
Article

Not peer-reviewed version

Versatile DMA Engine for High-

Energy Physics Data Acquisition

Implemented with High-Level

Synthesis

Wojciech Marek Zabołotny

*

Posted Date: 19 January 2023

doi: 10.20944/preprints202301.0328.v2

Keywords: FPGA; DMA; HEP; DAQ; HLS

Preprints.org is a free multidiscipline platform providing preprint service that

is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

https://sciprofiles.com/profile/1780127

Article

Versatile DMA Engine for High-Energy Physics Data
Acquisition Implemented with High-Level Synthesis

Wojciech M. Zabolotny

Warsaw University of Technology, Faculty of Electronics and Information Technology, Institute of Electronic

Systems, Nowowiejska 15/19, 00-65 Warszawa, Poland; wojciech.zabolotny@pw.edu.pl

Abstract: FPGA-based cards for data concentration and readout are often used in data acquisition

(DAQ) systems for high-energy physics experiments. The DMA engines implemented in FPGA

enable efficient data transfer to the processing system’s memory. This paper presents a versatile

DMA engine. It may be used in systems with FPGA-equipped PCIe boards hosted in a server and

MPSoC-based systems with programmable logic connected directly to the AXI system bus. The core

part of the engine is implemented in HLS to simplify further development and modifications. The

design is modular and may be easily integrated with the user’s DAQ logic, assuming it delivers the

data via a standard AXI-Stream interface. The engine and accompanying software are designed with

flexibility in mind. They offer a simple single-packet mode for debugging and a high-performance

multi-packet mode fully utilizing the computational power of the processing system. The number of

used DAQ cards and the amount of memory used for the DMA buffer may be modified in runtime

without rebooting the system. That is particularly useful in the development and test setups. The

paper also presents the development and testing methodology. The whole design is open-source and

available in public repositories.

Keywords: FPGA; DMA; HEP; DAQ; HLS

1. Introduction

In Data Acquisition Systems (DAQ) for High Energy Physics (HEP) experiments, the significant

volume of data from the Front End Electronics (FEE) must be collected, submitted to preprocessing,

and transferred to the computer systems or whole grids responsible for final processing and archiving.

Connection to the FEE often uses non-standard high-speed interfaces1. Data preprocessing usually

requires highly parallel and fast but simple calculations on data received from numerous measurement

channels.

Therefore, this section of DAQ is usually implemented using the Field Programmable Gate Array

(FPGA) chips, which give the additional advantageous possibility of upgrading the communication

and processing algorithms throughout the whole experiment’s lifetime.

Finally, the preprocessed data must be concentrated and written to the computer system’s memory

in a form enabling efficient final processing. That task should be accomplished via Direct Memory

Access (DMA) to avoid wasting CPU time on simple data transfer. If the FPGA responsible for reception

and processing data has direct access to the system bus of the computer system, implementing the

necessary DMA engine in that FPGA enables efficient data handling and flexibility regarding the

layout of data stored in the memory.

The data acquisition in HEP experiments may run continuously for a long time (many hours or

even days). Therefore the DMA engine must be capable of performing the acquisition in the continuous

mode. The memory buffer for storing the acquired data must be a circular buffer, and protection

against buffer overflow must be implemented.

1 Examples of such non-standard high-speed interfaces may be GBT [1,2], and lpGBT [3,4] links widely used for connecting
FEE in CERN experiments.

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 January 2023 doi:10.20944/preprints202301.0328.v2

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.

Peer-reviewed version available at Electronics 2023, 12, 883; doi:10.3390/electronics12040883

https://orcid.org/0000-0002-6833-4846
https://doi.org/10.20944/preprints202301.0328.v2
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics12040883

2 of 29

However, implementing complex algorithms in FPGA is a relatively complex task requiring

highly skilled engineers. Full use of the flexibility provided by FPGA can be significantly facilitated if

programmers without this expertise can be involved in creating or modifying such algorithms. That

may be possible with High-Level Synthesis (HLS) – a technology enabling automated conversion of

algorithms written in C/C++ into an FPGA implementation. HLS is successfully and widely used

in data processing but less often in designing control blocks and hardware interfaces. This paper

describes using HLS to implement a simple yet efficient and flexible DMA engine for HEP-oriented

DAQ systems.

1.1. Hardware Platform Considerations

Enabling an FPGA to fully control the DMA data transfer to the host computer’s memory requires

a tight connection between FPGA and the system bus. Currently, there are two hardware solutions

commonly used for that. The first is used in SoC (System on Chip) or MPSoC (Multi Processor System

on Chip) chips. The programmable logic (PL) is connected with the processing system (PS) in the same

integrated circuit via one or more AXI buses. The digital system implemented in PL may contain not

only AXI Slaves but also AXI Masters, enabling the creation of the DMA engine.

The second solution uses FPGA-based extension cards connected to the computer system’s

PCI-Express (PCIe) interface. In this solution, like in the previous one, the FPGA may implement not

only bus slaves but also bus masters, which can be used as a DMA engine.

In an MPSoC or SoC system, the DMA engine directly controls the system’s AXI bus. In the

PCIe-based solution, the AXI bus is provided by the AXI-PCIe bridge [5,6]. That bridge translates the

transactions performed by the DMA engine on the AXI bus into the equivalent transactions on the

host’s PCIe bus. Thanks to that, both hardware configurations may work with the same DMA engine.

The next necessary design choice is the selection of the input interface for the DMA engine. For

further processing in the computer system, it is beneficial that the preprocessed and concentrated data

are split into smaller portions (packets) supplemented with additional metadata, which may describe

their origin, time of acquisition, and other information necessary for the particular experiment. A

natural solution for transmitting data structured in that way inside of FPGA is the AXI-Stream [7]

interface.

The concept of a versatile DMA engine based on the above considerations is shown in Figure 1.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 January 2023 doi:10.20944/preprints202301.0328.v2

Peer-reviewed version available at Electronics 2023, 12, 883; doi:10.3390/electronics12040883

https://doi.org/10.20944/preprints202301.0328.v2
https://doi.org/10.3390/electronics12040883

3 of 29

DMA
Engine

RAM

Computer
system

D
at

a
co

nc
en

tra
to

r
an

d
pr

ep
ro

ce
ss

or

D
at

a

Programmable logic
(PL - FPGA)

SoC or MPSoc

DMA
Engine

PCIe
Interface

RAM

Computer
system

D
at

a
co

nc
en

tra
to

r
an

d
pr

ep
ro

ce
ss

or

D
at

a

FPGA

AXI-PCIe
Bridge

AXI PCIe

a)

b) PCI-Express extension card

CPU

CPU

AXI

AXI
 Stream

AXI
 Stream

DAQ Control AXI

DAQ Control
AXI

Figure 1. Two typical hardware architectures using the DMA engine implemented in FPGA; (a) based

on MPSoC with FPGA and processing system connected directly via AXI interface, (b) based on

FPGA-equipped PCIe extension card. The AXI-PCIe bridge enables using the same DMA engine as in

case (a). The “DAQ Control” block represents other user-defined logic in FPGA used to control the

DAQ system. It is connected to a separate AXI bus and accessible as another character device in Linux

(see Section 5).

1.2. Computer System Considerations

The operating system typically used in HEP DAQ nodes is Linux. In the hardware platforms

mentioned in the previous section, Linux uses the virtual memory implemented with paging [8]. That

simplifies memory management by eliminating problems resulting from memory fragmentation,

enables memory protection, and allows running each application in its own virtual address space.

However, from the DMA point of view, the paging significantly complicates the operation of DMA

engines. The kernel and application’s virtual memory addresses are not identical to the physical

addresses. They are translated using the page tables and page directories (see Figure 2).

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 January 2023 doi:10.20944/preprints202301.0328.v2

Peer-reviewed version available at Electronics 2023, 12, 883; doi:10.3390/electronics12040883

https://doi.org/10.20944/preprints202301.0328.v2
https://doi.org/10.3390/electronics12040883

4 of 29

32-bit linear address
31 12 11 0

page number offset

page table

page table entry

12 lower bits of
address

20 upper bits of
address

32-bit physical
 address

32-bit linear address
31 12 11 0
directory
number offset

page directory

page directory
entry

12 lower bits of
address

20 upper bits of
address

32-bit physical
 address

page
number

page table

page table entry

a)

b)

22 21

Figure 2. Translation of linear (virtual) addresses into physical addresses with paging (in a 32-bit

system for simplicity). (a) The simple one-level paging. The 20 upper bits of the virtual address are the

page number. The page’s physical address is stored in the corresponding page table entry. The lower 12

bits of the address are the offset inside the page. That scheme is rarely used because it requires creating

big page tables (with 220 entries for the whole 32-bit address space). (b) The two-level paging. The

bits 31–22 are the page table number. The address of the associated page table is taken from the page

directory entry. There may be an empty directory entry for unused address areas, and the associated

page table is not created. That solves the problem of big page tables. The bits 21–12 are the page

number in the page table. The lowest 12 bits are the offset in the page. The figure is based on the

documentation published by Intel [9].

Due to the memory fragmentation during the computer system’s operation, allocating a big

physically contiguous buffer may be difficult. The big memory buffer, contiguous in the virtual address

space, may consist of multiple smaller contiguous buffers (in the worst case, just single memory pages)

scattered in the physical address space. Such a buffer is called a scatter-gather buffer (in short, SG

buffer).

The DMA engine does not use virtual addresses. It uses the physical addresses or the bus

addresses additionally translated by the bus bridge. If the host computer system is equipped with

an IOMMU (I/O Memory Management Unit) [10], mapping the SG buffer into a contiguous area

in the bus address space may be possible. However, the versatile DMA engine should not rely on its

availability. Additionally, using the IOMMU for such translations may result in reduced performance

of DMA transfers [11]. Therefore, working with a physically contiguous buffer is preferred because

the DMA engine must only know the buffer’s start address in the bus address space and the buffer’s

size. On the other hand, the non-contiguous SG buffer must be represented by a list of its contiguous

buffers storing their addresses and lengths. The Linux kernel offers a dedicated structure, sg_table, to

represent such lists.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 January 2023 doi:10.20944/preprints202301.0328.v2

Peer-reviewed version available at Electronics 2023, 12, 883; doi:10.3390/electronics12040883

https://doi.org/10.20944/preprints202301.0328.v2
https://doi.org/10.3390/electronics12040883

5 of 29

There are three solutions for working with big DMA buffers with the described limitations. The

first two are oriented toward enabling the allocation of the big physically contiguous buffers.

1.2.1. Boot Time Reservation

Reserving a big physically contiguous memory area may be performed when booting the

operating system. The Linux kernel offers a special memmap=nn[KMG]$ss[KMG] parameter that

may be used in ACPI-based systems [12]. In the device tree-based systems, a special reserved-memory

node may be used for that purpose. With the boot-time reservation, however, the user must carefully

choose the physical address of the reserved area. Additionally, that memory remains unavailable for

the operating system even if the DMA is not used.

1.2.2. Contiguous Memory Allocation

As a solution for the above problems, the Contiguous Memory Allocator (CMA) has been

proposed [13]. CMA enables moving the pages in memory to consolidate the free pages into bigger,

physically contiguous areas. It should allow the allocation of big, physically contiguous DMA buffers.

However, the CMA is not enabled in standard kernels used in most Linux distributions. The user

must recompile the kernel with a modified configuration to use it. Additionally, there is still a risk of

unsuccessful CMA allocation in the heavily loaded system.

The third solution aims to enable the DMA engine to work with an SG buffer.

1.2.3. Working with Non-Contiguous Buffers

If the DMA engine is supposed to work with an SG buffer, it must be informed about the addresses

of all contiguous buffers creating that buffer. Three methods may be used to perform that task (see

Figure 3).

RAM

buffer 0

[...]

buffer 255

buffer 254

DMA
engine

R
eg

is
te

rs
 w

ith
 b

uf
fe

rs
ad

dr
es

se
s

an
d

si
ze

s

buffer 1

a&s buf. 1
 a&s buf. 0

buffer 2

a&s buf. 2

a&s buf. 254
a&s buf. 255

[...]

RAM

buffer 0

[...]

buffer 255

buffer 254

DMA
engine

FI
FO

 w
ith

 b
uf

fe
rs

ad
dr

es
se

s
an

d
si

ze
s buffer 1

a&s buf. 1
a&s buf. 0

buffer 2

a&s buf. 2
[...]

a&s buf. 254
a&s buf. 255

a&s buf. 0

Control bus

a) b) c)

Driver

RAM

buffer 0

[...]
buffer 255

buffer 254

buffer 1

buffer 2

DMA
engine

Descriptor of
group of buffers

a&s buf. 1
a&s buf. 0

a&s buf. 7
[...]

addr. next desc.

buffer 7

desc. 0-7

desc. 8-15

desc. 248-255

[...]

[...]

Figure 3. Possible DMA designs working with SG buffers. The big SG buffer consists of multiple small,

physically contiguous buffers. The example shows the continuous transfer where the SG buffer is used

as a circular buffer. In solution (a), the DMA engine contains a group of registers storing the addresses

of all buffers belonging to the circular buffer. For single-page buffers, it results in huge FPGA resource

consumption. In solution (b), the addresses of consecutive buffers are cyclically written by the driver

to FIFO. This solution increases CPU load. In solution (c), the addresses of groups of buffers are stored

in the descriptors located in RAM. The DMA engine is given the address of the first descriptor, reads

it, and uses the associated buffers. When the end of the group is reached, the next descriptor is used.

Such a solution introduces breaks in the data transfer associated with reading the descriptors. It also

complicates the data flow in the DMA engine.

In the simplest approach (Figure 3a), the DMA engine may contain a set of registers with a length

sufficient to store the data (address and size) of all contiguous buffers being parts of the SG buffer. In

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 January 2023 doi:10.20944/preprints202301.0328.v2

Peer-reviewed version available at Electronics 2023, 12, 883; doi:10.3390/electronics12040883

https://doi.org/10.20944/preprints202301.0328.v2
https://doi.org/10.3390/electronics12040883

6 of 29

the worst case, the buffer may consist of several separate pages scattered around the RAM. Creating

the SG buffer consisting of single pages may even be enforced for simplicity. In that case, we need to

store only their physical addresses because they all have the same length. However, with a typical

page size of 4 KiB, a 1 GiB SG buffer would require 262144 pages. Storing so many addresses inside the

FPGA would consume too many resources. Therefore, such a solution is unsuitable for big buffers with

small pages. The advantage of this solution is that the DMA engine may operate fully autonomously,

and it uses the bus only to transfer the data.

The second approach (Figure 3b) requires the device driver to deliver the addresses and sizes of

consecutive contiguous buffers continuously. They are stored in FIFO, so the data of the next buffer is

available immediately when the current buffer is entirely written. The CPU and bus are additionally

loaded, transmitting the buffer’s data in this solution.

In the third approach (Figure 3c), the DMA engine reads the information about the consecutive

contiguous buffers from the computer memory. For better efficiency, those data are usually stored

in descriptors holding the data of a group of buffers (in the figure - for 8 buffers). This solution

requires interrupting the transfer whenever the next descriptor must be read. Additionally, handling

the descriptors increases the complexity of the DMA engine.

2. Existing Solutions for the Implementation of DMA in FPGAs

The implementation of DMA engines in FPGAs is not a new topic. Many solutions have been

provided by the FPGA vendors or have been developed independently. Reviewing them all would

make this article unacceptably long. Therefore, the review is limited to solutions using AXI-Stream as

an input interface and applicable to AMD/Xilinx FPGAs.

2.1. Official DMA Engines from AMD/Xilinx

The AMD/Xilinx firm offers many AXI-compatible DMA engines for their FPGAs [14–16]. The

deeper analysis shows they are built around the AXI Datamover [17] block. The possibility of using

them has been investigated in [18]. The AXI Datamover uses an additional input AXI-Stream interface

to receive the transfer commands and another output AXI-Stream interface to send the status of

performed transfers. Additional pair of interfaces is used to receive the transferred data and to write it

to the target location. Because of that, the concept shown in Figure 3b is a natural way to use it with

SG buffer. An open-source DMA engine based on that concept has been developed, described in [18],

and is available in a public git repository [19]. Its block diagram is shown in Figure 4.

AXI
Datamover

AXI-Stream
FIFO

AXIS
Interconnect

AXI-Stream - Input data
AXI MM

Output data

Transfer commands

Transfer statuses

AXI Lite - control interface

Figure 4. Block diagram of the DMA engine based on AXI Datamover. The driver delivers the transfer

commands (with data of consecutive contiguous buffers) through AXI FIFO MM [20] block. The AXI

Interconnect block concatenates a few words in a single data transfer command. The statuses of the

transfers are sent back to the AXI-Stream FIFO.

The AXI datamover is continuously provided with the data of consecutive contiguous buffers

in advance, which involves the device driver and generates CPU load and traffic on the control bus.

When the end of the packet is received, the last buffer may be filled in part. Then, the remaining buffer

space is not used because the next packet is stored from the beginning of the next buffer. That results

in wasting the buffer capacity. The inefficiency is the higher, the bigger the contiguous buffers are.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 January 2023 doi:10.20944/preprints202301.0328.v2

Peer-reviewed version available at Electronics 2023, 12, 883; doi:10.3390/electronics12040883

https://doi.org/10.20944/preprints202301.0328.v2
https://doi.org/10.3390/electronics12040883

7 of 29

On the other hand, the bigger buffers reduce the load associated with sending their addresses and

lengths. In particular, that solution may be highly inefficient for a variable length of packets and a high

probability of low-length packets.

AMD/Xilinx also offers a dedicated DMA-capable IP core for PCIe [21]. The usage of its previous

version has also been investigated in [18]. It uses the concept of working with SG buffer descriptors

stored in the computer system’s RAM (as in Figure 3c). Unfortunately, it is a closed solution limited to

operation with the PCIe bus.

2.2. Selected Existing Open-Source DMA Engines

From existing open-source implementations of the DMA engines, three have been selected for

review.

The first is the AXIS2MM DMA engine available in the WB2AXIP [22] suite by Dan Gisselquist [23].

It receives the data from the AXI-Stream, and stores it in the buffer available via a full AXI Memory

Mapped interface. It supports continuous operation. Unfortunately, it works only with a physically

contiguous buffer. The WB2AXIP also contains an SG-capable DMA engine [24], but it only supports

memory-to-memory transfers, not stream-to-memory transfers.

Another two open-source DMA engines work only with PCIe.

2.3. PCIe SG DMA Controller

A “Simple PCIe SG DMA controller” [25] is tightly associated with PCIe. It directly communicates

with the TLP layer of the PCIe interface core in FPGA. It is designed for the old HW platform - Virtex 5.

However, it should be easily portable to newer FPGAs. This DMA engine can work in a continuous

acquisition mode. It supports SG buffers using method (c) from Figure 3. However, it uses simple

descriptors describing only a single buffer. Additionally, it does not work with the AXI-Stream input

interface. Possible modification by connecting the AXI-Stream FIFO as an input adapter still would

not provide the proper delivery of information about the boundaries between the AXI-Stream packets.

2.4. Wupper

Another open-source DMA engine is the Wupper [26]. It has been developed at Nikhef for CERN

for the FELIX/ATLAS project. It is a mature and verified in-practice solution. Wupper was intended to

be a simple DMA interface for AMD/Xilinx Virtex-7 PCIe Gen 3 but has been ported to newer FPGA

families like Kintex Ultrascale, Kintex Ultrascale+, and Versal Prime. Wupper may work with a few

(up to 8) buffer descriptors, with one descriptor always reserved for the transfer from computer to

FPGA. However, according to the documentation, those descriptors’ organization does not enable easy

handling of SG buffers, especially in the continuous acquisition mode.

3. Concept of a Versatile DMA Engine for HEP

Based on the facts described in the introduction and the results of the review of the existing

solutions, a concept of a versatile DMA engine for HEP may be formulated.

The engine should be compatible with the SoC/MPSoC using the AXI system bus and with

servers using the PCI-Express bus to connect FPGA-based data acquisition cards. Therefore, the engine

itself should work as an AXI Master while a possible connection to the PCIe bus is provided by an

additional AXI-to-PCIe bridge (see Figure 1). That solution may be further extended to other buses for

which the AXI bridges are available.

The engine should support continuous data acquisition. Thence it should work with the circular

DMA buffer, properly controlling the buffer occupancy and notifying the data processing applications

about data availability. Unnecessary use of CPU power should be avoided, and the data notification

latency should be minimized.

The engine should work correctly not only in the dedicated data acquisition computer systems but

also in the systems used for development or data processing. It should be easily scalable for different

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 January 2023 doi:10.20944/preprints202301.0328.v2

Peer-reviewed version available at Electronics 2023, 12, 883; doi:10.3390/electronics12040883

https://doi.org/10.20944/preprints202301.0328.v2
https://doi.org/10.3390/electronics12040883

8 of 29

numbers of FPGA boards or different sizes of the DMA buffer. Therefore, the boot-time allocation (see

Section 1.2.1) should be avoided.

The maintenance of the system should be simple. Therefore, using a standard Linux distribution

should be possible. That eliminates the possibility of using CMA (see Section 1.2.2).

With those limitations, the only remaining option to support big DMA buffers is the scatter-gather

(SG) operation (see Section 1.2.3). With the required limiting of the unnecessary CPU load, the best

choice is the configuration shown in Figure 3a – storing the data of contiguous buffers in internal

registers in FPGA. Unfortunately, for huge and highly fragmented buffers, the number of required

registers is enormously high (up to 262144 registers for 1 GiB buffer - see Section 1.2.3). The amount

of stored information may be reduced by assuming that the buffer consists of single pages. That

enables storing only their addresses, as the size is always the same. However, even with that, resource

consumption is unacceptable. Significant improvement is possible by using bigger memory pages.

Fortunately, the x86_64 and 64-bit ARM (AARCH64) architectures allow using not only 4 KiB pages

but also 2 MiB ones. Using such “huge pages” reduces the number of required registers by a factor

of 512. For example, the 1 GiB DMA buffer consists of 512 single-page contiguous buffers, and their

addresses may be easily stored inside FPGA.

Another issue is the efficient communication with the data processing application. The application

should be able to sleep while waiting for data availability to reduce the CPU load. The availability of a

new complete AXI-Stream packet should generate the interrupt, which via the kernel driver, should

wake up the application. However, in case of high intensity of the data stream, it should be possible

to mask the interrupt and work in the polling mode2, avoiding wasting CPU time for entering and

leaving the interrupt context.

To enable efficient access to the individual packets, the location of received packets must be

available for the receiving application. In addition to the huge circular buffer for data, a smaller

circular buffer for packet locations should be created in the computer system (host) memory. A single

huge page may be used for that purpose, as shown in Figure 5.

Datastream DMA engine

Master

Slave

Computer

Bus interface

RAM
Circular buffer

for data

pa
ck

et
 1

0

pa
ck

et
 5

0

[...]

packet 49

packet 50

start endp10

start endp50

[...]

[...]

Control

packet 10
packet 11

Circular buffer for
packets locations

Figure 5. Data flow in the DMA engine. The data packets are stored in the primary big circular buffer.

The locations of the received packets are stored in a smaller circular buffer enabling quick access to the

desired packet.

2 A similar approach is used in Linux drivers for network cards [27].

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 January 2023 doi:10.20944/preprints202301.0328.v2

Peer-reviewed version available at Electronics 2023, 12, 883; doi:10.3390/electronics12040883

https://doi.org/10.20944/preprints202301.0328.v2
https://doi.org/10.3390/electronics12040883

9 of 29

4. Implementation of DMA in FPGA with HLS

As mentioned in Section 1, the HLS technology may be used to simplify implementing complex

algorithms in FPGA. In particular, HLS enables a straightforward (from the user’s point of view)

implementation of AXI-Stream and full AXI interfaces.

Especially the implementation of a reasonably performing AXI Master in HDL is quite a

sophisticated task [28,29]. In the HLS, simply specifying the appropriate interface for a C/C++

function argument generates a parameterized AXI master [30,31].

A very simple example code from AMD/Xilinx using the AXI Master interface to access the data

in the computer system’s memory is shown in Listing 1.

/*

* Copyright 2021 Xilinx, Inc.

* Licensed under the Apache License, Version 2.0 (the "License");

*/

#include <stdio.h>

#include <string.h>

void example(volatile int *a){

#pragma HLS INTERFACE m_axi port=a depth=50

int i;

int buff[50];

memcpy(buff,(const int*)a,50*sizeof(int));

for(i=0; i < 50; i++){

buff[i] = buff[i] + 100;

}

memcpy((int *)a,buff,50*sizeof(int));

}

Listing 1. A very simple code using the AXI interface to read the data from memory and write the

modified data to its original location. That is a shortened source published by AMD/Xilinx at [32].

Similarly, specifying the appropriate interface for a C/C++ function argument generates the

AXI-Stream slave [30,33].

An implementation of a trivial DMA engine receiving the data from the AXI Stream interface

and writing them to the computer system’s memory may be done in less than 70 lines of C/C++ code.

An example of such code is published by AMD/Xilinx in [34]. The shortened version is shown in

Listing 2.

The function uses two tasks - the first for reading the data from the AXI-Stream to the temporary

buffer and the second for writing the data from that buffer to the computer system’s RAM via AXI

Master. Both tasks are scheduled using the dataflow approach, allowing them to run in parallel.

The block diagram of that trivial DMA engine is shown in Figure 6.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 January 2023 doi:10.20944/preprints202301.0328.v2

Peer-reviewed version available at Electronics 2023, 12, 883; doi:10.3390/electronics12040883

https://doi.org/10.20944/preprints202301.0328.v2
https://doi.org/10.3390/electronics12040883

10 of 29

/*

* Copyright 2021 Xilinx, Inc.

*

* Licensed under the Apache License,

* Version 2.0 (the "License");

*/

#include "example.h"

void streamtoparallelwithburst(

hls::stream<data> &in_stream,

hls::stream<int> &in_counts,

ap_uint<64> *out_memory) {

data in_val;

do {

int count = in_counts.read();

for (int i = 0; i < count; ++i) {

#pragma HLS PIPELINE

in_val = in_stream.read();

out_memory[i] = in_val.data_filed;

}

out_memory += count;

} while(!in_val.last);

}

void getinstream(

hls::stream<trans_pkt >& in_stream,

hls::stream<data > &out_stream,

hls::stream<int>& out_counts)

{

int count = 0;

trans_pkt in_val;

do {

#pragma HLS PIPELINE

in_val = in_stream.read();

data out_val = {in_val.data, in_val.last};

out_stream.write(out_val);

count++;

if (count >= MAX_BURST_LENGTH || in_val.last) {

out_counts.write(count);

count = 0;

}

} while(!in_val.last);

}

void example(

hls::stream<trans_pkt >& inStreamTop,

ap_uint<64> outTop[1024]) {

#pragma HLS INTERFACE axis register_mode=both \

register port=inStreamTop

#pragma HLS INTERFACE m_axi max_write_burst_length=256 \

latency=10 depth=1024 bundle=gmem0 port=outTop

#pragma HLS INTERFACE s_axilite port = outTop \

bundle = control

#pragma HLS INTERFACE s_axilite port = return \

bundle = control

#pragma HLS DATAFLOW

hls::stream<data,DATA_DEPTH > buf;

hls::stream<int,COUNT_DEPTH> count;

getinstream(inStreamTop, buf, count);

streamtoparallelwithburst(buf, count, outTop);

}

Listing 2. Simple code receiving the AXI-Stream packet and storing it in the buffer inside the computer systems memory. That is a modified source published by

AMD/Xilinx in [34].

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 January 2023 doi:10.20944/preprints202301.0328.v2

Peer-reviewed version available at Electronics 2023, 12, 883; doi:10.3390/electronics12040883

https://doi.org/10.20944/preprints202301.0328.v2
https://doi.org/10.3390/electronics12040883

11 of 29

ge
tin

st
re

am

AXI Stream input

st
re

am
to

pa
ra

lle
l\

w
ith

bu
rs

t

outTop
DMA buffer

buf

count

Figure 6. Structure of the AMD/Xilinx code implementing the transfer of AXI-Stream packet to the

DMA buffer.

4.1. Development of the Final HLS Solution

The simple code shown in the previous section does not meet the requirements for the DMA

engine for HEP applications, defined in Section 3. It simply reads a single AXI-Stream packet and

writes it to the memory buffer. It does not support continuous acquisition nor supports the SG buffers.

Additionally, it does not check for overflow in the output buffer.

Adding those necessary functionalities was a long iterative process. The HLS synthesis is

controlled with many options, which may be defined as so-called pragmas in the source code or

as project settings [30,35].

The previous experiences with HLS [36,37] have shown that this process requires thorough

verification not only in the C simulation (offered by the Vivado suite) but also at the level of the finally

generated RTL code. Therefore, a dedicated verification environment has been created, described in

Section 6.1. This section describes the final implementation that uses the HLS kernel with a top-level

dma1 function responsible for handling a single AXI-Stream packet.

The structures and constants used in the implementation are shown in Listing 3, and the dma1

function in Listing 4.

As stated in Section 3, the DMA engine should use the approach shown in Figure 3a with

2 MiB-long huge pages.

The input AXI-Stream interface is implemented as the argument stin, while the output AXI Master

interface is represented as the argument a.

The addresses of the huge pages used as contiguous buffers are described in HLS as the array

of 64-bit unsigned integers connected to the AXI Lite interface bufs. A constant NBUFS defines the

maximum number of contiguous buffers, but the argument nof_bufs gives their actual number (and,

thence, the circular buffer size).

The address of the huge page storing the packet descriptors (locations of the received packets) is

delivered via the argument descs.

The next two arguments are used to control filling the circular buffers. The cur_buf delivers the

number of the first3 contiguous buffer containing data not yet received by the application. Similarly,

the cur_pkt delivers the number of the first packet descriptor not yet received by the application.

The arguments nr_buf and nr_pkt output the number of the contiguous buffer and the number

of the packet currently written by the DMA engine.

The last argument, xoverrun, outputs the information that the data loss occurred due to an attempt

to write new data when either no free contiguous buffer or no free packet descriptor is available.

The top function dma1 schedules four subtasks (readin, prepare, writeout, and update_outs) in

the DATAFLOW mode.

Those subtasks are communicating via hls::stream variables. The data flow between them is

shown in Figure 7, and their functionalities are described in the following subsections.

3 Because both buffers are circular, the numbers are increased using modular arithmetics.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 January 2023 doi:10.20944/preprints202301.0328.v2

Peer-reviewed version available at Electronics 2023, 12, 883; doi:10.3390/electronics12040883

https://doi.org/10.20944/preprints202301.0328.v2
https://doi.org/10.3390/electronics12040883

12 of 29

typedef ap_uint<256> AXI_VALUE;

typedef ap_uint<64> AXI_ADDR;

typedef ap_axiu<256, 1, 1, 1> AXIS_DATA;

typedef struct {

AXI_VALUE dta;

} BUF_DATA;

typedef struct {

ap_uint<32> count;

ap_uint<32> word;

ap_uint<1> eop;

ap_uint<1> nextbuf;

} BURST_MARK;

typedef struct {

ap_uint<64> base;

ap_uint<64> first;

ap_uint<64> after;

ap_uint<32> count;

ap_uint<32> packet;

ap_uint<32> nr_buf;

ap_uint<1> overrun;

ap_uint<1> eop;

} OUTPUT_CHUNK;

typedef struct {

ap_uint<32> nr_buf;

ap_uint<32> nr_pkt;

ap_uint<1> overrun;

ap_uint<1> eop;

} OUTPUT_SIGS;

typedef struct {

ap_uint<64> first;

ap_uint<64> after;

ap_uint<64> filler[2];

} PKT_DESC;

static const int BUFFER_FACTOR = 2;

static const int MAX_BURST_LENGTH = 256;

static const int DATA_DEPTH = MAX_BURST_LENGTH * BUFFER_FACTOR;

static const int COUNT_DEPTH = 2*BUFFER_FACTOR;

static const int CHUNKS_DEPTH = 2*BUFFER_FACTOR;

static const int NBUFS = 2048;

#define NPKTS (2*1024*1024/32) //Number of packets in desc. buffer

#define BUFLEN (2*1024*1024/32) //Length of buffer in words

Listing 3. Definition of structures and constants for the core of the DMA engine in HLS.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 January 2023 doi:10.20944/preprints202301.0328.v2

Peer-reviewed version available at Electronics 2023, 12, 883; doi:10.3390/electronics12040883

https://doi.org/10.20944/preprints202301.0328.v2
https://doi.org/10.3390/electronics12040883

13 of 29

void dma1(hls::stream<AXIS_DATA>&stin,

AXI_VALUE *a, AXI_ADDR bufs[NBUFS],

AXI_ADDR descs, ap_uint<32> nof_bufs,

volatile uint32_t &cur_buf,

ap_uint<32> &nr_buf,

volatile uint32_t &cur_pkt,

ap_uint<32> &nr_pkt,

ap_uint<1> &xoverrun)

{

#pragma HLS INTERFACE axis port=stin

#pragma HLS INTERFACE m_axi max_write_burst_length=256 \

num_read_outstanding=8 \

num_write_outstanding=8 \

max_read_burst_length=16 \

offset=direct depth=1<<64 bundle=gmem0 port=a

#pragma HLS INTERFACE ap_ctrl_hs port=return

#pragma HLS INTERFACE s_axilite port=bufs depth=NBUFS \

bundle=control

#pragma HLS INTERFACE s_axilite port=descs bundle=control

#pragma HLS INTERFACE s_axilite port=nof_bufs bundle=control

#pragma HLS INTERFACE ap_none port=cur_buf

#pragma HLS INTERFACE ap_none port=nr_buf

#pragma HLS INTERFACE ap_none port=cur_pkt

#pragma HLS INTERFACE ap_none port=nr_pkt

#pragma HLS INTERFACE ap_none port=xoverrun

#pragma HLS DATAFLOW

hls::stream<BUF_DATA, DATA_DEPTH> buf;

hls::stream<BURST_MARK, COUNT_DEPTH> bursts;

hls::stream<OUTPUT_CHUNK, CHUNKS_DEPTH> chunks;

hls::stream<OUTPUT_SIGS, 2> outs;

readin(stin, buf, bursts);

prepare(bursts, chunks, cur_pkt, nof_bufs, cur_buf, bufs);

writeout(buf, chunks, outs, a, bufs, descs);

update_outs(outs, nr_pkt, nr_buf, xoverrun);

}

Listing 4. Top-level function implementing the core of the DMA engine in HLS. Explained in Section 4.1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 January 2023 doi:10.20944/preprints202301.0328.v2

Peer-reviewed version available at Electronics 2023, 12, 883; doi:10.3390/electronics12040883

https://doi.org/10.20944/preprints202301.0328.v2
https://doi.org/10.3390/electronics12040883

14 of 29

nr of packet (nr_pkt)

AXI Stream
input (stin)

outs

DMA cyclic buffer (a)

nr of buffer (nr_buf)

overrun

burst_marksbursts

chunks
current packet (cur_pkt)

current buffer (cur_buf)

addreses of buffers (bufs)

number of buffers (nof_bufs)

bufs
nof_bufs

i_cur_pkt

i_cur_buf
chunks

buf
burst_marks

buf_stream
stin

writeout

chunks

buf_stream

update_outs

nr_pkt
nr_buf

overrun

outs outs

a

readin

prepare

Figure 7. Structure of the HLS-implemented core of the DMA engine.
.

4.2. Readin Subtask

This task reads the data from the input AXI-Stream in the pipelined loop and puts it into a

buf_stream. It also prepares the information about splitting the data into parts transmitted in separate

AXI bursts. The single burst is finished when the maximum burst length is reached, the 2 MiB

contiguous buffer is filled, or the last word in the AXI-Stream is received. When the burst is finished,

the “burst marker” is generated and written to the burst_marks. The “burst marker” contains flags

signaling the necessity to switch to the next contiguous buffer (nextbuf) and denoting the last burst in

the packet (eop - end of packet). The simplified listing of the code of that task is shown in Listing 5.

static void readin(

hls::stream<AXIS_DATA> &stin,

hls::stream<BUF_DATA> &buf_stream,

hls::stream<BURST_MARK> &burst_marks)

{

AXIS_DATA in_val;

static int count = 1;

#pragma HLS RESET variable = count

static int nr_word = 1;

#pragma HLS RESET variable = nr_word

static int bufleft = BUFLEN - 1;

#pragma HLS RESET variable = bufleft

do {

#pragma HLS PIPELINE

stin.read(in_val);

BUF_DATA out_val = { in_val.data };

buf_stream.write(out_val);

if (count >= MAX_BURST_LENGTH ||

in_val.last ||

(bufleft == 0)) {

BURST_MARK bm = { 0, 0, 0, 0};

bm.count = count;

bm.word = nr_word;

bm.eop = in_val.last;

bm.nextbuf = 0;

if (bufleft == 0) {

bm.nextbuf = 1;

nr_word = 1;

bufleft = BUFLEN - 1;

} else {

nr_word += 1;

bufleft -= 1;

}

count = 1;

burst_marks.write(bm);

} else {

count += 1;

nr_word += 1;

bufleft -= 1;

}

} while (!in_val.last);

}

Listing 5. Simplified code reading the input data and preparing the burst markers. Explained in

Section 4.2.

4.3. Prepare Subtask

The next subtask receives the “burst markers” and calculates the addresses where the associated

data must be stored, creating the chunk descriptors. The chunk descriptor contains all the information

needed to store the burst data in the contiguous buffer, create the packet descriptor, and complete the

packet processing.

The “prepare” subtask is also responsible for finding the appropriate contiguous buffer for the

data. At the output, the “base” field contains the address of the first 256-bit word to be written into the

corresponding buffer. The “count” field contains the number of words to be written. The “first” field

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 January 2023 doi:10.20944/preprints202301.0328.v2

Peer-reviewed version available at Electronics 2023, 12, 883; doi:10.3390/electronics12040883

https://doi.org/10.20944/preprints202301.0328.v2
https://doi.org/10.3390/electronics12040883

15 of 29

contains the position in the circular buffer of the first 256-bit word of the current packet. The “after”

field contains the position in the circular buffer of the word after the last word written in the current

chunk.

The “prepare” subtask uses a few static variables to propagate information between processing

consecutive AXI-Stream packets. This information consists of the number of the currently used buffer

(i_prev_buf), the number of the word in the currently used buffer (i_prev_word), the number of the

currently serviced packet (i_nr_pkt), and the flag informing if the overrun occurred (soverrun).

When the burst has the eop flag set, the writing of the packet descriptor is prepared. The static

variables describing the last used packets are updated.

Additionally, the overrun condition is checked. If the new contiguous buffer must be used, it is

checked if it is not occupied yet with the old data. If it is, the overrun flag is set.

4.4. Writeout Subtask

This task receives the “chunk descriptors” from the “prepare” subtask. Based on them, it reads

the appropriate amount of data from the buf_stream and writes it to the RAM via the AXI Master

interface a. If the end of the AXI Stream packet is reached, its start and end location in the circular

buffer is also written to the RAM (to the “descriptors” contiguous buffer). This task prepares the new

values of the output variables - the number of the currently written contiguous buffer, the number of

the currently written data packet (AXI-Stream packet), and the overrun status. Then it outputs them

all via outs.

4.5. Update_outs Subtask

This simple task (see Listing 7) sets the output variables to the values delivered by the outs stream.

A dedicated subtask ensures that the output variables are updated after the packet data are successfully

stored in the circular data buffer and after the packet descriptor is written to the circular descriptors

buffer.

4.6. HDL Support Cores

Unfortunately, it was not possible to implement all the required functionality using the HLS

technology.

When the driver frees the packet and associated contiguous buffers, the “current buffer” and

“current packet” are modified by the software, and that change should be immediately visible for the

DMA engine. Otherwise, false buffer overruns may be generated.

In the case of interrupt generation, the situation is even worse. The interrupt is generated when

the new packet is available, and the interrupts are not masked. The driver keeps the number of

the last packet passed to processing in the “last scheduled packet” variable. Availability of the new

packet is checked by comparison of the “last scheduled packet” and “nr of packet”. After passing the

new packet for processing, the software updates the “last scheduled packet”. However, when this

modification is not immediately visible to the interrupt generation block, a false repeated interrupt

request will be generated. For the same reason, all changes in the interrupt masking register must be

visible immediately for the interrupt generation block.

Unfortunately, the registers defined in the HLS code as accessible via the s_axilite interface do

not provide immediate propagation of their values. To workaround the described problems, a separate

AXI-Lite slave was implemented in HDL. It provides fast access to the “current buffer”, “current

packet”, “last scheduled packet”, and interrupt masking registers, enables writing the HLS core control

signals (ap_start, ap_rst_n) and reading its status (ap_done, ap_ready and ap_idle).

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 January 2023 doi:10.20944/preprints202301.0328.v2

Peer-reviewed version available at Electronics 2023, 12, 883; doi:10.3390/electronics12040883

https://doi.org/10.20944/preprints202301.0328.v2
https://doi.org/10.3390/electronics12040883

16 of 29

static void prepare(

hls::stream<BURST_MARK> &burst_marks,

hls::stream<OUTPUT_CHUNK> &chunks,

volatile uint32_t &i_cur_pkt,

ap_uint<32> &nof_bufs,

volatile uint32_t &i_cur_buf,

AXI_ADDR bufs[NBUFS])

{

static ap_uint<1> soverrun = 0;

#pragma HLS RESET variable = soverrun

static ap_uint<32> i_prev_buf = 0;

#pragma HLS RESET variable = i_prev_buf

static int i_prev_word = 0;

#pragma HLS RESET variable = i_prev_word

static ap_uint<32> i_nr_buf = 0;

#pragma HLS RESET variable = i_nr_buf

static ap_uint<32> i_nr_pkt = 0;

#pragma HLS RESET variable = i_nr_pkt

BURST_MARK bm;

do {

#pragma HLS PIPELINE II=3

OUTPUT_CHUNK chunk = { 0, 0, 0, 0, 0, 0, 0, 0};

burst_marks.read(bm);

ap_uint<32> new_pkt;

ap_uint<32> new_buf;

ap_uint<1> overrun_pkt = 0;

ap_uint<1> overrun_buf = 0;

if (soverrun == 0) {

chunk.packet = i_nr_pkt;

chunk.base =

bufs[i_nr_buf] / 32 + bm.word - bm.count;

chunk.count = bm.count;

chunk.eop = bm.eop;

chunk.first = i_prev_buf * BUFLEN + i_prev_word;

chunk.after = i_nr_buf * BUFLEN + bm.word;

if (bm.eop) {

i_prev_buf = i_nr_buf;

i_prev_word = bm.word;

new_pkt = (i_nr_pkt + 1) % NPKTS;

if (new_pkt == i_cur_pkt) {

overrun_pkt = 1;

} else {

i_nr_pkt = new_pkt;

}

}

if (bm.nextbuf) {

new_buf = i_nr_buf + 1;

if ((new_buf == NBUFS) ||

(new_buf == nof_bufs)) {

new_buf = 0;

}

if (new_buf == i_cur_buf) {

overrun_buf = 1;

} else {

i_nr_buf = new_buf;

}

}

if ((overrun_buf == 1) || (overrun_pkt == 1))

soverrun = 1;

chunk.overrun = soverrun;

chunk.nr_buf = i_nr_buf;

chunks.write(chunk);

}

} while (!bm.eop);

}

Listing 6. Simplified code preparing the chunk descriptors. Explained in Section 4.3.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 January 2023 doi:10.20944/preprints202301.0328.v2

Peer-reviewed version available at Electronics 2023, 12, 883; doi:10.3390/electronics12040883

https://doi.org/10.20944/preprints202301.0328.v2
https://doi.org/10.3390/electronics12040883

17 of 29

void writeout(

hls::stream<BUF_DATA> &buf_stream,

hls::stream<OUTPUT_CHUNK> &chunks, hls::stream<OUTPUT_SIGS> &outs,

AXI_VALUE *a, AXI_ADDR bufs[NBUFS], AXI_ADDR &descs)

{

BUF_DATA vin;

OUTPUT_CHUNK chunk;

AXI_VALUE *b;

int i;

static OUTPUT_SIGS os = { 0, 0, 0, 0};

#pragma HLS RESET variable = os

do {

#pragma HLS PIPELINE

chunks.read(chunk);

if (!chunk.overrun) {

int i;

int j = chunk.base;

b = &a[j];

for (i = 0; i < chunk.count; i++) {

#pragma HLS PIPELINE

vin = buf_stream.read();

b[i] = vin.dta;

}

os.nr_buf = chunk.nr_buf;

}

if (chunk.overrun == 1)

os.overrun = 1;

if (chunk.eop) {

//Write start and end positions to the packet descriptor

PKT_DESC sd = { 0, 0, 0, 0 };

sd.first = htole64(chunk.first);

sd.after = htole64(chunk.after);

a[descs / 32 + chunk.packet] = *(ap_uint<256> *) &sd;

os.nr_pkt = chunk.packet;

}

os.eop = chunk.eop;

outs.write(os);

} while (!chunk.eop);

}

void update_outs(hls::stream<OUTPUT_SIGS> &outs, ap_uint<32> &nr_pkt,

ap_uint<32> &nr_buf, ap_uint<1> &overrun) {

OUTPUT_SIGS os;

#pragma HLS PIPELINE

do {

outs.read(os);

nr_pkt = os.nr_pkt;

nr_buf = os.nr_buf;

overrun = os.overrun;

} while (!os.eop);

}

Listing 7. Simplified code writing the output data based on prepared chunk descriptors. Explained in Sections 4.4 and 4.5.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 January 2023 doi:10.20944/preprints202301.0328.v2

Peer-reviewed version available at Electronics 2023, 12, 883; doi:10.3390/electronics12040883

https://doi.org/10.20944/preprints202301.0328.v2
https://doi.org/10.3390/electronics12040883

18 of 29

5. Software Supporting the DMA Engine

The DMA engine described in the previous section must be supported by the software consisting

of the data processing application and the device driver. The device driver creates two separate

character devices for each DAQ board available in the system: the my_daqN (N is replaced by the

number of the board) for the DMA engine and my_ctrlN for the DAQ control logic (see Figure 1). Such

a solution enables the safe separation of controlling the DAQ system from the data processing. In

particular, an error in the data processing thread does not need to crash the DAQ control application

(which is outside the scope of this article), so restarting the data acquisition may be possible without

full reinitialization of the DAQ system.

The software may work in one of two operating modes. In the single-packet mode, the arriving

data packets are processed sequentially. Packets are processed in the order of arrival, and never

two packets are processed simultaneously. The application sleeps if there are no more packets for

processing. That mode is suitable for debugging, processing the data in a simple single-threaded

application or archiving the data on disk.

In the multi-packet mode, the packets are passed to the data processing threads in the order of

arrival. If there is a free processing thread, the next packet may be scheduled for processing before

the previous ones are processed. The application sleeps if there are no more packets available for

processing. The packet scheduled for processing becomes a property of the processing thread, and it is

responsible for freeing it after successful processing. That mode enables full utilization of the data

processing power of the DAQ host. The packets may be processed in parallel on multiple CPU cores.

It is also well suited for transferring data packets independently to the computing grid for processing

on different nodes.

The flow diagrams of both modes are shown in Figure 8.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 January 2023 doi:10.20944/preprints202301.0328.v2

Peer-reviewed version available at Electronics 2023, 12, 883; doi:10.3390/electronics12040883

https://doi.org/10.20944/preprints202301.0328.v2
https://doi.org/10.3390/electronics12040883

19 of 29

Prepare DMA buffer

Prepare DMA engine

Prepare data source

Start DMA

Process packet

Sleep waiting for
data or command

stop
command re-

ceived?

data packet
available?

Confirm and free
packet

Stop data source

Stop DMA engine

Free resources

Stop

Pass packet for
processing

Sleep waiting for
data or command

stop
command re-

ceived?

data packet
available?

Confirm scheduling
of the packet

Stop the data source

Stop DMA engine

Free resources

Stop

Start data source

Prepare DMA buffer

Prepare DMA engine

Prepare data source

Start DMA

Start data source

Join processing
threads

Start processing threads

Get packet
location in the

buffer

Process
packet

Free packet

Wait for packet
or command

stop
command re-

ceived?

Stop
thread

Get packet
location in the

buffer

Process
packet

Free packet

Wait for packet
or command

stop
command re-

ceived?

Stop
thread

[...]

Processing threads

a) b)

Yes

No

Yes

No

Yes

Yes Yes

Yes

No

No

No No

Figure 8. Two modes of operation of the data acquisition software; (a) Single-packet mode – packets

are received and processed sequentially, next packet is only handled after the previous one is fully

processed and confirmed. This mode may be well suited for recording the acquired data or debugging

the system. (b) Multi-packet mode – packets are passed for processing to the data processing threads as

they arrive. Multiple packets may be processed at the same time. This mode enables full utilization of

multiple CPU cores in the system. It may be perfect if different data packets are processed independently

(e.g., transferred to different nodes in the computing grid).

5.1. Detailed Description of the Software Operation

The software performs the following tasks:

• It prepares the huge pages-backed DMA buffer. It creates a file of the required size in a hugetblfs

filesystem (that can be done even in a shell script). Then the created file is mapped into the

application address space.
• Whenever the data acquisition is started or restarted, the following actions must be done:

– The DMA driver resets the engine (due to HLS limitations, it is needed to set the initial

values of registers).

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 January 2023 doi:10.20944/preprints202301.0328.v2

Peer-reviewed version available at Electronics 2023, 12, 883; doi:10.3390/electronics12040883

https://doi.org/10.20944/preprints202301.0328.v2
https://doi.org/10.3390/electronics12040883

20 of 29

– The DMA driver maps the buffer for DMA (if the buffer was already mapped, the mapping

is destroyed and recreated)4.
– The DMA driver configures the DMA engine to work with the currently mapped buffer. In

particular, it writes the bus addresses of all huge pages into the engine’s registers.
– The DAQ control application configures the data source.
– In the multi-packet mode, the data processing application starts the processing threads.
– The DMA driver starts the engine.
– The DAQ control application starts the data source.

• If the single-packet mode is used, the data processing loop works as follows:

– If no data packet is available, the DMA interrupts are switched on, and the application

sleeps, waiting for data or command.
– If the error occurred or the stop command has been received, the application leaves the data

processing loop.
– If the new data packet is received, the DMA interrupts are masked, and the packet is passed

to the data processing function.
– After the packet is processed, it is confirmed and freed.
– The next iteration of the loop is started.

• If the multi-packet mode is used, the data processing loop works as follows:

– IIf no data packet is available, the DMA interrupts are switched on, and the application

sleeps, waiting for data or command.
– If the error occurred or the stop command has been received, the application leaves the data

processing loop.
– If the new data packet is received, its number is passed to one of the data processing threads

via ZMQ, and the engine is notified that the particular packet has been scheduled for

processing.5

– The software checks if other packets are received and waiting for processing6. In the internal

loop, all available packets are scheduled for processing in available threads.
– The next iteration of the loop is started.

• Actions performed by the signal processing thread in the multi-packet mode are the following:

– The thread sleeps, waiting for a packet to be processed.
– The parts of the DMA buffer containing the packet descriptors and data of the packet are

synchronized for the CPU7.
– The start and end addresses of the packet data are read from the descriptor.
– The packet data are processed.
– After the data are processed, the packet is marked for freeing8.
– The thread is stopped if the error occurred or the stop command has been received.

Otherwise, the above operations are repeated.

• The shutdown procedure

– The DAQ application stops the data source.

4 This operation requires using functions get_user_pages_fast and __sg_alloc_table_from_pages or
sg_alloc_table_from_pages_segment, and the implementation depends on the version of the kernel.

5 The device driver uses dedicated ioctl commands for that purpose: DAQ1_IOC_GET_READY_DESC for getting the
number of the received packet, DAQ1_IOC_CONFIRM_SRV for writing the number of the last scheduled packet into the
last scheduled packet register in the engine.

6 A dedicated ioctl DAQ1_IOC_GET_WRITTEN_DESC command returns the number of the first packet that is not ready for
processing yet. So all packets between the returned by DAQ1_IOC_GET_READY_DESC and that one may be scheduled
for processing.

7 A dedicated ioctl DAQ1_IOC_SYNC is used for that purpose. Synchronizing the arbitrarily selected part of the SG buffer
in the Linux kernel requires storing a separate array of addresses of all huge pages creating the buffer. The original sg_table
structure does not support random access.

8 A dedicated ioctl DAQ1_IOC_CONFIRM_THAT command is used for that. Due to the parallel handling of multiple
packets, the driver must keep track of all packets ready to be freed. A bitmap is used for that purpose. When the packet
currently pointed by the “current packet” register is freed, all the packets marked for freeing are also freed. The “current
packet” and “current buffer” are then updated accordingly.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 January 2023 doi:10.20944/preprints202301.0328.v2

Peer-reviewed version available at Electronics 2023, 12, 883; doi:10.3390/electronics12040883

https://doi.org/10.20944/preprints202301.0328.v2
https://doi.org/10.3390/electronics12040883

21 of 29

– The DMA application stops the DMA engine.
– In the multi-packet mode, the DMA application sends the STOP command to processing

threads and joins them.
– The DMA application frees the resources – unmaps, and frees the DMA buffer.

The example data processing application written according to the above description is delivered

together with the sources of the driver and is available in the repository [38].

6. Tests and Results

The DMA engine and accompanying software were thoroughly tested during the development.

The initial idea of the core was tested as an entirely virtual device implemented in C in QEMU

sources [39]. At this stage, the basic assumptions regarding the architecture, structure of registers, and

driver organization were tested. That emulated environment enabled testing the first version of the

driver with different versions of the kernel and different hardware platforms. That contributed to

creating the code that compiles on a wide range of kernel versions, starting from 5.4 and works on

x86_64 and AARCH64 architectures used in PCIe-equipped servers and MPSoC systems.

The emulated environment was maintained throughout the whole development and testing

period. The emulated machine could host multiple DMA engines to verify that the driver supports the

simultaneous handling of multiple devices. The initial model of the DMA engine was continuously

updated to follow the development of the HLS-implemented engine used in the actual hardware. The

final version of the model was implemented in two versions – one connected via PCIe bus [40] and

another connected directly to the system bus (emulating the AXI bus) [41]. The driver was slightly

modified to support the DMA engine directly connected to the system bus, and the correct operation

was confirmed in emulation. Of course, verification in the actual MPSoC system should be done in the

future.

6.1. Tests in the RTL Simulations

The HLS technology generates the RTL code from the C/C++ description. However, it is a

complex process that may be significantly affected even by minor variations of the C/C++ code and

the settings used (so called pragmas). Therefore frequent verification of the generated RTL code was an

essential part of the development of the DMA engine in HLS. Complete synthesis and implementation

of the generated code take significant time. The possibilities of debugging the core operation in

hardware are also limited. The Integrated Logic Analyzer (ILA) [42] allows only a relatively short

recording of a selected subset of internal signals, and modifications of its setup require new synthesis

and implementation.

Therefore, testing of the generated RTL code was done in HLS simulation. As the PCIe interface

simulation is very time-consuming, the simulation was limited to the AXI bus. Verifying the DMA

engine working as an AXI Master required a high-performance AXI slave [43]. Thence, the testbench

was created based on the AXI cores developed by Dan Giselquist for his ZipCPU [44]. Simulation of

the computer running the control software also consumes too much time and resources. Therefore it

was replaced with a simple controller initializing the DMA core. The block diagram of the main part

of the simulation environment is shown in Figure 9.

The RTL simulations helped to convert the initial simple demonstration code provided by Xilinx

(see Listing 2) into the fully-fledged DMA engine working in continuous mode with a big SG buffer

(described in Section 4.1 and the following sections).

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 January 2023 doi:10.20944/preprints202301.0328.v2

Peer-reviewed version available at Electronics 2023, 12, 883; doi:10.3390/electronics12040883

https://doi.org/10.20944/preprints202301.0328.v2
https://doi.org/10.3390/electronics12040883

22 of 29

axctl_0

axctl_v1_0

s_axi

run

ap_start

ap_done

ap_ready

ap_idle

clk

arst_n

axi_data_fifo_0

AXI Data FIFO

S_AXI

M_AXIaclk

aresetn

axi_gpio_0

AXI GPIO

S_AXI
GPIO

gpio_io_o[31:0]

GPIO2

gpio2_io_i[31:0]

s_axi_aclk

s_axi_aresetn

axi_gpio_1

AXI GPIO

S_AXI
GPIO

gpio_io_o[31:0]

GPIO2

gpio2_io_i[31:0]

s_axi_aclk

s_axi_aresetn

axi_interconnect_0

AXI Interconnect

S00_AXI

M00_AXI

M01_AXI

M02_AXI

ACLK

ARESETN

S00_ACLK

S00_ARESETN

M00_ACLK

M00_ARESETN

M01_ACLK

M01_ARESETN

M02_ACLK

M02_ARESETN

axmon_0

axmon_v1_0

clk

arst_n

o_rdata[255:0]

i_wdata[255:0]

i_raddr[58:0]

i_waddr[58:0]

i_wstrb[31:0]

i_we

i_rd

clk

constant_0_64b

Constant

dout[63:0]

demofull_0

demofull_v1_0

S_AXI

o_we

o_waddr[58:0]

o_wdata[255:0]

o_wstrb[31:0]

o_rd

o_raddr[58:0]

i_rdata[255:0]

S_AXI_ACLK

S_AXI_ARESETN

din

dma1_0

WZ_DMA_HLS (Pre-Production)

s_axi_control

ap_ctrl

ap_start

ap_done

ap_ready

ap_idle

m_axi_gmem0

stin

ap_clk

ap_rst_n

a_V[63:0]

cur_buf[31:0]

nr_buf_V[31:0]

cur_pkt[31:0]

nr_pkt_V[31:0]

xoverrun_V[0:0]

overrun[0:0]

pkt_av[0:0]

rst_n

run

util_reduced_logic_0

Utility Reduced Logic

Op1[31:0] Res

util_vector_logic_0

Utility Vector Logic

Op1[31:0]

Op2[31:0]
Res[31:0]

Figure 9. The main part of the test environment used for simulation. The full simulation environment also contains the source of the simulated data, connected to the

din port. The axctl_0 block initializes the DMA controller. The simulated environment is available in the git repository [45] in the test_env directory.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 January 2023 doi:10.20944/preprints202301.0328.v2

Peer-reviewed version available at Electronics 2023, 12, 883; doi:10.3390/electronics12040883

https://doi.org/10.20944/preprints202301.0328.v2
https://doi.org/10.3390/electronics12040883

23 of 29

Those simulations have revealed the problem of fully utilizing the AXI bandwidth. It appeared

that the HLS-generated AXI master does not start sending the next chunk of data before the writing of

the previous one is finished and confirmed by the AXI bus. Enabling the generation of outstanding

write transactions with the num_write_outstanding parameter does not help. The only viable solution

was an increase of the chunk length9 to increase the ratio of time of writing the chunk to the time of

waiting for the confirmation. Of course, such a workaround increases the FPGA memory usage and

the data transfer latency. The results of simulations for different chunk lengths are shown in Figures 10

and 11.

Figure 10. Results of simulation for chunk length of 256 words. Approximately 74% of the AXI bus

bandwidth is used.

Figure 11. Results of simulation for chunk length of 2048 words. Approximately 93% of the AXI bus

bandwidth is used.

6.2. Tests in the Actual Hardware

The HLS-implemented DMA engine has been successfully synthesized with the Vivado-HLS and

Vivado10 environment for two hardware platforms:

• KCU105 [46] AMD/Xilinx board, equipped with Kintex Ultrascale XCKU040-2FFVA1156E FPGA,
• TEC0330 [47] board from Trenz Electronic equipped with Xilinx Virtex-7 XC7VX330T-2FFG1157C

FPGA.

To fully load the board and communication channel, the pseudorandom data from the artificial

data generator were transmitted (see Figure 12). The block diagram of the demo project is shown in

Figure 12, and the sources are available in the repository [45].

The results of synthesis for both platforms and two lengths of the data chunks11 are shown in

Table 1. The correct timing closure was obtained in all cases.

9 For historical reasons, the chunk length is defined with the MAX_BURST_LENGTH constant in the HLS sources. It does
not affect the AXI burst size, which is always 256.

10 The DMA engine was prepared for integration with projects using the 2020.1 version of Vivado-HLS and Vivado. Therefore
the same version was used to synthesize, implement and test it.

11 Lengths of 256 and 2048 words were used, like in simulation in Section 6.1, to compare simulated and actual performances.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 January 2023 doi:10.20944/preprints202301.0328.v2

Peer-reviewed version available at Electronics 2023, 12, 883; doi:10.3390/electronics12040883

https://doi.org/10.20944/preprints202301.0328.v2
https://doi.org/10.3390/electronics12040883

24 of 29

axi_gpio_0

AXI GPIO

S_AXI
GPIO

gpio_io_i[31:0]
s_axi_aclk

s_axi_aresetn

axi_pcie3_0

AXI Bridge for PCI Express Gen3 Subsystem

S_AXI_CTL

M_AXI

S_AXI

pcie_7x_mgt

sys_rst_n

cfg_ltssm_state[5:0]

user_link_up

intx_msi_request

refclk

axi_aclk

axi_aresetn

axi_ctl_aresetn

interrupt_out

intx_msi_grant

axi_pcie3_0_axi_periph

AXI Interconnect

S00_AXI

M00_AXI

M01_AXI

M02_AXI

M03_AXI

ACLK

ARESETN

S00_ACLK

S00_ARESETN

M00_ACLK

M00_ARESETN

M01_ACLK

M01_ARESETN

M02_ACLK

M02_ARESETN

M03_ACLK

M03_ARESETN

axi4s_src3_0

axi4s_src3_v1_0

interface_axis

clk

resetn

start

constant_0_64b

Constant

dout[63:0]

constant_32b_id

Constant

dout[31:0]

dma1_0

WZ_DMA_HLS (Pre-Production)

s_axi_control

ap_ctrl

ap_start

ap_done

ap_ready

ap_idle

m_axi_gmem0

stin

ap_clk

ap_rst_n

a_V[63:0]

cur_buf[31:0]

nr_buf_V[31:0]

cur_pkt[31:0]

nr_pkt_V[31:0]

xoverrun_V[0:0]

gen_reset_0

gen_reset_v1_0

clk resetn

hls_dma_ctrl_v1_0_S0_0

hls_dma_ctrl_v1_0_S00_AXI_v1_0

S_AXI

srv_pkt[31:0]

cur_pkt[31:0]

nr_pkt[31:0]

cur_buf[31:0]

nr_buf[31:0]

ctrl_out[31:0]

ctrl_in[31:0]

S_AXI_ACLK

S_AXI_ARESETN

hls_dma_support_0

hls_dma_support_v1_0

nr_pkt[31:0]

nr_buf[31:0]

srv_pkt[31:0]

cur_pkt[31:0]

cur_buf[31:0]

overrun

ap_start

ap_done

ap_ready

ap_idle

ap_rst_n

ctrl_out[31:0]

ctrl_in[31:0]

src_start

irq_request

pci_express_x8

pcie_refclk

util_ds_buf

Utility Buffer

CLK_IN_D
IBUF_OUT[0:0]

IBUF_DS_ODIV2[0:0]

Figure 12. Block diagram of the demo project testing the DMA engine with simulated data source in the actual hardware.

Table 1. Resource consumption of the DMA engine for tested hardware platforms and two lengths of the data chunks. Absolute and percentage (in parenthesis)

consumption is given. The artificial data source was included in the design, but the ILA blocks used for debugging were excluded.

KCU105 TEC0330
LUTs Flip Flops Block RAMs LUTs Flip Flops Block RAMs

Available 242400 484800 600 204000 408000 750
Used for 256-words chunks 9909 (4.09%) 15204 (3.14%) 45 (7.5%) 12503 (6.13%) 15928 (3.90%) 45 (6%)

Used for 2048-words chunks 9858 (4.07%) 15213 (3.14%) 69.5 (11.58%) 12445 (6.10%) 15946 (3.91%) 69.5 (9.27%)

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 January 2023 doi:10.20944/preprints202301.0328.v2

Peer-reviewed version available at Electronics 2023, 12, 883; doi:10.3390/electronics12040883

https://doi.org/10.20944/preprints202301.0328.v2
https://doi.org/10.3390/electronics12040883

25 of 29

For tests, the KCU105 board was placed in an 8xGen3 PCIe slot of a PC computer with a PRIME

B360M-A motherboard, 32 GiB of RAM, and Intel® Core™ i5-9400 CPU @ 2.90GHz. The TEC0330

board was placed in an 8xGen3 PCIe slot of a Supermicro server with an X10SRi-F motherboard, 64 GiB

of RAM, and Intel® Xeon® CPU E5-2630 v3 @ 2.40GHz.

In both boards, a reliable operation with 8-lanes PCIe Gen 3 was obtained12.

The data processing application was verified the correctness of all transferred words. The correct

operation was confirmed in tests lasting up to 8 hours. The firmware compiled for the maximum length

of data chunk equal to 256 words provided low utilization of the Available PCIe bandwidth. Therefore,

the tests were repeated with the length of the data chunk increased to 2048 words. The results are

summarised in Table 2. The measurements of the transfer speed agree with the results obtained in

the RTL simulations (see Section 6.1). The bandwidth utilization is lower than in simulations because

the PCIe bridge introduces additional latency that delays the write transaction’s confirmation. Using

the 2048-word long data chunk provides acceptable performance at reasonable resource consumption.

However, the limited utilization of bus bandwidth requires further investigation.

Table 2. Transmission speed and 8xGen3 PCI Express bandwidth utilization in tested hardware

platforms.

KCU105 TEC0330
Absolute Percentage Absolute Percentage

Available 7.877 GB/s 100% 7.877 GB/s 100%
Used for 256-words chunks 4.731 GB/s 60.1%) 15204 59.9%

Used for 2048-words chunks 6.724 GB/s 85.4%) 6.691 84.9%

7. Conclusions

The main aim of the work was achieved. A versatile DMA engine was implemented in HLS

with minimal supporting HDL code. Accompanying kernel driver and user space data application

were created. Correct operation of the whole system in the actual hardware was confirmed with the

PCIe-connected FPGA boards hosted in x86_64 computers. Correct operation with an FPGA connected

directly to the system bus (AXI) was confirmed in simulations.

The developped system may be easily used in the actual DAQ for the HEP experiments. The

source or artificial data should be removed, and instead, an actual data concentrator with AXI-Stream

output should be connected. That procedure has already been verified in practice. The DAQ firmware

for the TEC0330 board was initially prepared for the BM@N experiment [48]. Later it was adapted for

other experiments and integrated with the described DMA engine. One is the PFAD experiment [49]

group that has obtained positive results. The whole created DAQ system will be a subject of a separate

publication.

The novelty of the presented system is a design oriented on flexibility. The user may control

without rebooting the computer resources used by the DMA engine. Using the huge pages for the SG

buffer enables changing the amount of memory allocated for the DMA buffer according to the current

needs. The user may decide at the runtime which of the installed DAQ boards should be used without

wasting memory for installed but not used boards. That may be especially useful for development and

testing setups.

The system offers almost entirely zero-copy operation. The packet data placed into the DMA

buffer may be either analyzed locally without copying or passed for transmission to another processing

node in the computing grid environment. The system supports the parallel processing of multiple

packets, enabling full utilization of the computing power of the machine hosting the DAQ boards.

12 Trenz Electronic advertises TEC0330 as 8-lanes PCIe Gen 2 capable. However, the FPGA chip used in the board supports
PCIe Gen 3, and correct operation in 8xGen3 configuration has been verified in exhaustive tests of three different boards.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 January 2023 doi:10.20944/preprints202301.0328.v2

Peer-reviewed version available at Electronics 2023, 12, 883; doi:10.3390/electronics12040883

https://doi.org/10.20944/preprints202301.0328.v2
https://doi.org/10.3390/electronics12040883

26 of 29

The important feature of the presented DMA engine is its open-source character. The sources of all

components created by the author are available in public git repositories: the HLS/HDL design in [45],

the driver and data processing application in [38], and the QEMU-based emulation environment with

author’s models in [40,41]. That is very important because the system, even though usable, still has an

experimental character. Therefore, feedback from other users is essential.

Implementation of the core part of the DMA engine in C++ using the HLS technology facilitates

further modifications and improvements. Considering that a significant contribution of the presented

solution is that it includes the whole methodology of development and testing – including work with

the model in QEMU, HLS optimizations based on partial RTL simulations, and their final combination

into a design suitable for synthesis and implementation in FPGA.

Future work should focus on fixing the discovered deficiencies of the HLS-generated AXI master

to improve the bus bandwidth utilization. In case if that problem is resolved in newer versions of HLS,

porting the design to the newer Vitis-HLS environment may be necessary13. The first attempts have

shown that certain non-obvious modifications may be needed. The engine’s operation in FPGA directly

connected to the system bus has been verified only in the simulation. Therefore the implementation of

the engine on an MPSoC running Linux should be done in the nearest future. Another topic for future

improvements is integrating the HLS-implemented device with QEMU directly.

The presented solution offers ready-to-use features and development possibilities that should

make it an interesting contribution in the area of FPGA-based DMA engines for HEP DAQ systems.

Funding: This research was partially supported by the statutory funds of Institute of Electronic Systems. This
project has also received funding from the European Union’s Horizon 2020 research and innovation programme
under grant agreement No 871072.

Data Availability Statement: Not applicable

Acknowledgments: The author acknowledges support from coworkers from FAIR/GSI. The tests in the actual
hardware were partially done in the FAIR/GSI STS lab, and were supported by Christian J. Schmidt, Jörg Lehnert
and David Emschermann.

Conflicts of Interest: The author declares no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

FPGA Field programmable gate array

DMA Direct memory access

DAQ Data acquisition system

HEP High-energy physics

SoC System on chip

MPSoC Multi-processor system on chip

TLP Transaction Layer Packet in the PCI Express interface

KiB 1024 bytes

MiB 1024*1024 bytes

GiB 1024*1024*1024 bytes

13 Currently the design requires Vivado and Vivado-HLS 2020.1, because that’s the version used by other projects with which
it should be integrated.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 January 2023 doi:10.20944/preprints202301.0328.v2

Peer-reviewed version available at Electronics 2023, 12, 883; doi:10.3390/electronics12040883

https://doi.org/10.20944/preprints202301.0328.v2
https://doi.org/10.3390/electronics12040883

27 of 29

References

1. Baron, S.; Ballabriga, R.; Bonacini, S.; Cobanoglu, O.; Gui, P.; Kloukinas, K.; Hartin, P.; Llopart, X.; Fedorov,

T.; Francisco, R.; Wyllie, K.; Yu, B.; Marchioro, A.; Faccio, F.; Paillard, C.; Moreira, P.; Pinilla, N. The GBT

Project 2009. doi:10.5170/CERN-2009-006.342.

2. Marin, M.B.; Baron, S.; Feger, S.; Leitao, P.; Lupu, E.; Soos, C.; Vichoudis, P.; Wyllie, K. The

GBT-FPGA core: features and challenges. Journal of Instrumentation 2015, 10, C03021–C03021.

doi:10.1088/1748-0221/10/03/C03021.

3. Soós, C.; Détraz, S.; Olanterä, L.; Sigaud, C.; Troska, J.; Vasey, F.; Zeiler, M. Versatile Link PLUS transceiver

development. Journal of Instrumentation 2017, 12, C03068–C03068. doi:10.1088/1748-0221/12/03/C03068.

4. Mendez, J.M.; Baron, S.; Kulis, S.; Fonseca, J. New LpGBT-FPGA IP: Simulation model and first

implementation. Proceedings of Topical Workshop on Electronics for Particle Physics — PoS(TWEPP2018);

Sissa Medialab: Antwerp, Belgium, 2019; p. 059. doi:10.22323/1.343.0059.

5. AXI Bridge for PCI Express Gen3 Subsystem v3.0. https://docs.xilinx.com/v/u/en-US/pg194-axi-bridge-

pcie-gen3. [Online; accessed 7-August-2022].

6. DMA/Bridge Subsystem for PCI Express v4.1. https://docs.xilinx.com/r/en-US/pg195-pcie-dma. [Online;

accessed 7-August-2022].

7. AMBA AXI-Stream Protocol Specification. https://developer.arm.com/documentation/ihi0051/latest.

[Online; accessed 15-October-2022].

8. Corbet, J.; Rubini, A.; Kroah-Hartman, G.; Rubini, A. Linux device drivers, 3rd ed ed.; O’Reilly: Beijing ;

Sebastopol, CA, 2005. Also available at https://lwn.net/Kernel/LDD3/ [Online; accessed 7-August-2022].

9. Intel® 64 and IA-32 Architectures Software Developer Manuals. https://www.intel.com/content/www/

us/en/developer/articles/technical/intel-sdm.html. [Online; accessed 7-August-2022].

10. An Introduction to IOMMU Infrastructure in the Linux Kernel. https://lenovopress.lenovo.com/lp1467.pdf.

[Online; accessed 15-October-2022].

11. 32/64 bit, IOMMU and SWIOTLB in Linux. http://xillybus.com/tutorials/iommu-swiotlb-linux. [Online;

accessed 15-October-2022].

12. The kernel’s command-line parameters. https://www.kernel.org/doc/html/latest/admin-guide/kernel-

parameters.html. [Online; accessed 7-August-2022].

13. Suryavanshi, A.S.; Sharma, S. An approach towards improvement of contiguous memory allocation

linux kernel: a review. Indonesian Journal of Electrical Engineering and Computer Science 2022, 25, 1607.

doi:10.11591/ijeecs.v25.i3.pp1607-1614.

14. AXI DMA Controller. https://www.xilinx.com/products/intellectual-property/axi_dma.html. [Online;

accessed 7-August-2022].

15. AXI Central DMA Controller. https://www.xilinx.com/products/intellectual-property/axi_central_dma.

[Online; accessed 7-August-2022].

16. AXI Central DMA Controller. https://www.xilinx.com/products/intellectual-property/axi_video_dma.

html. [Online; accessed 7-August-2022].

17. AXI Datamover. https://www.xilinx.com/products/intellectual-property/axi_datamover.html. [Online;

accessed 7-August-2022].

18. Zabołotny, W.M. DMA implementations for FPGA-based data acquisition systems. 2017, p. 1044548.

doi:10.1117/12.2280937.

19. Simple AXI4-Stream -> PCIe core for Virtex 7. https://gitlab.com/WZab/versatile-dma1. [Online; accessed

7-August-2022].

20. AXI4-Stream FIFO. https://docs.xilinx.com/v/u/en-US/pg080-axi-fifo-mm-s. [Online; accessed

7-August-2022].

21. DMA for PCI Express (PCIe) Subsystem. https://www.xilinx.com/products/intellectual-property/pcie-

dma.html. [Online; accessed 7-August-2022].

22. Gisselquist, D. WB2AXIP: Bus interconnects, bridges, and other components. https://github.com/ZipCPU/

wb2axip. [Online; accessed 7-August-2022].

23. Gisselquist, D. AXIS2MM – AXI Stream to AXI Memory Mapped interface. https://github.com/ZipCPU/

wb2axip/blob/master/rtl/axis2mm.v. [Online; accessed 7-August-2022].

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 January 2023 doi:10.20944/preprints202301.0328.v2

Peer-reviewed version available at Electronics 2023, 12, 883; doi:10.3390/electronics12040883

https://doi.org/10.5170/CERN-2009-006.342
https://doi.org/10.1088/1748-0221/10/03/C03021
https://doi.org/10.1088/1748-0221/12/03/C03068
https://doi.org/10.22323/1.343.0059
https://docs.xilinx.com/v/u/en-US/pg194-axi-bridge-pcie-gen3
https://docs.xilinx.com/v/u/en-US/pg194-axi-bridge-pcie-gen3
https://docs.xilinx.com/v/u/en-US/pg194-axi-bridge-pcie-gen3
https://docs.xilinx.com/v/u/en-US/pg194-axi-bridge-pcie-gen3
https://docs.xilinx.com/r/en-US/pg195-pcie-dma
https://docs.xilinx.com/r/en-US/pg195-pcie-dma
https://developer.arm.com/documentation/ihi0051/latest
https://developer.arm.com/documentation/ihi0051/latest
https://lwn.net/Kernel/LDD3/
https://lwn.net/Kernel/LDD3/
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://lenovopress.lenovo.com/lp1467.pdf
https://lenovopress.lenovo.com/lp1467.pdf
http://xillybus.com/tutorials/iommu-swiotlb-linux
http://xillybus.com/tutorials/iommu-swiotlb-linux
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://doi.org/10.11591/ijeecs.v25.i3.pp1607-1614
https://www.xilinx.com/products/intellectual-property/axi_dma.html
https://www.xilinx.com/products/intellectual-property/axi_dma.html
https://www.xilinx.com/products/intellectual-property/axi_central_dma
https://www.xilinx.com/products/intellectual-property/axi_central_dma
https://www.xilinx.com/products/intellectual-property/axi_video_dma.html
https://www.xilinx.com/products/intellectual-property/axi_video_dma.html
https://www.xilinx.com/products/intellectual-property/axi_video_dma.html
https://www.xilinx.com/products/intellectual-property/axi_video_dma.html
https://www.xilinx.com/products/intellectual-property/axi_datamover.html
https://www.xilinx.com/products/intellectual-property/axi_datamover.html
https://doi.org/10.1117/12.2280937
https://gitlab.com/WZab/versatile-dma1
https://gitlab.com/WZab/versatile-dma1
https://docs.xilinx.com/v/u/en-US/pg080-axi-fifo-mm-s
https://docs.xilinx.com/v/u/en-US/pg080-axi-fifo-mm-s
https://www.xilinx.com/products/intellectual-property/pcie-dma.html
https://www.xilinx.com/products/intellectual-property/pcie-dma.html
https://www.xilinx.com/products/intellectual-property/pcie-dma.html
https://www.xilinx.com/products/intellectual-property/pcie-dma.html
https://github.com/ZipCPU/wb2axip
https://github.com/ZipCPU/wb2axip
https://github.com/ZipCPU/wb2axip
https://github.com/ZipCPU/wb2axip
https://github.com/ZipCPU/wb2axip/blob/master/rtl/axis2mm.v
https://github.com/ZipCPU/wb2axip/blob/master/rtl/axis2mm.v
https://github.com/ZipCPU/wb2axip/blob/master/rtl/axis2mm.v
https://github.com/ZipCPU/wb2axip/blob/master/rtl/axis2mm.v
https://doi.org/10.20944/preprints202301.0328.v2
https://doi.org/10.3390/electronics12040883

28 of 29

24. Gisselquist, D. AXISGDMA a scatter-gather DMA implementation. https://github.com/ZipCPU/wb2axip/

blob/master/rtl/axisgdma.v. [Online; accessed 7-August-2022].

25. PCIe SG DMA controller. https://opencores.org/projects/pcie_sg_dma. [Online; accessed 7-August-2022].

26. Wupper: A PCIe Gen3/Gen4 DMA controller for Xilinx FPGAs. https://opencores.org/projects/virtex7_

pcie_dma. [Online; accessed 7-August-2022].

27. Corbet, J. NAPI polling in kernel threads. https://lwn.net/Articles/833840/, 2020. [Online; accessed

12-January-2023].

28. Gisselquist, D. Building a basic AXI Master. https://zipcpu.com/blog/2020/03/23/wbm2axisp.html, 2020.

[Online; accessed 7-August-2022].

29. Gisselquist, D. Examples of AXI4 bus masters. https://zipcpu.com/blog/2021/06/28/master-examples.

html, 2021. [Online; accessed 7-August-2022].

30. Vivado Design Suite User Guide, High-Level Synthesis. https://www.xilinx.com/content/dam/xilinx/

support/documents/sw_manuals/xilinx2020_1/ug902-vivado-high-level-synthesis.pdf. [Online; accessed

7-August-2022].

31. AXI4 Master Interface. https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/AXI4-Master-Interface. [Online;

accessed 7-August-2022].

32. Vitis HLS Introductory Examples – Using AXI Master. https://github.com/Xilinx/Vitis-HLS-

Introductory-Examples/blob/master/Interface/Memory/using_axi_master/example.cpp. [Online;

accessed 7-August-2022].

33. AXI4-Stream Interfaces. https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/AXI4-Stream-Interfaces.

[Online; accessed 7-August-2022].

34. Vitis HLS Introductory Examples – AXI Stream to Master. https://github.com/Xilinx/Vitis-HLS-

Introductory-Examples/blob/master/Interface/Streaming/axi_stream_to_master. [Online; accessed

7-August-2022].

35. HLS pragmas (Vitis). https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/HLS-Pragmas. [Online; accessed

7-August-2022].

36. Zabołotny, W.M. Implementation of heapsort in programmable logic with high-level synthesis. Photonics

Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 2018;

Romaniuk, R.S.; Linczuk, M., Eds.; SPIE: Wilga, Poland, 2018; p. 245. doi:10.1117/12.2502093.

37. Zabolotny, W.M. Implementation of OMTF trigger algorithm with high-level synthesis. Photonics

Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 2019;

Romaniuk, R.S.; Linczuk, M., Eds.; SPIE: Wilga, Poland, 2019; p. 22. doi:10.1117/12.2536258.

38. Driver for the wzdaq1 AXI/PCIe DAQ system. https://gitlab.com/WZab/wzdaq_drv. [Online; accessed

6-January-2023].

39. Zabolotny, W.M. QEMU-based hardware/software co-development for DAQ systems. Journal of

Instrumentation 2022, 17, C04004. doi:10.1088/1748-0221/17/04/C04004.

40. QEMU repository with model of PCIe-connected HLS DMA engine. https://github.com/wzab/qemu/

tree/wzdaq-hls. [Online; accessed 6-January-2023].

41. QEMU repository with model system bus connected HLS DMA engine. https://github.com/wzab/qemu/

tree/wzdaq-hls-sysbus. [Online; accessed 6-January-2023].

42. Integrated Logic Analyzer (ILA). https://www.xilinx.com/products/intellectual-property/ila.html.

[Online; accessed 12-November-2022].

43. Gisselquist, D. Building the perfect AXI4 slave. https://zipcpu.com/blog/2019/05/29/demoaxi.html, 2019.

[Online; accessed 7-August-2022].

44. WB2AXIP: Bus interconnects, bridges, and other components. https://github.com/ZipCPU/wb2axip.

[Online; accessed 7-August-2022].

45. hls_dma - a simple yet versatile HLS-implemented DMA engine. https://gitlab.com/WZabISE/hls_dma.

[Online; accessed 6-January-2023].

46. Xilinx Kintex UltraScale FPGA KCU105 Evaluation Kit. https://www.xilinx.com/products/boards-and-

kits/kcu105.html. [Online; accessed 6-January-2023].

47. TEC0330 - PCIe FMC Carrier with Xilinx Virtex-7 FPGA. https://shop.trenz-electronic.de/en/Products/

Trenz-Electronic/PCIe-FMC-Carrier/TEC0330-Xilinx-Virtex-7/. [Online; accessed 6-January-2023].

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 January 2023 doi:10.20944/preprints202301.0328.v2

Peer-reviewed version available at Electronics 2023, 12, 883; doi:10.3390/electronics12040883

https://github.com/ZipCPU/wb2axip/blob/master/rtl/axisgdma.v
https://github.com/ZipCPU/wb2axip/blob/master/rtl/axisgdma.v
https://github.com/ZipCPU/wb2axip/blob/master/rtl/axisgdma.v
https://github.com/ZipCPU/wb2axip/blob/master/rtl/axisgdma.v
https://opencores.org/projects/pcie_sg_dma
https://opencores.org/projects/pcie_sg_dma
https://opencores.org/projects/virtex7_pcie_dma
https://opencores.org/projects/virtex7_pcie_dma
https://opencores.org/projects/virtex7_pcie_dma
https://opencores.org/projects/virtex7_pcie_dma
https://lwn.net/Articles/833840/
https://lwn.net/Articles/833840/
https://zipcpu.com/blog/2020/03/23/wbm2axisp.html
https://zipcpu.com/blog/2020/03/23/wbm2axisp.html
https://zipcpu.com/blog/2021/06/28/master-examples.html
https://zipcpu.com/blog/2021/06/28/master-examples.html
https://zipcpu.com/blog/2021/06/28/master-examples.html
https://zipcpu.com/blog/2021/06/28/master-examples.html
https://www.xilinx.com/content/dam/xilinx/support/documents/sw_manuals/xilinx2020_1/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/content/dam/xilinx/support/documents/sw_manuals/xilinx2020_1/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/content/dam/xilinx/support/documents/sw_manuals/xilinx2020_1/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/content/dam/xilinx/support/documents/sw_manuals/xilinx2020_1/ug902-vivado-high-level-synthesis.pdf
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/AXI4-Master-Interface
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/AXI4-Master-Interface
https://github.com/Xilinx/Vitis-HLS-Introductory-Examples/blob/master/Interface/Memory/using_axi_master/example.cpp
https://github.com/Xilinx/Vitis-HLS-Introductory-Examples/blob/master/Interface/Memory/using_axi_master/example.cpp
https://github.com/Xilinx/Vitis-HLS-Introductory-Examples/blob/master/Interface/Memory/using_axi_master/example.cpp
https://github.com/Xilinx/Vitis-HLS-Introductory-Examples/blob/master/Interface/Memory/using_axi_master/example.cpp
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/AXI4-Stream-Interfaces
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/AXI4-Stream-Interfaces
https://github.com/Xilinx/Vitis-HLS-Introductory-Examples/blob/master/Interface/Streaming/axi_stream_to_master
https://github.com/Xilinx/Vitis-HLS-Introductory-Examples/blob/master/Interface/Streaming/axi_stream_to_master
https://github.com/Xilinx/Vitis-HLS-Introductory-Examples/blob/master/Interface/Streaming/axi_stream_to_master
https://github.com/Xilinx/Vitis-HLS-Introductory-Examples/blob/master/Interface/Streaming/axi_stream_to_master
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/HLS-Pragmas
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/HLS-Pragmas
https://doi.org/10.1117/12.2502093
https://doi.org/10.1117/12.2536258
https://gitlab.com/WZab/wzdaq_drv
https://gitlab.com/WZab/wzdaq_drv
https://doi.org/10.1088/1748-0221/17/04/C04004
https://github.com/wzab/qemu/tree/wzdaq-hls
https://github.com/wzab/qemu/tree/wzdaq-hls
https://github.com/wzab/qemu/tree/wzdaq-hls
https://github.com/wzab/qemu/tree/wzdaq-hls
https://github.com/wzab/qemu/tree/wzdaq-hls-sysbus
https://github.com/wzab/qemu/tree/wzdaq-hls-sysbus
https://github.com/wzab/qemu/tree/wzdaq-hls-sysbus
https://github.com/wzab/qemu/tree/wzdaq-hls-sysbus
https://www.xilinx.com/products/intellectual-property/ila.html
https://www.xilinx.com/products/intellectual-property/ila.html
https://zipcpu.com/blog/2019/05/29/demoaxi.html
https://zipcpu.com/blog/2019/05/29/demoaxi.html
https://github.com/ZipCPU/wb2axip
https://github.com/ZipCPU/wb2axip
https://gitlab.com/WZabISE/hls_dma
https://gitlab.com/WZabISE/hls_dma
https://www.xilinx.com/products/boards-and-kits/kcu105.html
https://www.xilinx.com/products/boards-and-kits/kcu105.html
https://www.xilinx.com/products/boards-and-kits/kcu105.html
https://www.xilinx.com/products/boards-and-kits/kcu105.html
https://shop.trenz-electronic.de/en/Products/Trenz-Electronic/PCIe-FMC-Carrier/TEC0330-Xilinx-Virtex-7/
https://shop.trenz-electronic.de/en/Products/Trenz-Electronic/PCIe-FMC-Carrier/TEC0330-Xilinx-Virtex-7/
https://shop.trenz-electronic.de/en/Products/Trenz-Electronic/PCIe-FMC-Carrier/TEC0330-Xilinx-Virtex-7/
https://shop.trenz-electronic.de/en/Products/Trenz-Electronic/PCIe-FMC-Carrier/TEC0330-Xilinx-Virtex-7/
https://doi.org/10.20944/preprints202301.0328.v2
https://doi.org/10.3390/electronics12040883

29 of 29

48. Dementev, D.; Guminski, M.; Kovalev, I.; Kruszewski, M.; Kudryashov, I.; Kurganov, A.; Miedzik, P.; Murin,

Y.; Pozniak, K.; Schmidt, C.J.; Shitenkow, M.; Voronin, A.G.; Zabolotny, W.M. Fast Data-Driven Readout

System for the Wide Aperture Silicon Tracking System of the BM@N Experiment. Physics of Particles and

Nuclei 2021, 52, 830–834. doi:10.1134/S1063779621040213.

49. Frotscher, Axel. The (p,3p) two-proton removal from neutron-rich nuclei and the development of the

STRASSE tracker 2021. doi:10.26083/TUPRINTS-00019775.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those

of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)

disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or

products referred to in the content.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 January 2023 doi:10.20944/preprints202301.0328.v2

Peer-reviewed version available at Electronics 2023, 12, 883; doi:10.3390/electronics12040883

https://doi.org/10.1134/S1063779621040213
https://doi.org/10.26083/TUPRINTS-00019775
https://doi.org/10.20944/preprints202301.0328.v2
https://doi.org/10.3390/electronics12040883

	Introduction
	Hardware Platform Considerations
	Computer System Considerations
	Boot Time Reservation
	Contiguous Memory Allocation
	Working with Non-Contiguous Buffers

	Existing Solutions for the Implementation of DMA in FPGAs
	Official DMA Engines from AMD/Xilinx
	Selected Existing Open-Source DMA Engines
	PCIe SG DMA Controller
	Wupper

	Concept of a Versatile DMA Engine for HEP
	Implementation of DMA in FPGA with HLS
	Development of the Final HLS Solution
	Readin Subtask
	Prepare Subtask
	Writeout Subtask
	Update_outs Subtask
	HDL Support Cores

	Software Supporting the DMA Engine
	Detailed Description of the Software Operation

	Tests and Results
	Tests in the RTL Simulations
	Tests in the Actual Hardware

	Conclusions
	References

