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Simple Summary: MicroRNAs are small non-coding RNAs that play central role in many molecular 8 
processes, but the exact rules of their activity are not known. In recent years, Deep Learning com- 9 
putational methods have revolutionized many fields, including the microRNA field. While making 10 
accurate predictions is important in biomedical tasks, it is equally important to understand why 11 
models make their predictions. Here, we present a novel interpretation technique for Deep Learning 12 
models that produces human readable visual representation of the knowledge learned by the model. 13 
This representation is useful for understanding model’s decisions and can be used as a proxy for 14 
further interpretation of biological concepts learned by the Deep Learning model. Importantly, the 15 
presented method is not tied to the model or biological domain and can be easily extended. 16 

Abstract: MicroRNAs (miRNAs) are small non-coding RNAs that play a central role in the post- 17 
transcriptional regulation of biological processes. miRNAs regulate transcripts by direct binding 18 
involving the Argonaute protein family. The exact rules of binding are not known, and several in 19 
silico miRNA target prediction methods have been developed to date. Deep Learning has recently 20 
revolutionized miRNA target prediction. However, the higher predictive power comes with de- 21 
creased ability to interpret increasingly complex models. Here, we present a novel interpretation 22 
technique, called attribution sequence alignment, for miRNA target site prediction models that can 23 
interpret such Deep Learning models on a two-dimensional representation of miRNA and putative 24 
target sequence. Our method produces a human readable visual representation of miRNA:target 25 
interactions and can be used as a proxy for further interpretation of biological concepts learned by 26 
the neural network. We demonstrate applications of this method in clustering of experimental data 27 
into binding classes, as well as using the method to narrow down predicted miRNA binding sites 28 
on long transcript sequences. Importantly, the presented method works with any neural network 29 
model trained on a two-dimensional representation of interactions and can be easily extended to 30 
further domains such as protein-protein interactions. 31 

Keywords: miRNA target prediction; CLASH; deep learning; interpretation; visualization 32 
 33 

1. Introduction 34 

MicroRNAs (miRNAs), first discovered in Caenorhabditis elegans in 1993 [1,2] are 35 
an abundant class of small (~17-25 nt long) non-coding RNAs that regulate gene expres- 36 
sion at the post-transcriptional level [3–6]. Mature miRNAs are loaded into the Argonaute 37 
(AGO) protein, and along with other proteins form the miRNA-induced silencing com- 38 
plex (miRISC). miRNAs guide the miRISC, through partial base pairing, to target messen- 39 
ger RNAs (mRNAs) [7,8].  Such targeting may lead to translational repression and dead- 40 
enylation-induced mRNA degradation [9,10]. Several studies have revealed miRNAs in- 41 
volvement in not only normal physiological processes but also pathologies [11,12]. The 42 
abnormal expression or function of miRNAs has been closely related to diverse human 43 
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diseases, such as cancers. miRNAs are thus emerging as novel endogenous bio-targets for 44 
diagnostics and therapeutic treatments [13,14]. Understanding miRNA-involved cellular 45 
processes, including a clear picture of regulatory networks of intracellular miRNAs, is 46 
therefore essential and critical for miRNA-targeted biomedicine [15,16]. The 5’ end of the 47 
miRNA, and especially the hexamer spanning nucleotides 2-8, were very early identified 48 
as important for miRNA target recognition and termed the ‘seed’ region [17]. Target 49 
recognition is primarily achieved via base pairing that involves the seed region [18]; how- 50 
ever, seed pairing is not always sufficient for functional target interactions, and additional 51 
interactions with the miRNA 3′ end may be necessary for specific targeting [19]. Several 52 
experimental methods for identifying miRNA:target site pairs interactions have been de- 53 
veloped, discovering abundant classes of non-seed interactions [20–22]. 54 

Experimental validation of functional miRNA:target pairs is a laborious process and 55 
computational tools can be utilized to simplify it. The first programs for computational 56 
prediction of miRNA targets started to appear in 2003, shortly after it was suggested that 57 
miRNAs are widespread and abundant in cells [4–6]. Each mRNA can contain dozens of 58 
potential miRNA binding sites [23] and target prediction programs identify these binding 59 
sites and combine them into the final prediction on the level of the whole gene. Two main 60 
approaches for binding site identification are the ‘cofold’ and the ‘seed’ heuristics [24]. 61 
The ‘cofold’ heuristic computes the hybridization energy of miRNA and the binding site 62 
sequences [25–27]. It also produces a base pairing pattern of two input sequences, provid- 63 
ing a way to visualize the miRNA:binding site interaction. However, this computation 64 
doesn’t take into account the AGO protein affecting the interaction, resulting in poor pre- 65 
dictive power [28]. The ‘seed’ heuristic uses the relaxed seed region to scan the target for 66 
potential binding sites. This approach outperforms the ‘cofold’ heuristic [28], but it misses 67 
non-seed interactions, amplifying the seed bias. It also lacks the base pairing visualization 68 
feature. Advances in experimental identification of miRNA binding sites [20,29] have en- 69 
abled the rise of computational methods based on Machine Learning (ML) and especially 70 
Deep Learning (DL). DL methods are currently state-of-the-art in the field and are highly 71 
appropriate for uncovering the miRNA binding rules, where clear rules or features are 72 
unknown since they work with the raw data and compute the features themselves [28,30]. 73 

Despite the high accuracy of DL models, these models have several disadvantages 74 
that hinder their usability and interpretability. DL models trained for miRNA target site 75 
prediction often work with the fixed input length, giving the prediction score for the 76 
whole input sequence, even though it is known that miRNAs are only approximately 17- 77 
25nt long, and their target sites potentially even shorter. DL models are also infamous for 78 
being unable to directly interpret what they learn from the data. While making accurate 79 
predictions is important in biomedical tasks, it is equally important to understand the 80 
reason why models make their predictions. Although DL models are not designed to high- 81 
light interpretable relationships in data or to guide the formulation of mechanistic hypoth- 82 
eses, they can nevertheless be interrogated for these purposes a posteriori [31].  83 

In complex models, it is imperative to inspect parameters indirectly by probing the 84 
input-output relationships for each predicted example. Attribution scores, also called fea- 85 
ture importance scores, relevance scores, or contribution scores can be used for this pur- 86 
pose. They highlight the parts of a given input that are most influential for the model 87 
prediction and thereby help to explain why such a prediction was made. Techniques for 88 
obtaining the attribution scores can be divided into two main groups on the basis of 89 
whether they are computed using input perturbations or using backpropagation. Pertur- 90 
bation-based approaches [32–34] systematically change the input features and observe the 91 
difference in the output. For DNA sequence-based models, the induced perturbation can 92 
be, for example, a single-nucleotide substitution [33,35–38] or insertion of a regulatory 93 
motif [39,40]. Backpropagation-based approaches [41–47] propagate an important signal 94 
from an output neuron backward through the layers to the input in one pass. This makes 95 
them more efficient than perturbation methods. While DL models are only as good as the 96 
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data they were trained on, the interpretation technique is constrained by the used repre- 97 
sentation of data. The field of miRNA targeting is generally not interested in the specific 98 
sequence, but rather in the interactions between two sequences, namely the miRNA and 99 
target RNA. For the interpretation technique to point to the important interaction, this 100 
information has to be encoded in the data. 101 

In this paper, we propose a novel interpretation technique for the miRNA target pre- 102 
diction models working with the 2D-binding representation of input sequences. The 2D- 103 
binding representation encodes interactions between sequences, allowing the interpreta- 104 
tion technique to work in the context of interactions, not sequences. This interpretation 105 
provides an understandable visualization of the miRNA:target site interaction in the form 106 
of base pairing with the importance scores for each position. It can be further used as a 107 
proxy for studying the biological concepts learned by the neural network. We present 108 
several applications, such as identifying classes of miRNA binding activities (including 109 
seed and non-seed binding) and enhancing the target site predictions by narrowing it to 110 
the length of miRNA. All the code and data are available at https://github.com/ka- 111 
tarinagresova/DeepExperiment. 112 

2. Materials and Methods 113 

2.1. Datasets and models 114 

MiRNA:target site interaction datasets introduced in Klimentova et al., 2022 [28] 115 
were retrieved from the GitHub repository (https://github.com/ML-Bioinfo- 116 
CEITEC/miRBind, Date accessed: 9.12.2022). Positive miRNA:target interactions origi- 117 
nates from the Helwak et al., 2013 CLASH experiment [29]. Klimentova et al., 2022 stand- 118 
ardized the length of miRNA sequences to 20 nt, anchored by the 5’ end of the miRNA. 119 
The length of target sequences was standardized to 50 nt by centering and either clipping 120 
the sequence or extending it using the hyb reference [48]. These processed miRNA:target 121 
pairs were called the positive dataset. As explained in Klimentova et al., 2022, the negative 122 
set was constructed by matching real target sequences with random miRNAs from the 123 
same experiment excluding the miRNA:target pairs from the positive set. 124 

The trained models introduced in Klimentova et al., 2022 [28], namely miRBind and 125 
CNN_model_1_20_optimized, were downloaded from the GitHub repository 126 
(https://github.com/ML-Bioinfo-CEITEC/miRBind, Date accessed: 9.12.2022). Authors 127 
used a modified version of ResNet [49] as a miRBind architecture and a convolutional 128 
neural network architecture [50] for the CNN_model_1_20_optimized model. Both mod- 129 
els use a two-dimensional representation of miRNA and the putative target site, in which 130 
any Watson-Crick binding nucleotide pair is represented by 1, and any non-binding pair 131 
by 0, as an input. For the miRNA of length 20 nt and target site of length 50 nt, the result 132 
is a 50x20 two-dimensional matrix of 1s and 0s (Figure 1A). 133 

2.2. Attribution scores 134 

The Shapley value [51] is a widely used method for explaining the outputs of a model 135 
and understanding the relationship between the features of the data and the model's pre- 136 
dictions. By assuming that each feature is a "player" in a game where the prediction is the 137 
“payout”, the Shapley value provides a fair way to distribute the payout among the fea- 138 
tures. In this paper, we utilized the SHAP explanation method [47] that computes Shapley 139 
values with one innovation: the Shapley value explanation is represented as an additive 140 
feature attribution method, a linear model. 141 

The SHAP explanation method requires a model, a data sample, and a set of back- 142 
ground samples as input parameters. In this study, we selected 100 background samples 143 
to be optimal in terms of computational time and variation of importance scores (Figure 144 
S1). The output of the SHAP method is a matrix with the same shape as the input data 145 
sample. In this study, we used samples in the format of a 50x20 2D matrix of 1s and 0s (as 146 
proposed by Klimentová et al., 2022 [28], Figure 1A), therefore the output is a 50x20 matrix 147 

https://github.com/katarinagresova/DeepExperiment
https://github.com/katarinagresova/DeepExperiment
https://github.com/ML-Bioinfo-CEITEC/miRBind
https://github.com/ML-Bioinfo-CEITEC/miRBind
https://github.com/ML-Bioinfo-CEITEC/miRBind
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of SHAP values for each pixel in the input sample (Figure 1B). For the positive miRNA:tar- 148 
get pair, the input pixels with assigned positive SHAP value increases the model’s prob- 149 
ability to classify the input as positive and the negative value decreases the probability. 150 

We used two implementations of the SHAP method - DeepExplainer and Gradi- 151 
entExplainer - both available at the shap python package 152 
(https://github.com/slundberg/shap, Date accessed: 9.12.2022). DeepExplainer implemen- 153 
tation builds on a connection with DeepLIFT [45], while GradientExplainer builds on 154 
ideas from Integrated Gradients [44] and SmoothGrad [52]. 155 

2.3. Attribution sequence alignment 156 

The computation of attribution sequence alignment is based on two steps: (1) forward 157 
pass, where the dynamic programming matrix is filled (Algorithm 1), and (2) backward 158 
pass, where sequence alignment is computed by finding the highest-scoring path in the 159 
dynamic programming matrix. Parameters for the forward pass are the scoring matrix 160 
and opening and elongation penalty. The attribution scores for a given input (computed 161 
using the method described in section 2.2.) are used as a scoring matrix. Opening and 162 
elongation penalty score is computed for each alignment separately, based on the values 163 
in the scoring matrix. The opening penalty is set to the 99th percentile score and elonga- 164 
tion penalty to the 90th percentile score. This setting is highly incentivizing mismatches 165 
over insertions or deletions and longer bulges over shorter ones. The backward pass is 166 
computed the same way as in the original algorithm by Smith and Waterman [53]. 167 

 168 
Input: gene and miRNA sequences of length M and N, respectively; scoring matrix of shape MxN; 169 
opening and elongation penalty score. 170 
Output: Dynamic programming matrix DP. 171 
1. Initialization: 172 
2.   reverse the order of gene and miRNA to match the scoring matrix 173 
3.   remove negative scores from the score matrix 174 
4.   swap sign of scores for the mismatch positions in the scoring matrix 175 
5.   add the first row and column of zeros to the scoring matrix 176 
6.   initialize the first row and column of the DP matrix with zeros 177 
7. Dynamic programming: 178 
8.   if last row or column then 179 
9.       penalty = 0 180 
10.   else if is opening gap then 181 
11.       penalty = opening_penalty 182 
12.   else 183 
13.       penalty = elonging_penalty 184 
14.   end if 185 
15.   for i: 1 to M do 186 
16.       for j: 1 to N do 187 
17.           DPi,j = max(DPi,j-1 - penalty,  188 
                DPi-1,j-1 + score_matrixi,j,  189 
                DPi-1,j - penalty) 190 
18.       end for 191 
19.   end for 192 

Algorithm 1. Algorithm for computing the dynamic programming matrix for modified semi-global 193 
sequence alignment. 194 

The outputs of the attribution sequence alignment algorithm are three sequences 195 
with the same length: 1) aligned miRNA sequence, 2) aligned binding site sequence, and 196 
3) sequence of attribution scores for each position in the alignment. The first two se- 197 
quences are obtained from the backward pass of the dynamic programming matrix and 198 
are describing the interaction base by base. The third part of the output is obtained from 199 

https://github.com/slundberg/shap
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the interpretation matrix and describes the importance of each position for the interaction. 200 
For each aligned base pair, the corresponding score is taken from the interpretation ma- 201 
trix, and for the “deletion” or “insertion” the score is set to zero. These outputs can be 202 
used to produce a biologically relevant representation of the interaction between the 203 
miRNA and the binding site, as captured by the model. 204 

2.4. Importance scores for miR-7 and miR-278 binding 205 

In vivo experimental mutagenesis data were extracted from Figure 1 from Brennecke 206 
et al., 2005 [54]. There are two mRNA:target site pairs with the length of 23 and 22 nt, 207 
respectively. We used the first 20 nt of miRNA sequences (starting from the 5’) and the 208 
whole target site sequences. Relative reporter activity values for mismatched positions 209 
were manually extracted from Figure 1C from Brennecke et al., 2005 and are shown in 210 
supplementary Table S2. This data contains values for positions 1 to 10 and one aggre- 211 
gated value for the 3’ end. 212 

Importance scores for miR-7 and miR-278 binding sites were computed using the 213 
miRBind model, Deep SHAP interpretation method with 100 background samples, and 214 
attribution sequence alignment. We computed importance scores in 10 runs with different 215 
background samples, demonstrating the variability of the output. The importance scores 216 
starting from position 11 were averaged into one importance score representing the ag- 217 
gregated value for the 3’ end. 218 

In-Silico Mutagenesis (ISM) is a common interpretation technique from the group of 219 
perturbation-based approaches [35,36,39,55–57]. ISM is an alternate feature attribution ap- 220 
proach that involves making systematic mutations to characters in an input sequence and 221 
computing the change in the model’s output due to each mutation. It is the computational 222 
analog of saturation mutagenesis experiments [58] that are commonly used to estimate 223 
the functional importance of each character in a sequence of interest based on its effect 224 
size of mutations at each position on some functional read-out, making it a good candidate 225 
for obtaining position importance scores for miR-7 and miR-278 binding sites. We con- 226 
ducted two versions of the ISM interpretation, termed here ISM Full and ISM Brennecke. 227 
In ISM Full, we systematically mutated each nucleotide in the input miRNA, changing it 228 
to three other possible nucleotides, and observed the model’s output. We also computed 229 
the model’s prediction for the original miRNA sequence and used it as a base value from 230 
which we subtracted the average of the model’s outputs for mutated inputs, resulting in 231 
an importance score for a given position. In ISM Brennecke, we performed only the mu- 232 
tations as described in Brennecke et al., 2005 Figure 1 and we used changes in the model’s 233 
outputs as importance scores. 234 

2.5. Narrowing peaks 235 

Artificial data with planted seeds were constructed by inserting a seed sequence into 236 
a background gene. A background gene was created by generating a random RNA se- 237 
quence in which all four bases occurred with equal probability. The first miRNA from the 238 
Klimentova et al., 2022 evaluation dataset was selected and the 10nt seed region starting 239 
at the second position was extracted. We calculated the reverse complement of the ex- 240 
tracted seed sequence and planted it into specified positions in the gene to create this ar- 241 
tificial data. Artificial data with stitched binding sites were constructed from the binding 242 
site from the Klimentova et al., 2022 evaluation dataset. We selected the most abundant 243 
miRNA sequence and its positive and negative target sequences. Artificial target gene se- 244 
quence was obtained by combining the positive and negative binding site of a given 245 
miRNA.  246 

To obtain the model’s output peaks, we used the miRBind model to scan the gene 247 
sequence using a 50nt window with a step size of 1nt. For each position, we transformed 248 
the 50nt gene window sequence and the miRNA sequence into a 2D-binding matrix and 249 
fed it through the miRBind model. The obtained score was added to the overall score for 250 
all positions in the current window. After computation, the overall score was normalized 251 
in each position by the number of output scores that were added to that position. 252 
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To obtain peaks using the interpretation of the miRBind model, we scanned the gene 253 
sequence in the same manner as in the previous method. For each position, we computed 254 
the model's output score and, if the score was higher than 0.5, we interpreted the model 255 
at that position using DeepExplainer, obtaining an attribution matrix with a size of 50 256 
times length of miRNA. Each position in the attribution matrix was scaled by the model's 257 
output and added to the corresponding position in the overall attribution matrix. The 258 
overall attribution matrix had a size of the length of the gene times the length of the 259 
miRNA. To identify peaks from this matrix, for each position in the gene, we took the 260 
maximum value in the corresponding column. 261 

 To compute the alignment of miRNA with its binding site, we first smoothed the 262 
maximum score obtained from the overall attribution matrix and identified the local max- 263 
ima. The window of size 50nt around the local maxima was extracted from the gene se- 264 
quence and the overall attribution matrix. Attribution sequence alignment method was 265 
used to compute the alignment and per-nucleotide importance scores in the selected win- 266 
dow. 267 

 268 

Figure 1. From the classical neural network to the biologically relevant representation. (a) Outline 269 
of a DL model workflow. (b) Interpretation method produces attribution scores for each pixel in the 270 
input. (c) Using the attribution scores to compute the interaction between sequences in the form of 271 
sequence alignment. In addition, we can compute the importance of each position for the interaction 272 
and use clustering to obtain interaction classes. 273 

3. Results 274 

3.1. Using attribution scores to interpret DL models of miRNA:target prediction 275 

The main aim of the presented method is the interpretation of DL models which work 276 
on 2D base pairing representations of miRNA:target site interactions (Figure 1A). Previ- 277 
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ously, we have shown that such models outperform traditional ‘seed’ or ‘cofold’ ap- 278 
proaches [28]. Given as input such a trained model on 2D miRNA:target data, we use 279 
DeepExplainer [47] to calculate attribution scores for each potential interaction on the 2D 280 
matrix (Figure 1B). We use principles of dynamic programming to calculate an optimal 281 
path through the binding and attribution matrices, which is in turn used to align the two 282 
sequences in a way informed by the attribution scores (Figure 1C). This alignment is in- 283 
terpreting what the trained model has learned, which takes into account several factors 284 
such as the interaction between the miRNA, the target site, and the AGO protein. Tradi- 285 
tional ‘cofold’ methods lack this information, and although they can produce a similar 286 
alignment, their predictive value is lower than that of the DL models [28]. In turn, this 287 
attribution sequence alignment is used to cluster putative binding sites into categories 288 
based on their predicted mode of binding (Figure 1C). 289 

3.2. Attribution scores closely correlate to in vivo experimental data 290 

The interpretation method proposed here can be used to produce per nucleotide im- 291 
portance scores to miRNA sequences within a miRNA:target site interaction. Brennecke 292 
et al., 2005 [54] performed an in vivo experiment, in which they systematically introduced 293 
single nucleotide changes in a miRNA target site in order to produce mismatches at dif- 294 
ferent positions of the miRNA:target site duplex. They then observed changes in the re- 295 
pression of the target gene for two miRNA:target site pairs in Drosophila (Figure 2). They 296 
reported that mutating specific single nucleotides conferred strong reduction in the ability 297 
of the miRNA to regulate its target. For mir-7 positions 2 to 8 were identified as most 298 
important, and for miR-278 positions 2-7 from the miRNA 5’ end. 299 

 300 

Figure 2. Comparison of relative reporter activity and importance score of Drosophila's miR-7 and 301 
miR-278. Values from Brennecke et al., 2005 comes from in vivo mutagenesis experiments. Our val- 302 
ues are computed by the attribution sequence alignment method from an interpretation of the 303 
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miRBind model trained on Helwak et al., 2013 Human Ago1 CLASH data. The correlation coeffi- 304 
cient between relative reporter activity and importance score was computed using the Pearson cor- 305 
relation coefficient. 306 

We used as input the miRBind model, which has been trained on Human AGO1 307 
CLASH data, and we implemented three different interpretation methods (a) our attribu- 308 
tion sequence alignment, (b) ISM Brennecke and (c) ISM Full (see Methods for details). 309 
We computed the importance of each position on the miRNA for the same two 310 
miRNA:target pairs as in Brennecke et al., 2005. Importance scores from our attribution 311 
sequence alignment were largely consistent with Brennecke et al’s in vivo assay results 312 
(Figure 2). Notably, we see that the diminished importance of nucleotide 1 and the 3’ end 313 
are correctly interpreted by our method, corresponding to the experimental result. The 314 
interpretation via our method is only as good as the DL model used as input. Any simi- 315 
larities or discrepancies to the experimental data, represent what the DL model has 316 
learned about the AGO:miRNA:target interaction. Using our method, we can better eval- 317 
uate the consistency of any DL model to this ground truth. 318 

To compare the three interpretation methods, we computed the Pearson correlation 319 
coefficient between the experimental results and the importance scores calculated with 320 
each method based on the same DL model. Table 1 shows that results produced by our 321 
method positively correlate with the experimental results, while results computed by any 322 
of the in-silico mutagenesis (ISM) methods correlate less positively, or even negatively. 323 

Table 1. Comparison of experimentally obtained relative reporter activity values with values from 324 
three computational methods - our attribution sequence alignment, ISM Brennecke and ISM Full - 325 
using the Pearson correlation coefficient. 326 

 Our ISM Brennecke ISM Full 
mir-7 correlation 0.59 -0.09 -0.26 

mir-278 correlation 0.85 NA 0.24 
 327 

3.3. Identifying interaction classes in CLASH data 328 

In the seminal CLASH paper [29] miRNA:target site interactions were clustered into 329 
interaction classes based on a per nucleotide score derived from ‘cofold’ analysis. Five 330 
classes with different binding profiles were produced, using k-means clustering (k=5). 331 
Three of these classes (I–III) featured binding between the miRNA seed region and the 332 
target but differed in the presence and positioning of additional base-paired nucleotides 333 
within the miRNA. In class IV, binding was limited to a region located in the middle and 334 
3′ end of the miRNA, denoting non-seed interactions. Class V showed distributed or less 335 
stable base pairing without either strong seed or 3’ binding. 336 

We have used the attribution scores produced by our method to reevaluate the rules 337 
of Ago1:miRNA:target binding learned by miRBind from the CLASH dataset. We calcu- 338 
lated attribution scores for all CLASH interactions, based on the miRBind model, and then 339 
used k-means clustering (k=5) to reveal five classes of interactions with distinct base-pair- 340 
ing patterns (Figure 3). Class I corresponded to the classical seed binding, while class II 341 
represented more relaxed seed binding. Classes III and IV showed binding in the middle 342 
and 3′ end of the miRNA, respectively, while class V showed a distributed base pairing 343 
pattern. CLASH interactions were almost uniformly distributed among classes, with 4641 344 
in class I, 4050 in class II, 3403 in class III, 3263 in class IV, and 3156 in class V. 345 

3.4. Attribution scores narrow down binding site location prediction 346 

Target site prediction models such as miRBind are able to score miRNA:target site 347 
interactions of specific short lengths. However, the application of such methods on 348 
miRNA:target gene prediction is predicated on the ability to ‘scan’ whole transcripts or 349 
other long RNA sequences. Our method can be used to make such ‘scanning’ more pre- 350 
cise, by narrowing down binding site location. 351 
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 352 

Figure 3. Classes of miRNA:binding site interactions with distinct base-pairing patterns computed 353 
for the Helwak et al., 2013 CLASH data using the miRBind model, DeepExplainer interpretation 354 
technique and our attribution sequence alignment method. 355 

As a proof of concept, we have produced artificial RNA sequences of various lengths, 356 
with two perfect 10nt miRNA seeds positioned at various distances between them. As a 357 
baseline, we have used miRBind to ‘scan’ the sequence using a moving window technique 358 
(see Methods for details). We also used our method to calculate attribution scores per nu- 359 
cleotide for the same sequences. Figure 4 shows the prediction made by each of the meth- 360 
ods, along with the ground truth. The peaks produced by using miRBind scores are in- 361 
deed covering the seed areas, but they are much wider than the actual binding sites. The 362 
peaks are not centered around the seeds and neither are the local maxima corresponding 363 
to the seed areas. In contrast, the peaks produced by using the attribution score point di- 364 
rectly to, and are more tightly distributed around, the seed area. 365 

Further, the attribution score method can be even used to distinguish binding sites 366 
placed very closely together, for which miRBind model scores would produce only a sin- 367 
gle wide peak (Figure 5). We compared these two models on a dataset in which seeds 368 
were placed at the exact distances, from 15nt to 50nt apart. The attribution score model 369 
distinguishes the peaks even when the distance becomes as short as 15nt (Figure S3). 370 

To verify the results on more realistic data, we produced a sequence constructed from 371 
positive and negative binding sites of a specific miRNA derived from CLASH data. Again, 372 
the miRBind model’s output scores are able to roughly point to the positions of positive 373 
binding sites, but these peaks are wide, spanning more than 50nt. When we compute the 374 
attribution score and the attribution sequence alignment, we are able to point to the exact 375 
position of miRNA binding. Moreover, we obtain the importance score for each position 376 
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in the binding site and visualization of the interaction between miRNA and the binding 377 
site in the form of a sequence alignment (Figure 6). 378 

 379 

Figure 4. Scoring the positions in an artificial gene sequence to find areas with binding sites. The 380 
ground truth binding sites are shown in gray, with emphasis on the perfect 10nt seed. The scoring 381 
obtained by scanning the gene with the miRBind model is shown in blue. The scoring obtained by 382 
scanning the gene with the miRBind model and interpreting it using the DeepExplainer are shown 383 
in orange. 384 

 385 

Figure 5. Scoring the positions in an artificial gene sequence to find areas with binding sites. The 386 
ground truth binding sites are shown in gray, with emphasis on the perfect 10nt seed. The distance 387 
between starts of seeds is 25 nucleotides. The scoring obtained by scanning the gene with the 388 
miRBind model is shown in blue. The scoring obtained by scanning the gene with the miRBind 389 
model and interpreting it using the DeepExplainer are shown in orange. 390 

3.5. Versatility of the method 391 

All previous results were produced using the miRBind trained model and the Deep- 392 
Explainer interpretation method. However, our method is not tied to a specific model or 393 
interpretation method. To demonstrate this versatility, we used a different model 394 
(CNN_model_1_20_optimized) and a different interpretation method (GradientEx- 395 
plainer). We computed position importance scores for a single miRNA:binding site pair 396 
using different combinations of methods as inputs. DeepExplainer could not work with 397 
the CNN model, due to an implementation problem in its code. This highlights the im- 398 
portance of having a versatile method that can use different DL models, and interpretation 399 
methods. Our attribution sequence alignment method was able to uncover the underlying 400 
information learned by both models and show that position importance scores are similar 401 
in all cases (Figure 7). Corresponding visualizations in the form of sequence alignments 402 
are shown in supplementary Figure S4. 403 
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Figure 6. Scanning the gene for potential binding sites using the model’s output score compared to 405 
using our attribution sequence alignment. Model’s output scores (top row) point only. to the general 406 
area of binding sites. Attribution sequence alignment scores (bottom row) point to the specific bind- 407 
ing sites, provide importance scores for each position in binding and visualize the interaction be- 408 
tween miRNA and binding site as a sequence alignment. 409 

 410 

Figure 7. Comparison of position importance scores computed using the miRBind model or CNN 411 
model, and using the GradientExplainer or DeepExplainer interpretation technique. Results with 412 
CNN model and DeepExplainer technique are omitted due to the computational problem in its im- 413 
plementation. 414 

4. Discussion 415 

Computational models, especially deep learning models, have become the state of 416 
the art in classification of miRNA:target pairs. It is becoming increasingly important to be 417 
able to understand the reasoning behind their predictions. The use of a 2D-binding repre- 418 
sentation to encode interactions between two sequences has been a crucial innovation in 419 
miRNA:target prediction. Interpretation techniques can use this 2D-binding representa- 420 
tion to produce maps of areas within the input that contribute positively or negatively to 421 
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a model's decision. However, it can be challenging to identify important biological fea- 422 
tures within this type of representation. For a DL model to be able to advance biological 423 
knowledge, a biologically relevant representation similar to sequence alignment is neces- 424 
sary. In this paper we introduce a novel interpretation technique called attribution se- 425 
quence alignment which combines the principles of dynamic programming for semi- 426 
global sequence alignment with attribution scores obtained from interpreting a neural 427 
network trained on a 2D-binding representation. This method allows us to evaluate the 428 
importance of each individual nucleotide on a miRNA binding site, providing a biologi- 429 
cally relevant representation that can be visualized as a sequence alignment. 430 

Using this method, we can interpret DL models trained on miRNA:target site inter- 431 
action. Our results correlate with in vivo experimental results and reveal interesting 432 
trends, such as the lower importance of 3' nucleotides compared to the seed area and the 433 
low importance of the first nucleotide. However, it should be noted that these scores are 434 
specific to the model used and may vary with different models. Attribution sequence 435 
alignment scores can be a useful tool for understanding and evaluating the performance 436 
of a model, but they should not be considered a validation of the model itself. Further in 437 
vivo experimental results from systematically mutating miRNA target sites would be use- 438 
ful to calibrate interpretation methods such as ours more thoroughly. 439 

The first step in any miRNA target prediction program is transcriptome wide scan- 440 
ning for putative miRNA binding sites. These putative miRNA binding sites are further 441 
combined into a final prediction for each transcript. Using current miRNA:target site tools 442 
for transcriptome scanning are based on the DL giving a single score to a fixed size moving 443 
window (50 nt in the case of miRBind model [28] resulting in wide peaks. We demonstrate 444 
that attribution sequence alignment can be used for narrowing these peaks when scanning 445 
for binding sites by computing the miRNA:target site attribution sequence alignment and 446 
assigning per nucleotide importance scores to a long sequence. Our method can provide 447 
target prediction programs with more specific and detailed information about each po- 448 
tential binding site, allowing it to leverage more information from the experimental data 449 
that has been encoded in the trained DL model. 450 

The attribution sequence alignment method can be applied to the field of miRNA 451 
binding site prediction, as demonstrated by the miRBind model. However, it is not limited 452 
to this specific model, interpretation technique, or field. It could potentially be used for 453 
any neural network that has been trained on a 2D-binding representation of sequences, 454 
and any interpretation technique that produces per-pixel attribution scores. Additionally, 455 
with some modifications, it can easily be extended to other domains where input se- 456 
quences can be represented by a 2D-interaction matrix, such as protein-protein or protein- 457 
DNA interactions. Importantly, attribution sequence alignment considers only the scores 458 
from the interpretation matrix, without imposing any additional constraints on the align- 459 
ment. This allows for greater flexibility and adaptability in its use. 460 

5. Conclusions 461 

In conclusion, we have introduced a DL model interpretation method that can extract 462 
biologically relevant information from trained miRNA:target site prediction DL models. 463 
We have demonstrated that this interpretation method can be used to interpret such mod- 464 
els, as well as to narrow down their predictions on long target sequences. We believe that 465 
our method can facilitate the use of DL models for miRNA:target gene prediction, as well 466 
as the extraction of biological insight from DL models. 467 

Supplementary Materials: The following supporting information can be downloaded at: 468 
www.mdpi.com/xxx/s1, Figure S1: Comparison of the effect of the number of background samples 469 
on computational time and variation of importance score.; Table S2: Manually extracted values from 470 
Figure 1C from Brennecke et al., 2005.; Figure S3: Scoring the positions in an artificial gene sequence 471 
to find areas with binding sites.; Figure S4: Interaction between miRNA and binding site visualize 472 
as sequence alignment. 473 
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