Preprint
Article

Ion Transport and Process of Water Dissociation in Electromembrane System with Bipolar Membrane: Modelling of Symmetrical Case

Altmetrics

Downloads

178

Views

48

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

05 December 2022

Posted:

06 December 2022

You are already at the latest version

Alerts
Abstract
A model is proposed that describes the transfer of ions and the process of water dissociation in a system with a bipolar membrane and adjacent diffusion layers. The model considers the transfer of four types of ions: the cation and anion of salt and the products of water dissociation – hydrogen and hydroxyl ions. To describe the process of water dissociation, a model for accelerating the dissociation reaction with the participation of ionogenic groups of the membrane is adopted. The boundary value problem is solved numerically using COMSOL® Multiphysics 5.5 software. An analysis of the results of a numerical experiment shows that, at least in a symmetric electromembrane system, there is a kinetic limitation of the water dissociation process, apparently associated with the occurrence of water recombination reaction at the of the bipolar region. An interpretation of the entropy factor (β) is given as a characteristic length which shows the possibility of an ion that appeared as a result of the water dissociation reaction to be removed from the reaction zone without participating in recombination reactions.
Keywords: 
Subject: Chemistry and Materials Science  -   Electrochemistry
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated