Preprint
Article

Sapphire Selective Laser Etching Dependence on Radiation Wavelength and Etchant

Altmetrics

Downloads

338

Views

70

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

10 October 2022

Posted:

12 October 2022

You are already at the latest version

Alerts
Abstract
Transparent and high-hardness materials have become the object of wide interest. Most notably, it concerns technical glasses and crystals. A notable example is a sapphire – one of the most rigid materials having impressive mechanical stability and good optical properties. Nonetheless, using this material for 3D micro-fabrication is not straightforward due to its brittle nature. On the microscale, selective laser etching (SLE) technology is an appropriate approach for such media. Therefore, we present our research on c-cut crystalline sapphire microprocessing by using femtosecond radiation-induced SLE. Here we demonstrate a comparison between different wavelength radiation (1030 nm, 515 nm, 343 nm) usage for modification inscription and various etchants (Hydrofloridic acid, Sodium Hydroxide, Potassium Hydroxide and Sulphuric and Phosphoric acid mixture) comparison. We show that regular SLE etchants such as Hydrofluoric acid or Potassium Hydroxide are unsuitable materials for selective sapphire laser etching. Meanwhile, a 78% sulphuric and 22% phosphoric acid mixture at 270°C temperature is a good alternative for this process. We present the changes in the material after the separate processing steps. Finally, a protocol for advanced sapphire structure formation and a few exemplary structures are presented.
Keywords: 
Subject: Chemistry and Materials Science  -   Electronic, Optical and Magnetic Materials
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated