
Brief Report

Glycemia and New-onset Diabetes among COVID-19 Patients with Prediabetes: A Follow-up Study in India

Thirunavukkarasu Sathish^{1*} and Nirmala Devi Chandrasekaran²

1 Department of Family and Preventive Medicine, Emory University, Atlanta, USA ORCID:
0000-0002-2016-4964

2 Department of General Medicine, Chettinad Hospital and Research Institute, Kelambakkam, Tamil Nadu, India

* Corresponding author: speaktosat@gmail.com

Abstract: Studies have shown that COVID-19 patients with prediabetes frequently present with high plasma glucose levels on hospital admission. However, whether the glycemic abnormalities are temporary or persist after recovery from the illness is unclear. We conducted a prospective cohort study of 69 COVID-19 patients with prediabetes (HbA1c 5.7–6.4%) who were admitted to a tertiary care hospital in Chennai, India, from May to October 2020 and were discharged alive. Over a mean follow-up of 146.6 (SD: 72.5) days, the mean fasting plasma glucose rose by 16.8 mg/dl (from 119.3–136.1 mg/dl), 2-hr post-prandial glucose by 61.0 mg/dl (from 176.2–237.2 mg/dl), and HbA1c by 0.6% (5.9–6.5%). Of the 49 (84.5%) patients who were discharged with glucose-lowering medications, 40 (81.6%) continued taking them at the first follow-up visit (mean of 50.1 days from admission), and 39 (79.6%) continued taking them at the second follow-up visit (mean of 114.3 days from first the follow-up visit). In addition, 12.1% of patients developed new-onset diabetes after recovery from the illness. Continuous monitoring of glycemia and detecting new-onset diabetes in COVID-19 patients with prediabetes after recovery are essential, as the metabolic effects of SARS-CoV-2 persist for several months.

Keywords: coronavirus disease 2019; COVID-19; severe acute respiratory syndrome coronavirus 2; SARS-CoV-2; prediabetes; new-onset diabetes; diabetes; HbA1c; long COVID

1. Introduction

Coronavirus disease 2019 (COVID-19) has caused substantial damage to global health and the economy. According to the World Health Organization, as of 11 November 2022, there have been 631 million confirmed COVID-19 cases globally, including 6.6 million deaths [1]. Research shows that this infectious disease pandemic is lethally intersecting with the ongoing non-communicable disease pandemic, namely diabetes [2]. On one side, diabetes worsens the clinical course of COVID-19 patients, resulting in increased disease severity and mortality [2]. On the other side, new-onset diabetes has been reported in COVID-19 patients during the acute phase of the illness and after recovery [3, 4]. One of the predisposing factors for COVID-19 patients to develop new-onset diabetes is prediabetes [2]. While studies have shown that COVID-19 patients with prediabetes (HbA1c 5.7–6.4%) frequently present with high levels of plasma glucose on hospital admission [5], it is unclear whether the glycemic abnormalities are temporary or persist after recovery from the illness. It is important to know this, so that measures can be taken to prevent the development of diabetes, if needed. Therefore, we aimed to study the levels of glycemia and the frequency of new-onset diabetes in COVID-19 patients with prediabetes after they were discharged from a tertiary care setting in India.

2. Materials and Methods

2.1. Study design and Study population

This is a prospective cohort study of 69 COVID-19 patients with prediabetes who were admitted to a tertiary care hospital in Chennai, India, from May to October 2020 and were discharged alive. Prediabetes was defined as those having an HbA1c of 5.7–6.4%, as per the American Diabetes Association criteria [6], with no previous history of diabetes.

2.2. Data collection on hospital admission

At the time of hospital admission, from the case report forms, we extracted data on the patient's demographics, clinical signs and symptoms, comorbid conditions, physical measurements, laboratory parameters, reverse transcription polymerase chain reaction (RT-PCR) results, chest computed tomography (CT) findings, medications and other treatment strategies, complications, and clinical outcomes. RT-PCR, blood tests, and chest CT were performed within 24 hours to three days of hospital admission.

2.3. Follow-up visits

Patients who had recovered and discharged alive were invited for follow-up visits every month through phone calls. During follow-up visits, we collected blood samples for fasting and post-prandial glucose and HbA1c and recorded the history of oral hypoglycemics and insulin usage. Self-reports of taking glucose-lowering medications were cross-checked with the medications they brought during the visits.

2.4. Plasma glucose and HbA1c analysis

Venous blood samples were drawn in a fasting state (fasted for at least eight hours) and two hours after food intake. The blood samples were processed on a COBAS 6000 analyzer for plasma glucose (using Hexokinase assay) and on a D-10 BIORAD analyzer for HbA1c (using High-Performance Liquid Chromatography method), with kits supplied by Roche diagnostics, Switzerland, in a laboratory accredited by the National Accreditation Board for Testing and Calibration Laboratories (NABL) [7].

2.5. Definition of new-onset diabetes

New-onset diabetes during follow-up was defined as fasting plasma glucose ≥ 126 mg/dl or 2-hr post-prandial glucose ≥ 200 mg/dl or taking glucose-lowering medications with HbA1c $< 6.5\%$ [7].

3. Results

3.1. Characteristics of patients on admission

Table 1 shows the characteristics of the cohort of 69 COVID-19 patients with prediabetes on hospital admission. The mean age was 44.9 (SD: 13.6) years, and the majority (71%) were male. Most (62.3%) patients had a severe or critical illness, while the rest (37.7%) had a moderate illness, as defined by the World Health Organization criteria [8]. Nearly two-thirds (65.2%) had a history of one or more comorbidities such as hypertension, chronic kidney disease, coronary heart disease, chronic liver disease, and cerebro-vascular accident. A substantial proportion of patients had high levels of certain inflammatory and coagulation indices. For example, one-third (33%) of patients had D-dimer levels of ≥ 250 ng/ml (considered as high), and 58% had a longer prothrombin time of > 13.5 seconds. 61% developed one or more complications, including acute respiratory distress syndrome, septic shock, thrombosis, and acute kidney injury. 69% received steroids (Dexamethasone) along with anti-virals. The mean fasting plasma glucose (118.1 mg/dl) and 2-hr post-prandial glucose (176.1 mg/dl) were in the prediabetes range. 84.5% of patients were discharged with oral hypoglycemics (metformin or glimepiride) or insulin.

Table 1. Characteristics of the cohort of 69 COVID-19 patients with prediabetes on hospital admission.

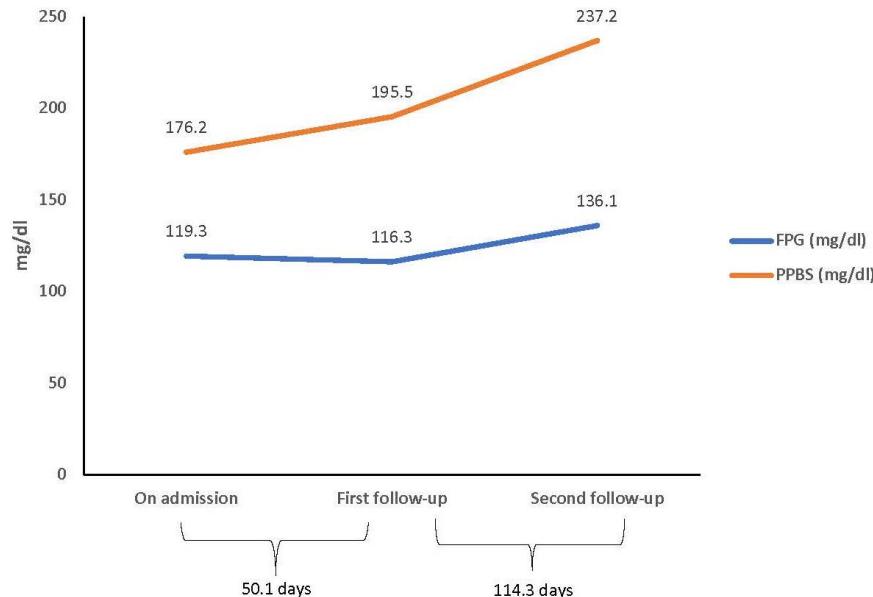
Symptoms, n (%)		Demographics, mean (SD) or n (%)	
Fever	53 (76.8)	Age (years)	44.9 (13.6)
Fatigue	56 (81.2)	Male	49 (71.0)
Cough	42 (60.9)	Behavioral factors, n (%)	
Sputum	31 (44.9)	Smoking	35 (50.7)
Sore throat	52 (75.4)	Alcohol use	33 (47.8)
Running nose	27 (39.1)	Comorbidities, n (%)	
Odynophagia	22 (31.9)	Hypertension	34 (49.3)
Headache	39 (56.5)	Chronic kidney disease	5 (7.3)
Dizziness	31 (44.9)	Coronary heart disease	4 (5.8)
Chest pain	10 (14.5)	Chronic liver disease	4 (5.8)
Chest tightness	23 (33.3)	Cerebrovascular accident	5 (7.4)
Dyspnea	41 (59.4)	One or more comorbidities	45 (65.2)
Nausea	13 (18.8)	Clinical parameters, mean (SD) or n (%)	
Vomiting	12 (17.4)	Positive RT-PCR	62 (89.9)
Diarrhea	11 (15.9)	Chest CT imaging – area of lung injury ≤50% >50%	62 (89.9) 7 (10.1)
Abdominal discomfort	15 (21.7)	Body mass index (kg/m ²)	26.9 (4.3)
Loss of smell	32 (46.4)	Systolic blood pressure (mmHg)	124.6 (16.0)
Loss of taste	32 (46.4)	Diastolic blood pressure (mmHg)	78.5 (10.8)
Loss of appetite	34 (49.3)	Blood cells, mean (SD) or median (IQR)	
Sleep disturbances	22 (31.9)	Total leucocyte count (cells per mm ³)	6600 (5200-10000)
Palpitation	24 (34.8)	Neutrophil count (cells per mm ³)	4092 (2880-7138)
Vital signs, mean (SD)		Lymphocyte count (cells per mm ³)	1504 (948-2226)
Pulse rate (beats/min)	86.9 (12.6)	Neutrophil-to-lymphocyte ratio	2.6 (1.7-7.2)
Respiratory rate (beats/min)	22.0 (4.4)	Platelet count (cells per mm ³)	240000 (190000-284000)
SpO ₂ (%)	99.6 (3.0)	Urea (mg/dl)	11 (8-14)
Inflammatory		Creatinine (mg/dl)	0.8 (0.7-1.0)

markets and coagulation indices, mean (SD) or median (IQR)			
D-dimer (ng/ml)	222 (183-280)	eGFR (mL/min/1.73 m ²)	95.9 (32.2)
Ferritin (ng/ml)	192 (104-305)	Total bilirubin (mg/dl)	1.0 (0.9-1.2)
C-reactive protein (mg/l)	40 (16.4-104)	Total protein (g/dl)	6.7 (0.5)
Interleukin-6 (pg/ml)	12 (6-22)	Albumin (g/dl)	3.7 (0.5)
Prothrombin time (in seconds)	14 (12-16)	Globulin (g/dl)	3.0 (0.5)
aPTT (in seconds)	28.5 (6.3)	Alanine aminotransferase (U/l)	32 (22-45)
International normalized ratio	1.13 (0.13)	Aspartate aminotransferase (U/l)	40 (28-61)
Glucose parameters, mean (SD)		Lipids, mean (SD)	
Fasting plasma glucose (mg/dl)	118.1 (19.9)	Total cholesterol (mg/dl)	236.0 (61.8)
2-hr post-prandial glucose (mg/dl)	176.1 (33.4)	Triglycerides (mg/dl)	154.7 (43.5)
HbA1c (%)	5.9 (0.2)	HDL cholesterol (mg/dl)	39.0 (5.8)

SD, standard deviation; IQR, inter-quartile range. aPTT, activated partial thromboplastin time; eGFR, estimated glomerular filtration rate; RT-PCR, reverse transcription polymerase chain reaction.

Table 2. Treatment, complications, and clinical outcomes of the cohort of 69 COVID-19 patients with prediabetes.

In-hospital treatment, n (%)	
Favipiravir	69 (100)
Remdesivir	42 (60.9)
Dexamethasone	69 (100)
Ceftriaxone	16 (23.2)
Low molecular weight heparin	69 (100)
Supplemental oxygen (non-invasive)	33 (47.8)
Mechanical ventilation	16 (23.2)


Complications, n (%)	
Acute respiratory distress syndrome	28 (40.6)
Septic shock	15 (21.7)
Thrombosis	5 (7.3)
Acute kidney injury	8 (11.6)
Intensive care unit admission	16 (23.2)
Clinical outcomes, mean (SD)	
No. of hospital days	9.0 (4.1)

SD, standard deviation.

3.2. Follow-up visits and Changes in glycemic parameters

Of the 69 patients who were discharged from the hospital after recovery, 3 (4.3%) died during follow-up. Of the remaining 66 patients, 58 (87.9%) attended two follow-up visits over a mean duration of 146.6 (SD: 72.5) days, and the rest 8 (12.1%) were lost to follow-up. The reasons for loss to follow-up include not willing, lack of time, and not reachable. Figure 1 shows the changes in glucose levels from the time of hospital admission to follow-up visits. After a slight reduction in the mean fasting plasma glucose from 119.3 (SD: 21.1) mg/dl on hospital admission to 116.3 mg/dl at the first follow-up visit, it rose to 136.1 mg/dl at the second follow-up visit. On the other hand, the mean 2-hr post-prandial glucose continuously increased from 176.2 mg/dl at the time of hospital admission to 195.5 mg/dl at the first follow-up visit and 237.2 mg/dl at the second follow-up visit. HbA1c increased from 5.9% to 6.4% and 6.5% at the first and second follow-up visits.

Figure 1: Changes in glucose levels from hospital admission to first and second follow-up visits. FPG, fasting plasma glucose; PPBS, post-prandial blood sugar.

3.3. Glucose-lowering medications and New-onset diabetes

Of the 49 (84.5%) patients who were discharged with glucose-lowering medications, 40 (81.6%) continued taking them at the first follow-up visit (mean of 50.1 days from admission), and 39 (79.6%) continued taking them at the second follow-up visit (mean of 114.3 days from first the follow-up visit). In addition, two patients started taking glucose-lowering medications, as advised by their treating physicians, for the first time during follow-up. New-onset diabetes was detected among 7 (12.1%) patients during follow-up.

4. Discussion

To the best of our knowledge, this is the first study from India to provide data on longitudinal changes in glycemic parameters among COVID-19 patients with prediabetes. Over a mean of five months of follow-up, the mean fasting plasma glucose rose by 16.8 mg/dl, 2-hr post-prandial glucose by 61.0 mg/dl, and HbA1c by 0.6%, reaching the diabetes range. These changes occurred even though a substantial proportion (around 80%) of patients were taking glucose-lowering medications at discharge and during follow-up. Finally, 12.1% of patients developed new-onset diabetes after recovery from the illness.

Prediabetes is an intermediate stage between normoglycemia and diabetes, which is characterized by chronic low-grade inflammation, impaired innate immunity, poor adaptive immune response to infections, and a pro-coagulative state [9]. Therefore, people with prediabetes are prone to developing cytokine storm when infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes COVID-19 [10]. In agreement with this, a significant percentage of our patients had high levels of certain inflammatory markers (e.g., D-dimer) and coagulation indices (e.g., prothrombin time) on admission, possibly resulting in increased insulin resistance [2]. Further, studies have shown that SARS-CoV-2 infects pancreatic β -cells and possibly reduces insulin secretion [2, 11]. These metabolic abnormalities (impaired β -cell function and insulin resistance) have been shown to persist for several months after recovery [12], which may have contributed to the continued increase in glucose and HbA1c levels among our patients. Furthermore, the indirect effects of COVID-19 on metabolic health (e.g., reduced physical activity due to lockdown), use of corticosteroids during hospitalization, and poor adherence to medications could also have played a role.

Another important finding is that 12.1% of our patients developed new-onset diabetes during follow-up. This is similar to the finding from a meta-analysis of eight studies with 3711 hospitalized COVID-19 patients, which reported that 14.4% had new-onset diabetes [3]. Several mechanisms may contribute to the development of diabetes following COVID-19, including direct and indirect (by triggering proinflammatory cytokines or by enhancing autoimmunity) injury to the β -cells by SARS-CoV-2, cytokines-induced insulin resistance, disruption of the renin-angiotensin system, and unhealthy behavioral changes due to lockdown and other pandemic control measures [11].

The study has certain limitations. Prediabetes was defined using HbA1c values alone. We could have identified more eligible patients if we had used glucose values too. Our study was conducted in a single tertiary care setting, with the majority of patients having a severe or critical illness, thereby limiting the generalizability of the findings to those with mild illness not requiring hospitalization. Finally, while we had a high follow-up rate (88%) at both visits, the mean follow-up was only five months. Further follow-up of these patients is needed to study the changes in glycemic parameters over a more extended period of time.

5. Conclusions

In conclusion, our study findings emphasize the need for continuous monitoring of glycemic levels in COVID-19 patients with prediabetes after recovery, as the metabolic

effects of SARS-CoV-2 persist for several months. In addition, these patients should also be closely followed-up for the occurrence of new-onset diabetes, so that appropriate treatment can be initiated early to avoid complications at a later stage.

Author Contributions: Conceptualization-N.D.C., T.S. Methodology-T.S. Formal analysis-T.S. Resources-N.D.C. Data curation-T.S. Writing-original draft preparation-T.S. Writing-review and editing-N.D.C., T.S. Supervision-N.D.C., T.S.

Funding: This research received no funding.

Institutional Review Board Statement: The study was approved by the Institutional Review Board of the Chettinad Hospital and Research Institute, Tamil Nadu, India (191/IHEC/Nov2020).

Informed Consent Statement: Patient consent on hospital admission was waived by the Institutional Review Board, given the acute nature of the patient's illness. Written informed consent was obtained from all patients at follow-up visits.

Data Availability Statement: The data is available from the senior author upon reasonable request.

Acknowledgments: We thank the nurses and doctors for collecting and recording the data of patients in the case report forms.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. World Health Organization. WHO coronavirus disease (COVID-19) dashboard. <https://www.who.int/emergencies/diseases/novel-coronavirus-2019> (accessed 17 Nov 2022).
2. Apicella, M.; Campopiano, M.C.; Mantuano, M.; Mazoni, L.; Coppelli, A.; Del Prato, S. COVID-19 in people with diabetes: understanding the reasons for worse outcomes. *Lancet. Diabetes. Endocrinol.* **2020**, *8*, 782-92.
3. Sathish, T.; Kapoor, N.; Cao, Y.; Tapp, R.J.; Zimmet, P. Proportion of newly diagnosed diabetes in COVID-19 patients: A systematic review and meta-analysis. *Diabetes. Obes. Metab.* **2021**, *23*, 870-4.
4. Sathish, T.; Anton, M.C.; Sivakumar, T. New-onset diabetes in "long COVID". *J. Diabetes.* **2021**, *13*, 693-4.
5. Chandrasekaran, N.D.; Velure Raja Rao, M.R.; Sathish, T. Clinical characteristics and outcomes of COVID-19 patients with prediabetes. *Diabetes. Metab. Syndr.* **2021**, *15*, 102192.
6. American Diabetes Association. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2022. *Diabetes. Care.* **2022**, *45*(Suppl 1), S17-S38.
7. NABL INDIA. National Accreditation Board for Testing and Calibration Laboratories. <https://nabl-india.org> (accessed 17 Nov 2022).
8. World Health Organization. COVID-19: symptoms and severity. <https://www.who.int/westernpacific/emergencies/covid-19/information/asymptomatic-covid-19> (accessed 17 Nov 2022).
9. Grossmann, V.; Schmitt, V.H.; Zeller, T.; Panova-Noeva, M.; Schulz, A.; Laubert-Reh, D.; Juenger, C.; Schnabel, R.B.; Abt, T.G.J.; Laskowski, R.; Wiltink, J.; Schulz, E.; Blankenberg, S.; Lackner, K.J.; Munzel, T.; Wild, S.P. Profile of the Immune and Inflammatory Response in Individuals With Prediabetes and Type 2 Diabetes. *Diabetes. Care.* **2015**, *38*, 1356-64.
10. Yonas, E.; Alwi, I.; Pranata, R.; Huang, I.; Lim, M.A.; Yamin, M.; Nasution, S.A.; Setiati, S.; Virani, S.S. Elevated interleukin levels are associated with higher severity and mortality in COVID 19 - A systematic review, meta-analysis, and meta-regression. *Diabetes. Metab. Syndr.* **2020**, *14*, 2219-30.
11. Sathish, T.; Tapp, R.J.; Cooper, M.E.; Zimmet, P.; Potential metabolic and inflammatory pathways between COVID-19 and new-onset diabetes. *Diabetes. Metab.* **2021**, *47*, 101204.

12. Lodge, S.; Nitschke, P.; Kimhofer, T.; Coudert, J.D.; Begum, S.; Bong, S-H.; Richards, T.; Edgar, D.; Raby, E.; Spraul, M.; Schaefer, H.; Lindon, J.C.; Loo, R.L.; Holmes, E.; Nicholson, J.K. NMR Spectroscopic Windows on the Systemic Effects of SARS-CoV-2 Infection on Plasma Lipoproteins and Metabolites in Relation to Circulating Cytokines. *J Proteome Res.* **2021**, 20, 1382-96.