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1. Introduction

In this article we establish a duality principle and a related convex dual formulation suitable for

the local optimization of the primal formulation for a large class of models in non-convex optimization.

The main duality principle is applied to the Ginzburg-Landau system in superconductivity in the

absence of a magnetic field.

Such results are based on the works of J.J. Telega and W.R. Bielski [? ? ? ? ] and on a D.C.

optimization approach developed in Toland [? ].

About the other references, details on the Sobolev spaces involved are found in [? ]. Related

results on convex analysis and duality theory are addressed in [? ? ? ? ? ]. Finally, similar models on

the superconductivity physics may be found in [? ? ].

It is worth highlighting, we may generically denote

∫

Ω

[(−γ∇2 + KId)
−1v∗]v∗ dx

simply by
∫

Ω

(v∗)2

−γ∇2 + K
dx,

where Id denotes a concerning identity operator.

Other similar notations may be used along this text as their indicated meaning are sufficiently

clear.

Finally, ∇2 denotes the Laplace operator and for real constants K2 > 0 and K1 > 0, the notation

K2 ≫ K1 means that K2 > 0 is much larger than K1 > 0.

At this point we start to describe the primal and dual variational formulations.

Let Ω ⊂ R
3 be an open, bounded, connected set with a regular (Lipschitzian) boundary denoted

by ∂Ω.

For the primal formulation, consider a functional J : V → R where

J(u) =
γ

2

∫

Ω

∇u · ∇u dx

+
α

2

∫

Ω

(u2 − β)2 dx − 〈u, f 〉L2 . (1)
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Here γ > 0, α > 0, β > 0 and f ∈ L2(Ω) ∩ L∞(Ω).

Moreover, V = W1,2
0 (Ω) and we denote Y = Y∗ = L2(Ω).

Define the functionals F1 : V × Y → R, F2 : V → R and G : V × Y → R by

F1(u, v∗0) =
γ

2

∫

Ω

∇u · ∇u dx −
K

2

∫

Ω

u2 dx

+
K1

2

∫

Ω

(−γ∇2u + 2v∗0u − f )2 dx +
K2

2

∫

Ω

u2 dx, (2)

F2(u) =
K2

2

∫

Ω

u2 dx

and

G(u, v) =
α

2

∫

Ω

(u2 − β + v)2 dx +
K

2

∫

Ω

u2 dx − 〈u, f 〉L2 .

We define also F∗
1 : [Y∗]3 → R, F∗

2 : Y∗ → R, and G∗ : [Y∗]2 → R, by

F∗
1 (v

∗
2 , v∗1 , v∗0)

= sup
u∈V

{〈u, v∗1 + v∗2〉L2 − F1(u, v∗0)}

=
∫

Ω

(v∗1 + v∗2 + K1(−γ∇2 + 2v∗0) f )2

2[K2 − K − γ∇2 + K1(−γ∇2 + 2v∗0)
2]

dx

−
K1

2

∫

Ω

f 2 dx, (3)

F∗
2 (v

∗
2) = sup

u∈V

{〈u, v∗2〉L2 − F2(u)}

=
1

2K2

∫

Ω

(v∗2)
2 dx (4)

and

G∗(v∗1 , v∗0) = sup
(u,v)∈V×Y

{−〈u, v∗1〉L2 + 〈v, v∗0〉L2 − G(u, v)}

=
1

2

∫

Ω

(v∗1 − f )2

2v∗0 + K
dx +

1

2α

∫

Ω

(v∗0)
2 dx

+β
∫

Ω

v∗0 dx (5)

if v∗0 ∈ B∗ where

B∗ =
{

v∗0 ∈ Y∗ : ‖2v∗0‖∞ < K/8 and − γ∇2 + 2v∗0 > εId

}

,

for a small parameter 0 < ε ≪ 1.

Furthermore, we define

D∗ = {v∗1 ∈ Y∗ : ‖v∗1‖∞ ≤ (3/2)K}

and J∗1 : Y∗ × D∗ × B∗ → R, by

J∗1 (v
∗
2 , v∗1 , v∗0) = −F∗

1 (v
∗
2 , v∗1 , v∗0) + F∗

2 (v
∗
2)− G∗(v∗1 , v∗0).

Assuming

K2 ≫ K1 ≫ K ≫ max{‖ f ‖∞, α, β, γ, 1/ε2}
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by directly computing δ2 J∗1 (v
∗
2 , v∗1 , v∗0) we may obtain that for such specified real constants, J∗1 in convex

in v∗2 and it is concave in (v∗1 , v∗0) on Y∗ × D∗ × B∗.

2. The Main Duality Principle and a Concerning Convex Dual Formulation

Considering the statements and definitions presented in the previous section, we may prove the

following theorem.

Theorem 1. Let (v̂∗2 , v̂∗1 , v̂∗0) ∈ Y∗ × D∗ × B∗ be such that

δJ∗1 (v̂
∗
2 , v̂∗1 , v̂∗0) = 0

and u0 ∈ V be such that

u0 =
∂F∗

2 (v̂
∗
2)

∂v∗2
.

Under such hypotheses, we have

δJ(u0) = 0,

and

J(u0) = inf
u∈V

{

J(u) +
K1

2

∫

Ω

(−γ∇2u + 2v̂∗0u − f )2 dx

}

= inf
v∗2∈Y∗







sup
(v∗1 ,v∗0)∈D∗×B∗

J∗1 (v
∗
2 , v∗1 , v∗0)







= J∗1 (v̂
∗
2 , v̂∗1 , v̂∗0). (6)

Proof. Observe that δJ∗1 (v̂
∗
2 , v̂∗1 , v̂∗0) = 0 so that, since J∗1 is convex in v∗2 and concave in (v∗1 , v∗0) on

Y∗ × D∗ × B∗, from the Min-Max theorem, we obtain

J∗1 (v̂
∗
2 , v̂∗1 , v̂∗0) = inf

v∗2∈Y∗







sup
(v∗1 ,v∗0)∈D∗×B∗

J∗1 (v
∗
2 , v∗1 , v∗0)







.

Now we are going to show that

δJ(u0) = 0.

From
∂J∗1 (v̂

∗
2 , v̂∗1 , v̂∗0)

∂v∗2
= 0,

and
∂F∗

2 (v̂
∗
2)

∂v∗2
= u0

we have

−
∂F∗

1 (v̂
∗
2 , v̂∗1 , v∗0)

∂v∗2
+ u0 = 0

and

v̂∗2 − K2u0 = 0.

Observe now that denoting

H(v∗2 , v∗1 , v∗0 , u) = 〈u, v∗1 + v∗2〉L2 − F1(u, v∗0),
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there exists û ∈ V such that
∂H(v̂∗2 , v̂∗1 , v̂∗0 , û)

∂u
= 0,

and

F∗
1 (v̂

∗
2 , v̂∗1 , v̂∗0) = H(v̂∗1 , v̂∗2 , v̂∗0 , û),

so that

∂F∗
1 (v̂

∗
2 , v̂∗1 , v̂∗0)

∂v∗2
=

∂H(v̂∗2 , v̂∗1 , v̂∗0 , û)

∂v∗2

+
∂H(v̂∗2 , v̂∗1 , v̂∗0 , û)

∂u

∂û

∂v∗2
= û. (7)

Summarizing, we have got

u0 =
∂F∗

1 (v̂
∗
2 , v̂∗1 , v̂∗0)

∂v∗2
= û.

Also, denoting

A(u0, v̂∗0) = −γ∇2u0 + 2v̂∗0u0 − f ,

from
∂H(v̂∗1 , v̂2

∗, v̂∗0 , u0)

∂u
= 0,

we have

−v̂∗1 + Ku0 + γ∇2u0 + K1(−γ∇2 + 2v̂∗0)A(u0, v̂∗0)− v̂∗2 + K2u0 = 0,

so that

− v̂∗1 + Ku0 + γ∇2u0 + K1(−γ∇2 + 2v̂∗0)A(u0, v̂∗0) = 0. (8)

From such results, we may infer that

∂F∗
1 (v̂

∗
2 , v̂∗1 , v̂∗0)

∂v∗1

=
∂H(v̂∗2 , v̂∗1 , v̂∗0 , û)

∂v∗1

+
∂H(v̂∗2 , v̂∗1 , v̂∗0 , û)

∂u

∂û

∂v∗1
= û

= u0. (9)

Now observe that from the variation of J∗1 in v∗1 , we have

−
∂F∗

1 (v̂
∗
2 , v̂∗1 , v̂∗0)

∂v∗1
−

∂G∗(v̂∗1 , v̂∗0)

∂v∗1
= 0

so that

−u0 −
∂G∗(v̂∗1 , v̂∗0)

∂v∗1
= 0

that is

−u0 −
v̂∗1 − f

2v̂∗0 + K
= 0.

From this and (??), we may infer that
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v̂∗1 = −γ∇2u0 − Ku0 − K1(−γ∇2 + 2v̂∗0)A(u0, v̂∗0) = −(2v̂∗0 + K)u0 + f ,

so that

−γ∇2u0 + 2v̂∗0u0 − f − K1(−γ∇2 + 2v̂∗0)A(u0, v̂∗0) = 0.

From this and the concerning boundary conditions, since

A(u0, v∗0) = −γ∇2u0 + 2v̂∗0u0 − f ,

we may obtain

−γ∇2u0 + 2v̂∗0u0 − f = A(u0, v̂∗0) = 0.

Moreover, from
∂J∗1 (v̂

∗
2 , v̂∗1 , v̂∗0)

∂v∗0
= 0,

we have

A(u0, v̂∗0)2u0 −
v̂∗0
α

+ u2
0 − β = 0,

so that

v∗0 = α(u2
0 − β).

From such last results we get

−γ∇2u0 + 2α(u2
0 − β)u0 − f = 0,

and thus

δJ(u0) = 0.

Furthermore, also from such last results and the Legendre transform properties, we have

F∗
1 (v̂

∗
2 , v̂∗1 , v̂∗0) = 〈u0, v̂∗2 + v̂∗1〉L2 − F1(u0, v̂∗0),

F∗
2 (v̂

∗
2) = 〈u0, v̂∗2〉L2 − F2(u0),

G∗(v̂∗1 , v̂∗0) = −〈u0, v̂∗1〉L2 + 〈0, v̂∗0〉L2 − G(u0, 0),

so that

J∗1 (v̂
∗
2 , v̂∗1 , v̂∗0)

= −F∗
1 (v̂

∗
2 , v̂∗1 , v̂∗0) + F∗

2 (v̂
∗
2)− G∗(v̂∗1 , v̂∗0)

= F1(u0, v̂∗0)− F2(u0) + G(u0, 0)

= J(u0). (10)

Finally, observe that

J∗1 (v
∗
2 , v∗1 , v∗0) ≤ −〈u, v∗2〉L2 + F1(u, v∗0) + F∗

2 (v
∗
2) + G(u, 0),

∀u ∈ V, v∗2 ∈ Y∗, v∗1 ∈ D∗, v∗0 ∈ B∗.
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Thus, we may obtain

inf
v∗2∈Y∗

J∗1 (v
∗
2 , v̂∗1 , v̂∗0)

≤ inf
v∗2∈Y∗

{−〈u, v∗2〉L2 + F1(u, v̂∗0) + F∗
2 (v

∗
2) + G(u, 0)}

= F1(u, v̂∗0)− F2(u) + G(u, 0)

= J(u) +
K1

2

∫

Ω

(−γ∇2u + 2v̂∗0u − f )2 dx, ∀u ∈ V. (11)

From this and (??), we obtain

J∗1 (v̂
∗
2 , v̂∗1 , v̂∗0)

= inf
v∗2∈Y∗







sup
(v∗1 ,v∗0)∈D∗×B∗

J∗1 (v
∗
2 , v∗1 , v∗0)







≤ inf
u∈V

{

J(u) +
K1

2

∫

Ω

(−γ∇2u + 2v̂∗0u − f )2 dx

}

. (12)

Joining the pieces, from a concerning convexity in u, we have got

J(u0) = inf
u∈V

{

J(u) +
K1

2

∫

Ω

(−γ∇2u + 2v̂∗0u − f )2 dx

}

= inf
v∗2∈Y∗







sup
(v∗1 ,v∗0)∈D∗×B∗

J∗1 (v
∗
2 , v∗1 , v∗0)







= J∗1 (v̂
∗
2 , v̂∗1 , v̂∗0). (13)

The proof is complete.

Remark 1. We could have also defined

B∗ =
{

v∗0 ∈ Y∗ : ‖2v∗0‖∞ < K/8 and − γ∇2 + 2v∗0 < −εId

}

,

for a small parameter 0 < ε ≪ 1. This corresponds to −γ∇2 + 2v∗0 be negative definite, whereas the previous

case corresponds to −γ∇2 + 2v∗0 be positive definite. It is worth recalling the inequality

−γ∇2 + 2v∗0 < −εId

necessarily refers to a finite dimensional version for the model in question, in a finite elements or finite differences

context.

3. One More Duality Principle Suitable for the Primal Formulation Global Optimization

In this section we establish one more duality principle and related convex dual formulation

suitable for a global optimization of the primal variational formulation.

Let Ω ⊂ R
3 be an open, bounded, connected set with a regular (Lipschitzian) boundary denoted

by ∂Ω.

For the primal formulation, we define V = W1,2
0 (Ω) and consider a functional J : V → R where

J(u) =
γ

2

∫

Ω

∇u · ∇u dx +
α

2

∫

Ω

(u2 − β)2 dx

−〈u, f 〉L2 . (14)
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Here we assume f ∈ L2(Ω), and define Y = Y∗ = L2(Ω)

V2 = {u ∈ V : ‖u‖∞ ≤ K4},

A+ = {u ∈ V : u f > 0, a.e. in Ω},

and

V∗
1 = A+ ∩ V1,

for an appropriate constant K4 > 0 to be specified.

Define also the functionals F1 : V → R, F2 : V × Y → R and G : Y → R by

F1(u) =
K2

2

∫

Ω

(∇2u)2 dx − 〈u, f 〉L2 ,

F2(u, v∗3 , v∗0) = −
γ

2

∫

Ω

∇u · ∇u dx − 〈u2, v∗0〉L2 +
K2

2

∫

Ω

(∇2u)2 dx

−
K1

2

∫

Ω

(v∗3u − K3)
2 dx, (15)

and

G(u2) =
α

2

∫

Ω

(u2 − β)2 dx,

for appropriate positive constants K1, K2, K3, K4 to be specified.

Moreover, define F∗
1 : Y∗ → R, and F∗

2 : [Y∗]2 → R and G∗ : Y∗ → R, by

F∗
1 (v

∗
2) = sup

u∈V

{〈u, v∗2〉L2 − F1(u)}

=
1

2K2

∫

Ω

(v∗2 + f )2

∇4
dx, (16)

and

F∗
2 (v

∗
2 , v∗3 , v∗0) = sup

u∈V

{〈u, v∗2〉L2 − F2(u, v∗3 , v∗0)}

=
1

2

∫

Ω

(v∗2 − K1K3v∗3)
2

K2∇4 + γ∇2 − 2v∗0 − K1(v
∗
3)

2

−
K1

2

∫

Ω

K2
3 dx

and

G∗(v∗0) = sup
v∈Y

{〈v, v∗0〉L2 − G(v)}

=
1

2α

∫

Ω

(v∗0)
2 dx + β

∫

Ω

v∗0 dx. (17)

Furthermore, we define

D∗ = {v∗2 ∈ Y∗ : ‖v∗2‖∞ ≤ (3/2)K2},

B∗ = {v∗3 ∈ Y∗ : u1(v
∗
3) ∈ V1},

where

u1(v
∗
3) =

K3

v∗3
.
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Define also

C∗
1 = {v∗0 ∈ Y∗ : ‖v∗0‖∞ ≤ K4}.

and J∗1 : D∗ × C∗
1 → R by

J∗1 (v
∗
2 , v∗3 , v∗0) = −F∗

1 (v
∗
2) + F∗

2 (v
∗
2 , v∗3 , v∗0)− G∗(v∗0).

Moreover, assuming K2 ≫ K1 ≫ K4 ≫ max{1, K3, α, β, γ, ‖ f ‖∞}.

By directly computing δ2 J∗1 (v
∗
2 , v∗3 , v∗0) denoting

A = −K1K3,

B = 2K1v∗3 ,

ϕ = −K2∇
4 − γ∇2 + 2v∗0 + K1(v

∗
3)

2),

ϕ1 = v∗2 − K1K3v∗3 ,

u = −
ϕ1

ϕ
,

we may obtain, considering that ϕ < 0

∂2 J∗1 (v
∗
2 , v∗3 , v∗0)

∂(v∗3)
2

=

on D∗ × B∗.

Moreover,

∂2 J∗1 (v
∗
2 , v∗3 , v∗0)

∂(v∗2)
2

∂2 J∗1 (v
∗
2 , v∗3 , v∗0)

∂(v∗3)
2

−

(

∂2 J∗1 (v
∗
2 , v∗3 , v∗0)

∂v∗2∂v∗3

)2

=
K1(−K1K2

3(3u2 − 4uu1 + u2
1) + u2

1[(G + 2v∗0)u]u)

K2(∇4)(−K1K2
3 + u1(K2(∇4) + γ∇2 − 2v∗0)u1)

=
K2

1 H1 + K1H2

K2(∇4)(−K1K2
3 + u1(K2∇4 + γ∇2 − 2v∗0)u1)

, (18)

where

u1 = u1(v
∗
3) =

K3

v∗3
,

H1 = −K2
3(3u2 − 4uu1 + u2

1),

and

H2 = u2
1[(−γ∇2 + 2v∗0)u]u.

At a critical point we have H1 = 0 and

H2 = u2
0 f u0 > 0, a.e in Ω.

With such results, we may define the restrictions

C∗
2 = {v∗0 ∈ Y∗ : H1(v

∗
2 , v∗3 , v∗0) ≥ 0, in Ω, ∀v∗2 ∈ D∗, v∗3 ∈ B∗}.

C∗
3 = {v∗0 ∈ Y∗ : H2(v

∗
2 , v∗3 , v∗0) ≥ 0, in Ω, ∀v∗2 ∈ D∗, v∗3 ∈ B∗}.

Here, we define C∗ = C∗
1 ∩ C∗

2 ∩ C∗
3 .
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On the other hand, clearly we have

∂2 J∗1 (v
∗
2 , v∗3 , v∗0)

∂(v∗0)
2

< 0

From such results, we may obtain that J∗1 in convex in (v∗2 , v∗3) and it is concave in v∗0 on D∗ × B∗ × C∗.

3.1. The main duality principle and a related convex dual formulation

Considering the statements and definitions presented in the previous section, we may prove the

following theorem.

Theorem 2. Let (v̂∗2 , v̂∗3 v̂∗0) ∈ D∗ × B∗ × C∗ be such that

δJ∗1 (v̂
∗
2 , v̂∗3 , v̂∗0) = 0

and u0 ∈ V1 be such that

u0 =
∂F∗

1 (v̂
∗
2)

∂v∗2
.

Assume also

u0 6= 0, a.e. in Ω.

Under such hypotheses, we have

δJ(u0) = 0,

v̂∗3u0 − K3 = 0, a.e. in Ω,

and

J(u0) = inf
u∈V1

J(u)

= inf
(v∗2 ,v∗3)∈D∗×B∗

{

sup
v∗0∈C∗

J∗1 (v
∗
2 , v∗3 , v∗0)

}

= J∗1 (v̂
∗
2 , v̂∗3 , v̂∗0). (19)

Proof. Observe that δJ∗1 (v̂
∗
2 , v̂∗3 , v̂∗0) = 0 so that, since J∗1 is convex in (v∗2 , v∗3) ∈ D∗ × B∗ × C∗ and

∂2 J∗1 (v̂
∗
2 , v̂∗3 , v∗0)

∂(v∗0)
2

> 0, ∀v∗0 ∈ C∗
1 ,

we obtain

J∗1 (v̂
∗
2 , v̂∗3 , v̂∗0) = inf

(v∗2 ,v∗3)∈D∗×B∗
J∗1 (v

∗
2 , v∗3 , v̂∗0) sup

v∗0∈C∗
J∗1 (v̂

∗
2 , v̂∗3 , v∗0).

Consequently, from this and the Saddle Point Theorem, we obtain

J∗1 (v̂
∗
2 , v̂∗3 , v̂∗0) = inf

(v∗2 ,v∗3)∈D∗×B∗

{

sup
v∗0∈C∗

J∗1 (v
∗
2 , v∗3 , v∗0)

}

.

Now we are going to show that

δJ(u0) = 0.

From
∂J∗1 (v̂

∗
2 , v̂∗3 , v̂∗0)

∂v∗2
= 0,
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and
∂F∗

1 (v̂
∗
2)

∂v∗2
= u0

we have

−
∂F∗

2 (v̂
∗
2 , v̂∗3 , v̂∗0)

∂v∗2
− u0 = 0

and

v̂∗2 = K2∇
4u0 − f .

Observe now that

F∗
2 (v̂

∗
2 , v̂∗3 , v∗0) = sup

u∈V

{〈u, v∗2〉L2 − F2(u, v∗3 , v∗0)}.

Denoting

H(v∗2 , v∗3 , v∗) , u) = 〈u, v∗2〉L2 − F2(u, v∗3 , v∗0),

there exists û ∈ V such that
∂H(v̂∗2 , v̂∗3 , v̂∗0 , û)

∂u
= 0,

and

F∗
2 (v̂

∗
2 , v̂∗3 , v̂∗0) = H(v̂∗2 , v̂∗3 , v̂∗0 , û),

so that

∂F∗
2 (v̂

∗
2 , v̂∗3 , v̂∗0)

∂v∗2
=

∂H(v̂∗2 , v̂∗3 , v̂∗0 , û)

∂v∗2

+
∂H(v̂∗2 , v̂∗3 , v̂∗0 , û)

∂u

∂û

∂v∗2
= û. (20)

Summarizing, we have got

u0 =
∂F∗

2 (v̂
∗
2 , v̂∗3 , v̂∗0)

∂v∗2
= û.

From such results and the Legendre tranform proprieties we get

v∗2 =
∂F1(u0)

∂u

and

v∗2 =
∂F2(u0, v̂∗3 , v̂∗0)

∂u
.

On the other hand, from the variation of J∗1 in v∗3 , we have

∂F∗
2 (v̂

∗
2 , v̂∗3 , v̂∗0)

∂v∗3

= −K1(v̂
∗
3u0 − K3)u0 +

∂H(v̂∗2 , v̂∗3 , v̂∗0 , û)

∂u

∂û

∂v∗3
= −K1(v̂

∗
3u0 − K3)u0

= 0. (21)

From such results, since

u0 6= 0, a.e. in Ω,

we get

v̂∗3u0 − K3 = 0, a.e. in Ω.
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Finally, from the variation of J∗1 in v∗0 we obtain

∂F∗
2 (v̂

∗
2 , v̂∗3 , v̂∗0)

∂v∗0
−

∂G∗(v∗0)

∂v∗0
= 0,

so that

u2
0 +

∂H(v̂∗2 , v̂∗3 , v̂∗0 , û)

∂u

∂û

∂v∗0
−

v∗0
α

− β = 0.

Thus,

v∗0 = α(u2
0 − β).

Consequently, from such last results, we have

0 = v̂∗2 − v̂∗2

=
∂F1(u0)

∂u
−

∂F2(u0, v̂∗3 , v̂∗0)

∂u

= K2∇
4u0 − f − K2∇

4u0 − γ∇2u0 + 2v∗0u0

= −γ∇2u0 + 2α(u2
0 − β)u0 − f

= δJ(u0). (22)

Summarizing,

δJ(u0) = 0.

Furthermore, also from such last results and the Legendre transform properties, we have

F∗
1 (v̂

∗
2) = 〈u0, v̂∗2〉L2 − F1(u0),

F∗
2 (v̂

∗
2 , v̂∗3 v̂∗0) = 〈u0, v̂∗2〉L2 − F2(u0, v̂∗3 , v̂∗0),

G∗(v̂∗0) = 〈u2
0, v∗0〉L2 − G(u2

0),

so that

J∗1 (v̂
∗
2 , v̂∗3 , v̂∗0)

= −F∗
1 (v̂

∗
2) + F∗

2 (v̂
∗
2 , v̂∗3 , v̂∗0)− G∗(v̂∗0)

= J(u0). (23)

Finally, observe that

J∗1 (v
∗
2 , v∗3 , v∗0) ≤ F1(u)− 〈u, v∗2〉L2 + F∗

2 (v
∗
2 , v∗3 , v∗0)− G∗(v∗0),

∀u ∈ V1, v∗2 ∈ D∗, v∗3 ∈ B∗, v∗0 ∈ C∗.

Therefore,

sup
v∗0∈C∗

J∗1 (v
∗
2 , v∗3 , v∗0) ≤ sup

v∗0∈C∗
1

{−〈u, v∗2〉L2 + F1(u) + F∗
2 (v

∗
2 , v∗3 , v∗0)− G∗(v∗0)},
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so that

inf
(v∗2 ,v∗3)∈D∗×B∗

{

sup
v∗0∈C∗

J∗1 (v
∗
2 , v∗3 , v∗0)

}

≤ inf
(v∗2 ,v∗3)∈D∗×B∗

{

sup
v∗0∈C∗

1

{−〈u, v∗2〉L2 + F1(u) + F∗
2 (v

∗
2 , v∗3 , v∗0)− G∗(v∗0)}

}

= J(u), ∀u ∈ V1. (24)

Summarizing, we have got

J∗1 (v̂
∗
2 , v̂∗3 , v̂∗0) = inf

(v∗2 ,v∗3)∈D∗×B∗

{

sup
v∗0∈C∗

J∗1 (v
∗
2 , v∗3 , v∗0)

}

≤ inf
u∈V1

J(u). (25)

Joining the pieces, we have got

J(u0) = inf
u∈V1

J(u)

= inf
(v∗2 ,v∗3)∈D∗×B∗

{

sup
v∗0∈C∗

J∗1 (v
∗
2 , v∗3 , v∗0)

}

= J∗1 (v̂
∗
2 , v̂∗3 , v̂∗0). (26)

The proof is complete.

4. Conclusions

In this article we have developed convex dual variational formulations suitable for the local

optimization of non-convex primal formulations.

It is worth highlighting, the results may be applied to a large class of models in physics and

engineering.

We also emphasize the duality principles here presented are applied to a Ginzburg-Landau type

equation. In a future research, we intend to extend such results for some models of plates and shells

and other models in the elasticity theory.
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