Preprint
Article

Effect of Recrystallization Behavior of AZ31 Magnesium Alloy on Damping Capacity

Altmetrics

Downloads

133

Views

41

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

28 December 2022

Posted:

29 December 2022

You are already at the latest version

Alerts
Abstract
For a wide industrial application of magnesium alloys, a method for imparting high damping properties while maintaining mechanical properties is required. Controlling the crystallographic texture seems to be useful, because dislocations are known to have a significant influence on the damping characteristics of magnesium alloys. Therefore, the effect of twinning and annealing, which can affect to the recrystallization were investigated in this study. An AZ31 alloy was hot rolled at 673K with a reduction ratio of 10 % and 50 %, and then annealed at 673K and 723K for 0.5, 1, 2, and 3H respectively. SEM-EBSD was used to examine the microstructure and texture. In addition, each specimen’s hardness and internal friction were contemporarily measured. As a result, hot rolling produced tensile twins and their fraction increased with internal friction when the reduction ratio increased. Due to annealing, a discontinuous type of static recrystallization occurred within the twinning grains, and was highly activated along with the increasing annealing temperature and the fraction of twinning. In the samples annealed at 723K, the internal friction continuously increased over the annealing time, whereas in the samples annealed at 673K, the decrease in dislocation density was delayed while, the internal friction showed a relatively low value.
Keywords: 
Subject: Chemistry and Materials Science  -   Metals, Alloys and Metallurgy
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated