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Abstract: This article develops duality principles and related convex dual formulations suitable for
the local and global optimization of non-convex primal formulations for a large class of models in
physics and engineering. The results are based on standard tools of functional analysis, calculus of
variations and duality theory. In particular, we develop applications to a Ginzburg-Landau type
equation.
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1. Introduction

In this article we establish a duality principle and a related convex dual formulation suitable for
the local optimization of the primal formulation for a large class of models in non-convex optimization.

The main duality principle is applied to the Ginzburg-Landau system in superconductivity in the
absence of a magnetic field.

Such results are based on the works of J.J. Telega and W.R. Bielski [? ? ? ? ] and on a D.C.
optimization approach developed in Toland [? ].

About the other references, details on the Sobolev spaces involved are found in [? ]. Related

the superconductivity physics may be found in [? ? ].
It is worth highlighting, we may generically denote

/Q[(—'yvz + KI;) " 1o*|o* dx

simply by

J R s
a—-YVZ+K
where 1; denotes a concerning identity operator.

Other similar notations may be used along this text as their indicated meaning are sufficiently
clear.

Finally, V2 denotes the Laplace operator and for real constants K, > 0 and K; > 0, the notation
K > Kj means that K, > 0 is much larger than K; > 0.

At this point we start to describe the primal and dual variational formulations.

Let QO C R3 be an open, bounded, connected set with a regular (Lipschitzian) boundary denoted
by 0Q).

For the primal formulation, consider a functional | : V — R where

J(u) = %/QVLL-Vudx

+5 [ 02— B dx = (e )
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2 0f 2?
Herey > 0,4 > 0,8 > 0and f € L2(Q) N L®(Q).
Moreover, V = W,*(Q2) and we denote Y = Y* = L2(Q).
Define the functionals F; : VXY - R, 5 :V - Rand G: V xY — Rby
S : _ 5/ 2
Fi(u,v5) = 2 /QVu Vu dx 2 Jot dx
+&/ (—yV2u +205u — f)* dx + &/ u? dx )
2 Jao 0 2 Jo ’
_Kr o
F(u) = 2 ot dx
and
G(u,v) = ﬁ/ (u? — B+v)? dx+5/ u? dx — (u, f)p2
7 2 0 2 a 7 L
We define also F; : [Y*]> - R, F; : Y* - R, and G* : [Y*]> > R, by
Fi (03,01, 90)
= sup{(u, 01 +03);2 — F1(u,vp)}
ucV
_ / (v + 05 + Ky (—yV? +208) f)? "
0 2[Ky — K —9V2 + K (=yV? 4 20§)?]
Ky 2
> [ 2 x, ©
Fy(03) = sup{(u,03)2 — F(u)}
ueV
= o |82 ax @
T 2K Jo'?
and
G*(o1,vp) = sup {—(u,07)12 + (0,05)12 — G(u,0)}
(nv)eVxY
= / dx + i/ (05)? dx
T2 200 +1< 20 Jo 0
+ / dx 5
B 0770 ©)

if vy € B* where
B* = {vg €Y 1 ||204]lo < K/8and — yV2 + 207 > eld},

for a small parameter 0 < ¢ < 1.
Furthermore, we define

D = {0} €Y ¢ [oifle < (3/2)K}
and J{ : Y* x D* x B* — R, by
Ji(03,01,v9) = —F (03,01,v5) + F5 (v2) — G (07, vp)-

Assuming
Ky > Ky 3> K> max{||fle, & B,7,1/€}
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by directly computing 6% (v5, 0%, v}) we may obtain that for such specified real constants, J; in convex
in v} and it is concave in (v, v§) on Y* x D* x B*.

2. The Main Duality Principle and a Concerning Convex Dual Formulation

Considering the statements and definitions presented in the previous section, we may prove the
following theorem.

Theorem 1. Let (03, 05,05) € Y* x D* x B* be such that
313 (03,01, 5) = 0

and uy € V be such that

vy P (03)
vy
Under such hypotheses, we have
6] (uo) =0,
and
J(ug) = inf {](u) + K (—yV2u +205u — f)? dx}
ucV 2 Ja
= inf sup  J{(v3,01,7)
0EY (v, v5)€D* xB*
= Ji (92,91, %) )

Proof. Observe that 4] (93,07,9;) = 0 so that, since J; is convex in v and concave in (v}, vj) on
Y* x D* x B*, from the Min-Max theorem, we obtain

Ji (93,91, 85) = inf, sup  Ji(v3,01,7)
REY" | (vr,05)eD*xB*

Now we are going to show that
6] (up) = 0.

From . nn
9J1(93,07,%5)

ov} !
and e
oF; (93) _
Jv; 0
we have e
_8F1 (UZ/fl’UO) Fup=0
vy

and
ﬁ; — Kyug = 0.

Observe now that denoting

H(v3,v3,v5,u) = (u,v] +v3)12 — Fi (1,05),
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40f??
there exists 71 € V such that
oH (03,075,905, 1)
i i L SV AN
ou
and
Fy (93, 07,9) = H(21, 05,95, 1),
so that
oF/(05,07,0;)  oH(05,07,0;,1)
ov; N v
oH (93, 07,0;5,1) on
ou @
= 1. (7)
Summarizing, we have got
oF(0%,07,03%) .
uy = -2 17707 gv*l 0 —a.
2
Also, denoting
Alug, 05) = —yV?uq + 205uo — f,
from
BH(ﬁi‘, UAQ*,UAS, uo)
= 0,
ou
we have
—0} + Kug + vV2u + K1 (—yV?* + 285) A(uo, 95) — 05 + Koug = 0,
so that
— 0% + Kug + yV2ug + Ky (—yV? +203) A(ug, 95) = 0. (8)
From such results, we may infer that
IFy (95,97, 5)
v}
_ OH(05,97,0;,1)
N ov}
+8H(ﬁ§,z§{,ﬁ3,ﬁ) o1
ou v}
= 1
= lp. )

Now observe that from the variation of [} in v], we have

oF/(05,07,0;) 0G*(0%,95)
*
1

0v 00}
so that
aG* (97, 95)
MO g
1
thatis »
=S 0
07 255+ K

From this and (??), we may infer that
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5o0f 2?
oF = —yV?ug — Kug — Ky (—yV? 4+ 20%) A(ug, 03) = — (205 + K)ug + f,
so that
—yV2uq + 205ug — f — Ky (=7 V? +205) A(uo, 05) = 0.
From this and the concerning boundary conditions, since
Alug,v3) = —yV2uqg + 2051y — f,
we may obtain
—yV2uy +205ug — f = A(uo, 8) = 0.
Moreover, from
i (03,91,%)
* - Y
9v;
we have .
(4
A(ug, 9y)2ug — ;0 +uf—B =0,
so that
vp = a(uf — p)
From such last results we get
—yVug 4 2a(uj — B)ug — f =0,
and thus
6](uo) = 0.
Furthermore, also from such last results and the Legendre transform properties, we have
F(03,7,95) = (uo, 03 +01)12 — F1(u0, %),
Fy (93) = (uo,03) 12 — Fa(uo),
G*(91,95) = —(uo, 01)12 +(0,99) 12 — G (o, 0),
so that
Ji (03,91, )
= —H(9,01,9) + F;(03) — G*(97,%p)
= Fi(uo,85) — Fa(uo) + G(uo,0)
= J(uo). (10)
Finally, observe that

Ji(v2,01,05) < —(u,03)12 + Fi(,vp) + B (03) + G(,0),

VueV, vy €Y*, 0] € D", v; € B,
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Thus, we may obtain
inf T */ A*’ Ak
v;ﬁelw Ji (03,07, 05)
< in}f( {—(u,v3) 12+ Fi(u,95) + F5 (v3) + G(1,0) }
vyEY*
= F(u,95) — FB(u) +G(u,0)
K
= J(u)+ 71 /Q(—')/V2u +20%u — f)? dx, Vu € V. (11)
From this and (??), we obtain
Ji (63,61, 69)
= inf sup Ji (v3,07,v5)
vy EY" (v3,05)€D* x B
. K3 2 Aok 2
< = (- — :
< ngf/{](u)—l— > /Q( YVu +265u — f)* dx (12)
Joining the pieces, from a concerning convexity in u, we have got
J(up) = inf < J(u)+ ﬁ/ (—yV2u +205u — f)* dx
% 2 Jo
= inf sup Ji (03,07, v5)
vEY” (v3,05)eD* x B*
= Ji (92,91, %) (13)

The proof is complete.
O

Remark 1. We could have also defined
B* = {va €Y' 1 |205|le0 < K/8and —yV? 4205 < —eld},

for a small parameter 0 < & < 1. This corresponds to —yN/? + 20}, be negative definite, whereas the previous
case corresponds to —yN'? + 20}, be positive definite. It is worth recalling the inequality

—y V2 205 < —ely

necessarily refers to a finite dimensional version for the model in question, in a finite elements or finite differences
context.

3. One More Duality Principle Suitable for the Primal Formulation Global Optimization

In this section we establish one more duality principle and related convex dual formulation
suitable for a global optimization of the primal variational formulation.

Let O C R? be an open, bounded, connected set with a regular (Lipschitzian) boundary denoted
by 0Q).

For the primal formulation, we define V = W&’Z(Q) and consider a functional | : V — R where

J(u) = %/QVu-Vuder%/Q(uzfﬁ)zdx
—(u, f) 2 (14)
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Here we assume f € L?(Q)), and define Y = Y* = [2(Q)
Vo={ueV : |ul|o <Ky},
AT={ueV :uf>0 ae inQ},
and
Vl* - 14+ n Vl,
for an appropriate constant K4 > 0 to be specified.
Define also the functionals F; : V - R, ,: V xY - Rand G: Y — Rby
K
Fiw) =3 | (Vi dy—(u f)2,
B (u,v3,v5) = / Vu-Vudx — (u?,00) 2 + — / (VZu)
Kl *
> Q(0314—I<3) dx, (15)
and N
2y _ & 2 _
-1
for appropriate positive constants Kj, Ky, K3, K4 to be specified.
Moreover, define Ff : Y* — R, and F; : [Y*]> = Rand G* : Y* — R, by
Fi(vz) = sup{(n,03);2 — Fi(u)}
ueV
RSO
and
Fy(03,03,00) = sup{(u,03)12 — Fa(u,03,09) }
ueVv
1 (05 — K1K503)?
2 Jao K2V4 + "}’V2 - 2”08 — K1(0§)2
Ky 2
-— [ K
> /Q 3 dx
and
G*(vg) = sup{(v,v5)12 — G(v)}
veY
1 *\2 *
= 5 /Q(vo) dx+[$/ﬂvo dx. (17)

Furthermore, we define

D* ={v; € Y* : 03]l < (3/2)Kz},

B* ={v3 € Y" : u1(v3) € 1},

where
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Define also
Ci={o5 e Y* ¢ [loplloo < Ka}.
and J{ : D* x Cf — Rby
Ji(03,03,0) = —F{(03) + F5 (03,03, 95) — G"(p)-
Moreover, assuming K > Kq > Ky > max{1,Ks,a, 8,7, || fllco }-
By directly computing 625 (v3, v3, v}) denoting
A = —KiK3,
B = 2K;v%,
¢ = —KoV* — yV? + 208 + Kq(03)?),
P1 = Z); — K1K3Z)§,
e
P
we may obtain, considering that ¢ < 0
%] (v3,v3,95) _
9(v3)?
on D* x B*.
Moreover,
2
02J; (vs,v3,05) 025 (v3, 03, v3) B 02J5 (v5,v3,03)
0(v3)? d(v3)? 00500
_ K1 (—K1K3(3u? — duuy + u3) 4+ u3[(G + 20} ulu)
Ko (V4) (=K1 K3 + u1 (Ko (V4) + 7V — 205 )uy)
_ K3H; + K1 Ha a8)
Kz(v4)(—K1K§ + up (K2V4 +9V2 - 2?)8)111),
where K
3
up = up(v3) = 7;’
Hy = —K3(3u® — duuy + u?),
and

Hy = ud[(—V? + 205 u]u.

At a critical point we have H; = 0 and
Hy = uf fug >0, a.ein Q.
With such results, we may define the restrictions
C; ={vy€Y" : Hi(v3,0v3,05) > 0,inQ), Vo5 € D*,v3 € B*}.

C; ={vy € Y" : Hy(v3,v3,7v5) >0, inQ), Yv; € D¥, v3 € B*}.

Here, we define C* = C; N C; NC3.
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On the other hand, clearly we have

0*J3 (v3, 05, v5)

8(06>2 <0

From such results, we may obtain that ] in convex in (v3,v3) and it is concave in v§ on D* x B* x C*.

3.1. The main duality principle and a related convex dual formulation
Considering the statements and definitions presented in the previous section, we may prove the
following theorem.
Theorem 2. Let (03, 030)) € D* x B* x C* be such that
0J1(02,03,5) = 0
and uy € V; be such that
_ 9K (%3
U[) — 67*
)

Assume also
ug # 0, ae. in Q.

Under such hypotheses, we have
6] (uo) = 0,

baup— K3 =0, a.e. inQ,

and
Jw) = inf J(u)

= inf sup J{(v5, 05,08
(v5,03)€D* xB* {vSeg*h( 2/05:%5)
= J{(03,05,00). (19)

Proof. Observe that d]; (95,95,9;) = 0 so that, since Jj is convex in (v},v3) € D* x B* x C* and

0%J3 (83,03, v5)

3(0))? >0, Vo, € Cy,

we obtain
Fi(03,05,65) = infJi(u5,03,65) sup Ji (63,83, 0p)
(v3,03)€D*xB vEeCt

Consequently, from this and the Saddle Point Theorem, we obtain

Ji(93,03,95) = inf sup Ji(v2,03,05) ¢ -
(v3,v3)€D* xB* oeC
Now we are going to show that
6] (up) = 0.

From o nn
9J1(93,03,95)

* 7
Jv;
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and o
oF; (93) = g
Jv;
we have SE* (0% B8 B8
0%,0%,0
0 (93 % 0) —up=0
vy
and
A% 4
Uy = sz upg — f
Observe now that
F; (03,93,v5) = sup{{u,v3) > — F2(u,v3,0p) }.
ueV
Denoting
H(v3, 03,0y, u) = (u,v3) 12 — F2(u,03,0p),
there exists i1 € V such that
OH (83,3, 64, 1)
=0,
ou
and
F (83,03, 05) = H(03, 03,55, 1),
so that
Jvj Jv;
| OH(05,03,04,1) 91
u Jv;
= 1. (20)
Summarizing, we have got
OR300
e A u.
)
From such results and the Legendre tranform proprieties we get
ot — 9F (uo)
2 ou
and .
of — an(T/l(), U3, UO)
2 ou ’
On the other hand, from the variation of J{ in v3, we have
oF; (03,03, 05)
00}
oH(05,03,05,11) oi
= —K;(0fup — Ka)ug + ———272 7377077/
1(03u0 — K3)ug = 507
= —Ky(d3u0 — K3)up
= 0. (21)
From such results, since
ug #0, a.e. in Q),
we get

baup — Kz =0, a.e. in Q.
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Finally, from the variation of J} in v we obtain

08 (63,04,9) _ 9G"(5) _,
v v !

so that

Thus,

Consequently, from such last results, we have

0=120;—05
OF (ug)  9F>(uo, 03, 95)
ou Jou
= K2V4u0 — f — K2V4uo — 'yVZuo + 2’06140
= —Vuy+ 2¢x(u% —Blug— f
= 5](110). (22)

Summarizing,
5] (ug) = 0.

Furthermore, also from such last results and the Legendre transform properties, we have
Fi(93) = (uo,93)12 — Fi(uo),
Fy (02,8500) = (uo, 02)12 — Fa(t0, 03, %),
G*(85) = (ug, v5) 12 — G(u5),
so that
J; (03, 4,25)
= —F(82) + F (93,95, 85) — G*(%p)
= J(uo). (23)
Finally, observe that
Ji(v2,03,09) < Fi(u) = (u,03) 12 + F5 (v3,03,05) — G*(vp),

Vu € V1, v € D*, v3 € B, vj € C*.
Therefore,

sup Ji(0v2,03,05) < sup {—(u,v3)2 + Fi(u) + F; (v3,03,v5) — G*(vg) },
vy ECH vy€Cy
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so that
inf sup Ji(v5, 05,04
(v3.05) €D B {vgelg" itz es 0)}
< inf sup {—(u,v5) 2 + Fi(u) + F (v3,03,05) — G*(vg) }
(v3,v3)ED* xB* o eCs
= J(u),Vu € V. (24)
Summarizing, we have got
Ji(03,05,05) = it { sup Ji(v5,05,00)
(v5,v5)€D* xB* v eC
< inf . 25
< nf J(u) (25)
Joining the pieces, we have got
J(uo) = inf J(u)
uevy
= inf sup 1 (v3, 05,05
(63,05) €D xB {v(*)elc)* i3 0)}
= J{(93,05,05). (26)

The proof is complete.
O

4. Conclusions

In this article we have developed convex dual variational formulations suitable for the local
optimization of non-convex primal formulations.

It is worth highlighting, the results may be applied to a large class of models in physics and
engineering.

We also emphasize the duality principles here presented are applied to a Ginzburg-Landau type
equation. In a future research, we intend to extend such results for some models of plates and shells
and other models in the elasticity theory.
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