Preprint Article Version 10 Preserved in Portico This version is not peer-reviewed

Dirac Fermion of a Monopole Pair (MP) Model

Version 1 : Received: 11 October 2022 / Approved: 12 October 2022 / Online: 12 October 2022 (10:10:23 CEST)
Version 2 : Received: 13 October 2022 / Approved: 13 October 2022 / Online: 13 October 2022 (11:41:39 CEST)
Version 3 : Received: 21 November 2022 / Approved: 22 November 2022 / Online: 22 November 2022 (02:36:49 CET)
Version 4 : Received: 7 December 2022 / Approved: 7 December 2022 / Online: 7 December 2022 (10:48:31 CET)
Version 5 : Received: 23 January 2023 / Approved: 23 January 2023 / Online: 23 January 2023 (09:34:09 CET)
Version 6 : Received: 26 January 2024 / Approved: 28 January 2024 / Online: 29 January 2024 (04:03:38 CET)
Version 7 : Received: 12 February 2024 / Approved: 13 February 2024 / Online: 13 February 2024 (12:37:23 CET)
Version 8 : Received: 22 February 2024 / Approved: 22 February 2024 / Online: 22 February 2024 (09:33:31 CET)
Version 9 : Received: 2 May 2024 / Approved: 4 May 2024 / Online: 6 May 2024 (08:52:41 CEST)
Version 10 : Received: 17 June 2024 / Approved: 18 June 2024 / Online: 18 June 2024 (08:06:58 CEST)

How to cite: Yuguru, S. Dirac Fermion of a Monopole Pair (MP) Model. Preprints 2022, 2022100172. https://doi.org/10.20944/preprints202210.0172.v10 Yuguru, S. Dirac Fermion of a Monopole Pair (MP) Model. Preprints 2022, 2022100172. https://doi.org/10.20944/preprints202210.0172.v10

Abstract

The electron of spin −1/2 is a Dirac fermion of a complex four-component spinor field. Though it is effectively addressed by relativistic quantum field theory, an intuitive form of the fermion still remains lacking and it is often described by the so-called Dirac belt trick. In this novel undertaking, the electron is examined within the boundary posed by a recently proposed MP model of a hydrogen atom into 4D space-time that somewhat mimics Dirac string. Its transformation to Dirac fermion appears consistent with Dirac belt trick and quantum mechanics, whereas its solenoidal property for the emergence of monopole is applicable to Lie group. These outcomes are compatible with the basic interpretations of Dirac field theory and its related components like wave function collapse, quantized Hamiltonian, non-relativistic wave function, Weyl spinor, Lorentz transformation and electroweak symmetry breaking mechanism. The model though speculative, it could become important towards defining the fundamental state of matter subject to further examinations by conventional methods.

Keywords

Dirac fermion; Dirac belt-trick; quantum mechanics; Dirac field theory

Subject

Physical Sciences, Theoretical Physics

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.