Preprint
Data Descriptor

Multivariate Time Series Dataset of Milling 16MnCr5 for Anomaly Detection

Altmetrics

Downloads

142

Views

64

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

25 October 2022

Posted:

27 October 2022

You are already at the latest version

Alerts
Abstract
Machine learning methods have widely been applied to detect anomalies in machine and cutting tool behavior during lathe or milling. However, detecting anomalies in the workpiece itself did not get the same attention by researchers. That is why in this article, the authors present a pub-licly available multivariate time series dataset which was recorded during milling of 16MnCr5. Due to artificially introduced, though realistic anomalies in the workpiece the dataset can be ap-plied for anomaly detection. By using a convolutional autoencoder as a first model good results in detecting the location of the anomalies in the workpiece were achieved. Furthermore, milling tools with two different diameters where used which led to a dataset eligible for transfer learn-ing. The objective of this article is to provide researchers with a real-world time series dataset of the milling process which is suitable for modern machine learning research topics like anomaly detection and transfer learning.
Keywords: 
Subject: Engineering  -   Mechanical Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated