Deep Learning is an extremely important research topic in Earth Observation. Current use-cases range from semantic image segmentation, object detection to more common problems found in computer vision such as object identification. Earth Observation is an excellent source for different types of problems and data for Machine Learning in general and Deep Learning in particular. It can be argued that both Earth Observation and Deep Learning as fields of research will benefit greatly from this recent trend of research. In this paper we take several state of the art Deep Learning network topologies and provide a detailed analysis of their performance for semantic image segmentation for building footprint detection. The dataset used is comprised of high resolution images depicting urban scenes. We focused on single model performance on simple RGB images. In most situations several methods have been applied to increase the accuracy of prediction when using deep learning such as ensembling, alternating between optimisers during training and using pretrained weights to bootstrap new models. These methods although effective, are not indicative of single model performance. Instead, in this paper, we present different topology variations of these state of the art topologies and study how these variations effect both training convergence and out of sample, single model, performance.
Keywords:
Subject: Computer Science and Mathematics - Analysis
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.