Preprint
Review

Generative Adversarial Networks: A Brief History and Overview

Altmetrics

Downloads

239

Views

96

Comments

0

This version is not peer-reviewed

Submitted:

09 December 2022

Posted:

12 December 2022

You are already at the latest version

Alerts
Abstract
Over the past decade, research in the field of Deep Learning has brought about novel improvements in image generation and feature learning; one such example being a Generative Adversarial Network. However, these improvements have been coupled with an increasing demand on mathematical literacy and previous knowledge in the field. Therefore, in this literature review, I seek to introduce Generative Adversarial Networks (GANs) to a broader audience by explaining their background and intuition at a more foundational level. I begin by discussing the mathematical background of this architecture, specifically topics in linear algebra and probability theory. I then proceed to introduce GANs in a more theoretical framework, along with some of the literature on GANs, including their architectural improvements and image-generation capabilities. Finally, I cover state-of-the-art image generation through style-based methods, as well as their implications on society.
Keywords: 
Subject: Computer Science and Mathematics  -   Artificial Intelligence and Machine Learning
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated