learning [293] in which the algorithm is trained on datasets locally, but it should travel 
between the centers and be trained on the datasets in each center. The federated learning 
algorithms are not popular yet, and they are not widely implemented. In most cases, the 
training data cannot be publicly shared, therefore there is no way to evaluate the DL meth-
ods and regenerate the results in the studies. Many studies used transfer learning to over-
come the problem of small datasets. Some of the studies used a pre-trained model to ex-
tract features from the medical images and then, they used the extracted features to train 
a DL model for target tasks. However, other studies initialized their model with pre-
trained model weights and then fine-tuned their models with the medical image datasets. 
Although transfer learning shows some improvement for the small datasets, the perfor-
mance of the target model highly depends on the difference between the characteristics of 
source datasets and target datasets. In these cases, the negative transfer [294] may occur 
in which the source domain reduces the learning performance in the target domain. Some 
studies used data augmentation rather than transfer learning to increase the size of the 
dataset artificially and improve the model performance. However, one should note that 
augmenting data does not introduce the independent features to the model therefore it 
does not provide much new knowledge for DL model compared to new independent im-
ages.  

The shortage of datasets with comprehensive and fully labeled/annotated data is also 
another challenge that DL-based CAD systems face. Most of the DL methods are super-
vised algorithms and they need fully labeled/annotated datasets. However, creating a 
large fully annotated dataset is a very challenging task since annotating medical images 
is time-consuming and may have human errors. To avoid the need for annotated datasets, 
some papers used unsupervised algorithms, but they obtained less accurate results com-
pared to supervised algorithms. 

Another important challenge is the generalizability of the DL algorithms. Most of the 
proposed approaches work on the datasets obtained with specific imaging characteristics 
and cannot be used for the datasets obtained from different populations, different clinical 
settings, or different imaging equipment and protocols. This is an obstacle to the wide use 
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of AI methods in cancer detection in medical centers. Each health clinic should design and 
conduct a testing protocol for DL-based CAD systems using the data obtained from the 
local patient population before any clinical usage of these systems. During the testing pe-
riod, the user should find the weaknesses and strengths of the system based on the output 
of the system for different input cases. The user should know that what is the characteris-
tics of the failed and correct output and recognize when the system makes mistake and 
when it works fine. This testing procedure not only evaluates DL-based CAD models but 
also teaches the user the best way to use DL-based CAD systems. 

Another limitation can be the interpretability of DL algorithms. Most DL algorithms 
are like a black box, and there are no suitable explanations for the decision, and feature 
selection happens during the training and learning processes. Radiologists usually do not 
prefer these uninterpretable DL algorithms because they need to understand the physical 
meaning of the decisions taken by the algorithms and which parts of images are highly 
discriminative. Recently, some DL-based algorithms like DeepSHAP [295], have been in-
troduced to define an interpretable model to give more insight into the decision-making 
of DL algorithms in medical image analysis. Therefore, to increase physicians' confidence 
and reliability of the decision made by DL tools, utilization of interpretable approaches 
and proper explanation of DL algorithms is required for breast cancer analysis, helping 
widely used DL technology in clinical care applications such as breast cancer analysis. 
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