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Abstract: The alteration of natural land cover to impervious surfaces during development increases
stormwater runoff. Stormwater Control Measures (SCMs) are used to manage water quantity and
enhance water quality by restoring the hydrologic cycle altered by development. Often, SCMs have
an outflow pipe to handle overflows or to manage the release of water detained when infiltration is
not possible. Traditionally, these are static controls (e.g. a small orifice is used to restrict the volume
of outflow), however, these systems can be improved by instituting real-time controls (RTC). RTC
improve the functionality of SCMs by dynamically controlling outflows to adjust to environmental
conditions. A major impediment to the widespread implementation of RTC is the high cost of in-
stallation and operation. This study utilized machine learning methods to develop a forecasting
approach for the implementation of low-cost RTC that were implemented on a programmable gate
of the outlet structure of a multi-stage basin in southeastern Pennsylvania. The goals were to de-
crease the peak flow exiting the basin during rain events, increase the volume of water detained,
decrease the number of overtopping events, maintain healthy vegetation in the basin, and protect
the downstream vegetation from erosion. Multiple popular data science algorithms were evaluated
including multiple linear regression and long short-term memory. These algorithms were used with
a dataset, which consisted of four years of historical sensor data, collected in 5-minute intervals, to
train models to predict water levels to optimize operations. The accuracy of 30 models with three
different methods of handling missing values were compared. A long short-term memory model
configured with a 30-minute lead-time produced the best results. Having an approximate same lag
time of 30 minutes for the contributing drainage area of the SCM provided a sufficient RTC func-
tioning period to improve the performance of the outlet structure.

Keywords: Real-Time control; Stormwater; Control Measure; Low-Cost; Machine Learning; Time-
series; LSTM; Green Infrastructure; Smart water management

1. Introduction

Development results in the transformation of pervious land cover to impervious sur-
faces, which triggers increases in stormwater water runoff during precipitation events.
Both peak flows and the total volume of stormwater runoff increase because of the in-
crease in impervious surfaces. It is also expected that climate change will affect the inten-
sity and accumulation of rainfall, further complicating the ability to design resilient,
adaptable, and long-lasting Stormwater Control Measures (SCMs) [1-5]. SCMs are imple-
mented to improve water quality and manage the increased quantity of stormwater runoff
by restoring the hydrologic cycle disrupted by development [6-9]. The past performance
of an SCM can be used to forecast future behavior; however, further changes might need
to be implemented to consider the effects of climate change [10-12].
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Some of the most frequently used SCMs are green roofs, retention/detention basins,
bio-retention systems, bioswales, rain gardens, and pervious pavement systems. Reten-
tion basins typically capture runoff and maintain a permanent body of water. Detention
basins, which can assist with flood control and peak flow reduction, capture water before
releasing it downstream. Both retention and detention basins improve water quality pri-
marily by slowing the flow of water enough to allow sediments to fall out of suspension
[13,14]. Often contaminants, such as nitrogen and phosphorus, are adsorbed onto sedi-
ments [15-17]. Basins can be drained by several mechanisms: continuous slow release by
restricting the size of the outflow orifice, manually manipulating a release gate, or by re-
motely and dynamically controlling the outflow gate, e.g., real-time controls (RTC) [18-
22]. A fixed outlet opening is the least expensive option, but the flowrate is directly related
to the available water depth in the basin and cannot be controlled [23,24]. Manually ma-
nipulating a gate to release water is not practical for most systems because of the high cost
and availability of labor. RTC allow for the gate to be manipulated automatically to release
the stored water based upon certain triggers to reduce peak flow intensity and increasing
the volume of water that can be detained [25]. In RTC systems, the timing of the opening
and closing of the outlet gate is controlled by a computer program. This program keeps
the gate closed to allow the basin to fill up to the desired water depth, the gate is then
programmed to open and close to regulate the release of water from the basin [26-29]. The
goals of this RTC system were to:

1. Maximize the volume of stormwater captured during storm events by ensuring that
space is available in the basin by releasing water retained by the basin in advance of
an upcoming storm.

2. Increase the residence time of stormwater in the basin, to allow sediment to settle,
with a maximum retention time of two weeks to provide a healthy environment for
the basin's flora and fauna.

Reduce erosion downstream by reducing the peak flowrate.

4. Reduce or eliminate the number of overtopping events.

The first and second goals reveal a tension between increasing the residence time to
enhance water quality through the settlement of sediment and the pollutants attached to
them and allowing the water to drain to prepare the basin for an upcoming rain event and
to avoid negative impacts on vegetation types that are not conducive to continuous satu-
ration [30-35]. Hence, the program for the RTC system adheres to multiple controlling
rules to optimize the performance of the SCM to meet water quantity and quality goals.

The purpose of this study was to optimize the RTC performance of the outlet struc-
ture using machine learning. The machine learning approach consisted of data prepara-
tion, model training, model optimization and model comparison. Open-source Python li-
braries were used to facilitate this process and build the machine learning models. The
initial model that was trained on historical data was a multiple linear regression and the
second was a long short-term memory network. Both multiple linear regression and long
short-term memory have been used by previous researchers as data driven models to pre-
dict streamflow, water table depth, and urban flooding; however, there is a need for fur-
ther investigation on how these techniques can be used to optimize RTC systems for an
individual SCM using rainfall data, which is commonly available [36-43]. An exploratory
data analysis approach was used to analyze the four years of historical data at the research
site to develop a program to optimize basin performance.

2. Site Description

A vegetated multi-stage basin located at the headwaters of the Pennypack Creek on
the College Settlement Camp in Horsham, PA is the focus of this study. The Pennypack
originates at the location of the SCM and flows roughly 24 km southeastward to its junc-
tion with the Delaware River in Philadelphia (Figure 1.a) [44, 45]. This SCM was designed
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to manage a 51-millimeter storm from a 0.22 km2 drainage area, which is a mix of resi-
dential and open field land (Figure 1.b). The contributing watershed is 24% impervious
with a 1.3% slope. The residential area was built before stormwater controls were re-
quired, and this uncontrolled stormwater water flows from the residential area to a swale
that leads to the SCM (Figure 1.c) [46]. In addition to the runoff from the residential area,
water from the open field flows overland directly into the SCM, so there is no single point
of entry.

The SCM has three cells: two retention basins followed by one detention basin with
an overall surface area of 2860 m? (Figure 1.d). Stormwater enters the system and fills up
the first cell which functions as a sedimentation basin. If there is sufficient volume, water
then overflows to the second cell over a 0.61 m high berm. Likewise, if there is sufficient
volume, the water then overflows into the third basin over a 0.23 m berm. During larger
storms all three basins are filled with water and the berms are submerged. The water
moves through all three cells before leaving the SCM via an outlet structure. Final outflow
from the system occurs through a pipe at the end of cell three. This pipe is hydraulically
connected to the outlet gate which was initially outfitted with a manually controlled sys-
tem [47]. The outlet structure was retrofitted in April 2021 with an automated gate. This
retrofit allowed the gate to be programmed and remotely controlled to manage the water
level inside the last cell (cell three) by commanding the gate actuator to open or close the
gate. Both the manual and automated gates were manufactured by Agri-drain. The cells
were planted with native plants that could withstand both wet and dry conditions.

College Settlement ' v, = Stormwater control measure
Camp Site 3 P 3 ’

(c) (d)

Figure 1. Study area, Pennypack Creek Watershed (a), stormwater control measures at College Set-
tlement camp, Horsham, Pennsylvania (b), streamlines within the SCM drainage area (c), the multi-
stage basin shortly after construction before vegetation was established (d).

3. Methodology

This study investigated the performance improvement of an SCM by implementing
an RTC trained on historical system behavior data observed between June 2017 and June
2021. This period was selected based on the installation and calibration of the instrumen-
tation and availability of accurate data. The data were collected in 5-minute intervals.
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Machine learning was used to predict the water level in cell three to improve the RTC
performance (Figure 2). The initial prediction approach focused on predicting the water
level with an algorithm that ingested every precipitation event along with the associated
cell measurements to train the model. Multiple linear regression and long short-term
memory model performance was studied and compared. Data collection, data prepro-
cessing, exploratory data analysis, feature engineering, model training, and model evalu-
ations are discussed in the following sections. Model deployment considerations related
to RTC and SCM performance are provided in the Discussion.
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Figure 2. methodology pipeline investigating the performance improvement of a low-cost real-time
stormwater control system.

3.1. Data Collection

Step 1: A machine learning approach was initiated using data from onsite sensors
within the SCM (OTT Hydromet Compact Bubbler Sensors for water level in each cell)
and the onsite weather station (Figure 3). Downstream of the SCM is an H-flume that is
monitored using an OTT Compact Bubbler Sensor for water level. A calibrated flume
equation uses water level as in input to produce an outflow at 5-minute intervals. The
data collected from these sensors between June 2017 and June 2021 provided attributes
(otherwise known as features in data science) for the initial machine learning analysis (Ta-
ble 1). The weather station was installed in April 2016 to monitor precipitation, tempera-
ture, humidity, solar radiation, wind speed, and barometric pressure. Prior to automation
in April 2021, a robust set of data for each gate condition was obtained from the gate stage
changes. Manipulating the gate changes the water level in cell three because there is a
berm separating cell two from cell three and cell two from cell one (Figure 4).
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Figure 3. College Settlement SCM instrumentation and their location.

Table 1. List of the variables used for exploratory data and predictive analysis

Predictor variables Unit Descriptions
Date Time The date and time in five minutes intervals
Precipitation mm Accumulated rainfall at site’s weather station next to SCM
Temperature Fahrenheit =~ Atmospheric temperature of the weather at site’s weather sta-
tion
Humidity Percent Relative humidity at site’s weather station
BaroPress Inches of Hg Barometric pressure at site’s weather station
ClLevel Meters Water level in cell one
C2Level Meters Water level in cell two
FlumeLevel Meters Water level in the outlet flume
Gate stage Categorical/ The gate stages of being opened or closed
Nominal
Target variable Unit Description
C3Level Meters Water Level in cell three
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Figure 4. A cross section of the multi-stage basin.

3.2. Data Preprocessing
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Step 2: Data preprocessing included examining and cleansing the data based on avail-
able trusted information for each variable. Data examination was initiated by plotting the
variables and calculating statistical summaries for each variable. Temperatures below
freezing and observed clogging at the end of the flume bubbler hose produced erroneous
data that needed to be addressed during the cleansing process. Flume water depth and
outflow gate values were discarded when the temperature was below freezing since sen-
sor malfunctions resulted in null values in all the observations. Detecting inaccurately re-
ported values helped improve model efficiency. The dataset was also revised based on the
upper and lower detection limits for sensors and maximum site capacity. As the result,
incorrect data was converted to null values. After data cleansing, the remaining outliers
accurately reflected the water level since they were directly related to storm conditions;
these data were critical to the dataset used in the prediction models and could not be re-
moved.

3.3. Exploratory Data Analysis

Step 3: Exploratory data analysis is the process of performing initial investigations on
data to discover attributes and characteristics, identify anomalies, and check assumptions
using summary statistics and visualizations. The dataset consisted of two groups: weather
components and water quantities. Accumulated observed rainfall, temperature, relative
humidity, and barometric pressure were part of the weather component. The water level
inside the three cells and the flume, as well as the gate stage fell into the category of water
quantity. To understand the hidden pattern of the variables’ distributions, an initial in-
vestigation was completed focusing on descriptive statistics and extreme value detection.
Table 2 shows the descriptive statistics of all the variables and the values checked with
the possible data range related to this site to characterize the distribution of features. Fig-
ure 5 illustrates the water depth box plots for all four locations (three cells and the flume)
grouped by gate stage. Over the four years of data, the gate had three stages: opened,
closed, and partially opened, where the partially opened stage was only an option before
RTC implementation. After April 2021 the gate was either fully opened or fully closed.
Each of the outliers are represented by a black point. Each single extreme value represents
a storm event that caused the increase in water depth.

Table 2. Descriptive Statistics of the variables

Variable Count Mean Std Min 25% 50% 75% Max
Precipita- 436961 0.01 0.13 0 0 0 0 13.9
tion
Tempera- 419601 53.33 19.73 -5.3 37.8 54.1 69.7 98.4
ture
Humidity 435886 70.00 20.76 0 57 74 88 95
BaroPress 435293 28.87 4.89 0 29.54 29.68 29.83 30.47
ClLevel 434831 0.63 0.08 0.5 0.6 0.62 0.64 1.56
C2Level 435925 0.29 0.23 0 0.19 0.23 0.25 1.69
C3Level 435919 0.22 0.33 0 0 0.1 0.24 1.85

FlumeLevel 432438 0.04 0.05 0 0.02 0.03 0.053 0.65
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Figure 5. Boxplot for water depth grouped by gate stage, cell one (a), cell two (b), cell three (c), and

flume (d).

An analysis of the water levels in the cells by year and month (Figure 6) indicated
that the program should change monthly to improve performance. In this region, more
intense and more frequent rainfall occurs during summer, especially June and July. Thus,
in the summer the gate needs to be open for longer and with more frequency in support
of the goal of maximizing the volume of stormwater controlled. In advance of an upcom-
ing storm the SCM must be emptied to provide capacity to accept stormwater. The timing
and duration of the gate opening, and closing is therefore more critical when storm events

are larger and more frequent.
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Figure 6. Yearly and monthly distribution of the water quantity variables using boxplots; a) water
level in cell one, b) water level in cell two, c) water level in cell three, and d) water level in flume.

3.4. Feature Engineering

Step 4: Following the exploratory data analysis, feature engineering was conducted
on the dataset. This step was required before the training/testing step of the LSTM algo-
rithm as it prepared the dataset for predictive analysis with the best performance and
minimum error. This stage included the typical feature engineering processes such han-
dling missing values and data standardization and normalization. The total number of
rows for this data set was 436,961 for each of the 5-minute interval variables. Among all
the datasets there were 17,360; 1,075; 1,668; 2,130; 1,036; 1,042; and 4,253 undefined (Not a
Number or NaN) values for Temperature, Humidity, BaroPress, ClLevel, C2Level,
C3Level, and FlumeLevel, respectively. Although imputation of null values by mean or
median is a common method for handling missing values, three other methods of drop-
ping, filling (ffill method in Python), and interpolating were used and compared to deter-
mine which method was most appropriate. Imputation of the NaN values during a storm
event, with either mean or median, was not appropriate for these datasets. Dropping any
rows of data with a NaN value, filling NaN values for each period with the last observed
value, and linearly interpolating a replacement for the NaN values for each period be-
tween the first and last observations were the three methods considered in this study.

Through the data standardization process, the values of a variable were rescaled so
that the variable had a mean of 0 and a variance of 1 (or Z-score normalization), which is
identical to the bell-shaped normal distribution curve. Normalization was an important
step for training and testing the neural network algorithm. The long short-term memory,
recurrent neural network model used the gradient descent technique where feature values
affect the step-size of each iteration. Smooth progress towards finding the global minima
in gradient descent required the update of the steps at the same rate for all the feature
values. Standardized variables are a prerequisite of reaching the minima in the gradient
descent process. All the values in the water depth series were normalized to prepare the
training dataset for the long short-term memory model. Equation Error! Reference source
not found. shows the normalization formula.

X - Xmin (1)

Xnorm = X X
max min

The difference between the water depth value and the minimum of the entire water
depth series was divided by the range of the series and provided the standardized data
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which was used in the training and testing process of the LSTM. The entire normalized
water depth series was split into two portions i.e., a training set that was used to train the
model and a testing set that was used to test and evaluate the model. Seventy percent of
the dataset was used for training and 30% was used for testing.

3.5. Model Training

Step 5: After feature engineering and data normalizations, splitting the dataset into
training and testing sets was the next step. LabelEncoder is a normalization method in
Python that converts non-numerical labels (categorical values) to numerical labels so they
can be analyzed through machine learning algorithms. The “Gate Stage” variable, which
had a categorial feature with the values of open, close, and partially opened, was trans-
formed using the LabelEncoder method to a numerical feature with the values of 0, 1, and
2 for the analysis.

3.5.1. Multiple Linear Regression

There was a total of nine variables (Table 1) used in the multiple linear regression
with the target variable being the water level in cell three (which is the cell adjacent to the
RTC system at the outlet structure). The multiple linear regression algorithm was im-
ported from the “sklearn” library in Python and used to perform training. Figure 7 shows
the comparison between predictions and the original (observation) target variable. As one
of the ordinary least squares regressors, linear regression was used to fit a linear model to
all the features with the coefficient (§), where the coefficients were not raised to any power
and did not combine in any term to minimize the residual sum of squares between the
observed and predicted water depths [48] (Equation 2).

Yy =Po+ Prx1 + Boxz + o+ Prxy 2)

All three methods for handling missing values used both Ridge and Lasso (least ab-
solute shrinkage and selection operator) regressions. The difference between these meth-
ods is what is dubbed the penalty, or regularization, term. Ridge regression employs L2 reg-
ularization to penalize the magnitude of the coefficients, which alleviates some of the problems
associated with ordinary least squares [49]. Lasso regression employs L1 regularization and panel-
ized terms based on the sum of the coefficient absolute values [50]. For the Ridge regression,
the L2 regularization was implemented by imposing a penalty equal to the square of the
coefficients' magnitude and minimizing the sum of coefficients’ square (Equation 3). Lasso
regression employs L1 regularization by considering an absolute value of the coefficients
and minimizing the sum of coefficients’ absolute value (Equation 4). The alpha («) coeffi-
cient helped the minimization of these two previous objectives by multiplying the alpha
value by the summation term and controlling the penalty weight represented in Equations 3
and 4 for both regularized methods.

Penalty term: L2 = a Y7, B )

Penalty term: L1 = a X ,|8;l (4)

Alpha is a penalty term which indicates how much constraint will be applied to the
equation. Thus, when the alpha is set to zero, the equation transforms to the linear regres-

sion model, while a higher value of alpha penalizes the optimization function. The best
fitted alpha within the range of 107 to 10 for both Ridge and Lasso was found to be 0.001.
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Figure 7. The comparison between predictions and original target values by MLR.

3.5.2. Long Short-Term Memory

Long short-term memory is a type of recurrent neural network frequently used for
time series forecasting and is often used when variables are dependent on the previous
data in the series [51,52]. Long short-term memory has the ability to capture the long-term
dependencies among the predictor and target variables [53,54]. Long short-term memory
feedback connections are the principal component of processing and recalling long-term
information; this is a unique feature which differentiates it from a traditional multilayer
perceptron method. The multilayer perceptron method is a type of artificial neural net-
work that uses a feed forward method for the prediction process with three main layers
as the input layer, hidden layer, and the output layer [55,56].). This unique feature of the
long short-term memory approach is utilized in processing the time series, e.g., all the
data points for the water level in cell three were treated independently while considering
their relative timing to each other.

In the long short-term memory model, both long-term (c[t-1]) and short-term
memory (h[t-1]) are processed through multiple gates to filter the data flow. Three gates,
the forget gate (f;) (Equation 5), the input gate (iy) (Equation 6), and the output gate (o4)
(Equation 7), control the data processing by writing, discarding, and reading each data
point respectively (Figure 8).
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Long-term data were injected and passed through a filtration process in the forget
gate where the unnecessary information was rejected. Based on the sigmoid activation
filtration, the forget gate filtered out irrelevant data. The range of the activation function
was 0 and 1 showing the gate options as opened or closed and quantifying the importance
of new data entering the cell or not. The input gate regulated the flow of both short-term
and long-term information by filtering out information using binary activation functions
the same way as the forget gate. The information from prior inputs was used by the output
gates to adjust the value of the following hidden state. Based on an understanding of re-
cent inputs, the output gates regulated the value of the next hidden state. All cell opera-
tions are presented in the following equations.

fg = sigmoid (X Vy + he_1 Wy + by) (5)
ig = sigmoid (X,V; + hy_sW; + b;) (6)
04 = sigmoid(X,V, + h,_1W, + b,) (7)
h¢ = 0y © tanh(C,) (8)
C=i,0C+f,0C 9)

¢, = tanh(X,V, + h,_,W, + b,) (10)

The Hadamard product is indicated by the operator © (element-wise multiplication).
The hidden state is connected to the short-term memory by a vector called h, (Equation
8). The cell state is represented by Ct (Equation 9) and linked to the long-term memory.
C, , which is the candidate for the cell state at time lag t, filters and stores effective and
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crucial data (Equation 10). The input gate, forget gate, output gate, and cell state all utilize
use of various weight matrices. Hence, the long short-term memory model implemented
the prefixes W;, Wy, W,, W, , V;, V¢, V,, V,and b;, by, b,, b, as biases and weight ma-
trices through the overall process for the current input, X;, prediction.

Figure 9 compares the predictions and the original water level in the last cell by the
long short-term memory model with different lead times ranging from 5 minutes to 12
hours. As it was expected the smaller the lead time chosen, the more precise the prediction
based on the previous specified step by the long short-term memory model. The larger
values for lead time (12 hours) resulted in more error and lower accuracy of the next step
prediction as opposed to the smallest lead time (5 minutes).
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Figure 9. The comparison between predictions and original target values by the long short-term
memory model with different lead times; a) 12 hours, b) 6 hours, ¢) 3 hours, d) 1 hour, e) 30 minutes,
f) 15 minutes, and g) 5 minutes.

3.6. Model Evaluation

Step 6: Model evaluation consisted of two standard error metrics, R-squared
(R?) and root mean square error (RMSE), to measure the goodness-of-fit of the
regression analysis [55]. Since the squared term magnifies larger errors more than
smaller ones, the RMSE is more sensitive to major errors [57,58]. The water depth
in cell three, which was the target variable, did not deviate significantly from the
average value most of the time during each year. Amplifying the changes in water
depth for storm event conditions played an important role in determining the
functioning requirement of the outlet structure. Rather than comparing predic-
tions and observations, these error metrics provided a quantitative comparison
between different models. The performance of the multiple linear regression and
the long short-term memory model was improved by reducing the time lead. Figure
10 illustrates both R-squared and RMSE results for all 30 models. The best predic-
tive accuracy was associated with the lowest RMSE score and R-squared values
closest to 1. The result of the model evaluation was the selection of the best fitted
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Figure 10. Model performance comparison by a) R-squared, and b) RMSE scores for multiple linear
regression (linear, Ridge, and Lasso) and long short-term memory (LSTM) methods.

4. Results and Discussion

The target variable (water depth in cell three) was predicted using multiple linear
regression and the long short-term memory methods. Different lead times, ranging from
5 minutes to 12 hours, were selected and the long short-term memory model was trained
for each interval and for each method of handling missing values. A total of 30 models
were evaluated including three multiple linear regression methods, having Ridge and
Lasso and seven the long short-term memory methods with various lead times (Figure
10). Each of these 10 models were implemented and trained with three methods for han-
dling missing values. Predicted values were compared to the observed values with two
error metrics. The overall R-squared and RMSE for linear regressions were 0.92 and 0.093,
respectively, but the long short-term memory model produced better fitted models with
higher accuracy and lower errors for all the selected lead times, ranging from 5 minutes
to 12 hours.

Although, dropping NaN values produced more accurate predictions (R squared)
and less error (RMSE) for most of the models, this method resulted in discarding 5%
(22,564) rows of the data. Furthermore, some of the data discarded were from intense
storm events, which need to be included to develop a model that serves the goal of im-
proving the performance of the RTC program for a range of storm sizes. This SCM was
designed to capture a 51-millimeter storm and any accumulated rainfall below the design
capacity was considered as “typical” storm event for this site, and any storm with more
rainfall was considered an intense storm event. Thus, the method of dropping values was
not used because too many values were excluded. Instead, the NaN values were replaced
by interpolated values. This method resulted in more accurate predictions in overall.

Once the long short-term memory model and the method of handling the NaN values
was determined, the effect of changing the lead time was the evaluated. Seven different
lead times, ranging from 5 minutes to 12 hours were considered (Figure 11). Smaller lead
times produced more accurate results as reflected by the R-squared and RMSE values.
However, the improvement in accuracy after 30 minutes is minimal, e.g., the R-squared
values decreased by 0.2%, and the RMSE increased by 2.4%, from 5 minutes to 30 minutes.
In conclusion, using a 30-minute lead time saves significant computational effort with a
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minimal decrease in accuracy. Practically, this lead time also allows for the gate to respond
to changing weather conditions.
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Figure 11. Comparison of the long short-term memory (LSTM) models with varying lead times with
interpolation method for NaN values.

5. Conclusion

Machine learning was effectively used to improve programming for a low-cost RTC
multistage SCM basin in southeastern Pennsylvania. Multiple linear regression and the
long short-term memory models were compared, and the long short-term memory model
was deemed to be superior because of the higher accuracy and lower error of the analyzed
models. Once the long short-term memory model was selected, several methods were
considered for removing NaN values. Linear interpolation was selected over dropping
and filling as this method included the largest amount of data, including intense storm
events. Lastly, different lead times were considered. A lead time of 30 minutes yielded
accurate results with acceptable computational effort. The selected model will control the
gate to meet the four goals of the RTC installation which were to increase the volume
controlled, decrease peak flows, minimize downstream erosion, and optimize residence
time to balance pollutant removal and time of inundation.

Prior to the installation of the RTC, the maximum volume controlled when the gate
was opened was the volume of the first two cells since water could freely exit the third
cell. After the installation of the RTC, the gate could be closed in advance of or during
storm events which increased the controlled volume by retaining water in the third cell.
In addition, during larger storm events, water is able to rise above the berms because they
are below the surface elevation. In this case, the cells are hydraulically connected and the
SCM functions as one large basin (Figure 4). Hence, the controlled volume increased from
approximately 495 m3 to 1600 m? by strategically closing the gate.

The SCM was designed to manage a 50.8-millimeter storm, thus all runoff generated
from smaller storms were controlled by the SCM when the gated was closed, thus decreas-
ing peak flow during storms, which in turn minimized downstream erosion. The resi-
dence time for the captured runoff in the third cell increased from six hours to two weeks
after the RTC was implemented.

The program releases excess runoff to prevent overtopping once there is more than
50.8 mm of accumulated rainfall. Since the RTC was deployed, there were two instances
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of overtopping. Hurricane Ida (September 1+, 2021) was an extreme event with over 203
mm of accumulated rainfall. It is unlikely that overtopping during such an extreme event
can be fully prevented. The second overtopping event occurred on July 7%, 2022, as a result
of a storm with 82.2 mm of rainfall. During this event the gate was not opened soon
enough to provide the required capacity for the incoming runoff during the storm. That
event revealed the need for further examination of the programming of the gate to re-
spond to events of this magnitude. Since that event, the SCM was not experienced an event
of this size, so the effectiveness of the changes has not been tested.

As more data are collected the model will continue to be trained. In the future, the
opening and closing of the gate can be predicted in advance based on the water depth
prediction due to the rainfall forecast. The RTC performance of the automatic outlet struc-
ture can be improved by the long short-term memory model prediction. Up to this point,
the optimization process has focused on the crucial conditions that occur when rainfall
intensity is extremely high. The incorporation of storm intensity will allow for more real-
istic predictions by combining consecutive precipitation events into more significant
storm events. Long short-term memory model predictions allow the outlet structure to
systematically control the gate to be prepared for the next storm event to provide the max-
imum volume capacity to capture incoming stormwater runoff.

Successful prediction models based on the time-series dataset and RTC performance
improvement will provide the opportunity to expand the use of this technology. In addi-
tion, further studies will be performed to determine if the model can effectively control
the gate with fewer inputs. Retrofitting existing statically controlled SCMs with dynamic
controls will improve the resiliency and adaptability of these SCMs.
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