

Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

Potential of Pigmented Rice Variety Cempo Ireng in Rice Breeding Program for Improving Food Sustainability

Yheni Dwiningsih¹, Jawaher Alkahtani²

¹Department of Crop, Soil and Environmental Sciences, University of Arkansas, Fayetteville, Arkansas, United States of America

²Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia

Correspondence: ydwining@uark.edu

Abstract

Cempo Ireng (*Oryza sativa* L. var. Cempo Ireng) is one of the black rice variety in Indonesia that consumed as functional food, not as a staple food because of the black rice contains anthocyanin pigment which has beneficial to human health. High concentration of anthocyanin reaching 393.93 ppm cause black color in the pericarp layer of Cempo Ireng which make this variety as an antioxidant source, low glycemic index, and free of gluten, leading to have higher price in the rice market. However, most of the farmers are not cultivate Cempo Ireng due to the longer vegetative phase up to 150 days compared to the white rice varieties which only takes 90 days, the taller phenotype of Cempo Ireng cause problems in cultivation, and also the purple color of Cempo Ireng attract birds and earhead bug (*Leptocoris a oratorius*) to feed on black rice caryopsis that cause severe yield loss. Transgenic methods, mutation technique, intensification systems, and physical treatment have been applied in Cempo Ireng to overcome those lack characteristics. In the future, Cempo Ireng also has a big potential to become a parent in cross breeding program because of the positive characters. The aim of this review is to describe the potential of Cempo Ireng in rice breeding program for improving food sustainability.

Key words: Cempo Ireng, anthocyanin, functional food, transgenic, mutation, intensification system, physical treatment

Introduction

Rice is the staple food for more than a half population world-wide which have many varieties. Besides white rice, there are pigmented rice, including black rice, brown rice, and red rice varieties. Pigmented rice varieties have been cultivated in Indonesia, since 2500 B.C. Rice grains rich in minerals and vitamins, also free of gluten, cholesterol, and sodium [1,2]. One of the well-known pigmented rice variety is Cempo Ireng (*Oryza sativa* L. var. Cempo Ireng) which originally from Sleman Regency, Yogyakarta, Central Java, Indonesia. Among the rice consumers, black rice is consumed as functional food, not as a staple food because of the black rice contains anthocyanin pigment which has beneficial to human health [3,4,5,6,7]. Cempo Ireng belongs to japonica rice sub-species which has rounded, small size, and sticky textured grains.

High concentration of anthocyanin reaching 393.93 ppm cause black color in the pericarp layer of Cempo Ireng which make this variety as an antioxidant source, leading to have higher price in the rice market [8,9,10,11]. The type of anthocyanin in the aleurone layer of Cempo Ireng are peonidin 3-O-glucoside and cyanidin 3-O-glucoside [10]. Anthocyanin content in Cempo Ireng can lower the blood cholesterol level, prevent cancer, and decrease the risk of arteriosclerosis [13,14,15,16]. However, most of the farmers are not cultivate Cempo Ireng due to the longer vegetative phase up to 150 days compared to the white rice varieties which only takes 90 days, the taller phenotype of Cempo Ireng cause problems in cultivation, and also the purple color of Cempo Ireng attract birds and earhead bug (*Leptocoris a oratorius*) to feed on

black rice caryopsis that cause severe yield loss [3,17,18]. Due to the difficult cultivation, the productivity of Cempo Ireng is low. It is important to increase Cempo Ireng productivity although the day of harvesting reaching 5 months and susceptible to lodging due to tall plant height up to 154 cm. Understanding the flowering pathway of Cempo Ireng is one of the efforts to shorten the flowering period in order to increase the yield. Preliminary results identified the flowering genes *Hd3a* and *RFT1* in Cempo Ireng under neutral day conditions [10,19,20].

Nowadays, black rice variety, such as Cempo Ireng has become an alternative staple food to substitute white rice due to it has higher anthocyanin content; lower carbohydrates; free of gluten; rich in amino acids, vitamin B1 and E; and more mineral contents, such as Zn, Fe, P, and Mn [10,21,22]. Methanolic extract of Cempo Ireng bran potentially suppress the growth breast cancer T47D cells [5]. Cempo Ireng also contains 315 Kcal of energy, 8 g of protein, 76.9 g of carbohydrate, and 6.1 g of fibers. Additionally, Cempo Ireng showed better physical characteristics, such as fragrant and soft texture compared to the white rice because of the low amylose content only about 22.97%. Characterization of anthocyanin content and other components in Cempo Ireng expected to accommodate plant breeders to use Cempo Ireng as parent in rice breeding programs. The bran of Cempo Ireng also become a source of macro- and micronutrients [10,23]. Production of Cempo Ireng needs to be increased by optimal cultivation to accommodate the increasing demand from the rice consumers. The aim of this review is to describe the potential of Cempo Ireng in rice breeding program for improving food sustainability.

Major Agronomic and Quality Traits of Cempo Ireng

Cempo Ireng belongs to *Japonica* subspecies which become getting popular among the rice consumers due to the high anthocyanin content and low glycemic index. As a black rice variety, Cempo Ireng showed different major agronomic characteristics and grain quality traits compared to the white rice varieties (Table 1 and 2). Although the plant stature of Cempo Ireng is too tall, the harvest period is so long, and low productivity but this variety is resistant to bacterial blight disease and *Xanthomonas oryzae* pv. *Oryzae* (Xoo), more tolerant to drought and salinity stress [24,25,26,27]. Additionally, Cempo Ireng identified as photoperiod insensitive. After the inoculation of Xoo, Cempo Ireng expressed resistant genes *xa5*, *xa10*, *xa21*, and *RPP13-like* [25].

The physicochemical characteristics and organoleptic quality of Cempo Ireng is different from the white rice varieties. Based on the organoleptic quality test, including texture, aroma, color, and flavor of Cempo Ireng showed that this variety has softer, more fragrant aroma, and more attractive color compared to the other black rice varieties, such as Jowo Melik and Toraja [28]. Cempo Ireng also become a functional food resource because of the hypoglycemic, high anthocyanin, fiber, and protein content [17,29,30]. Among the black rice varieties in Indonesia, including Melik, Jlitheng, Pari Ireng, Beras hitam NTT, Beras hitam Bantul, Beras hitam Magelang berbulu, Beras hitam Magelang tak berbulu, Beras hitam Sragen, Beras hitam Banjarnegara berbatasan Wonosobo, Beras hitam Banjarnegara, Beras hitam Tugiyu umur panjang, Sembada hitam, Beras hitam Muharjo, Beras hitam Patalan, Beras hitam Tugiyu umur pendek, Andel hitam 1, and Beras hitam Yunianto; Cempo Ireng contains the highest anthocyanin concentration up to 428.38 mg/100g [3]. Vitamins and minerals contents such as P, Mn, Zn, and Fe of Cempo Ireng also higher than the white rice varieties [12,31].

Table 1. Agronomic Characteristics of Cempo Ireng [24,25,26]

Agronomic Traits	Cempo Ireng
Plant height	130 – 150 cm
Total number of tillers	15
Productive tiller number	13
Category of culm length	Long (141 – 155 cm)
Anthocyanin coloration of leaf sheath	Absent
Intensity of green color of leaf blade	Light
Category of diameter at basal internode	Thick
Chlorophyll content	27 µg/cm
Relative water content	80 – 90 %
Flowering days	79 day after planted
Shoot dry weight	0.14 g
Root length	35 cm
Panicle length	22.76 cm
Category of panicle length	Long (~ 35 cm)
Total spikelet per panicle	120 – 150
Filled grain number per panicle	95.09
Productivity	5 – 7 ton/ha
Harvest age	154 day after planted
Hull color	Black
Awn length	Intermediate (~15 mm)
Bacterial leaf blight disease	Resistance
<i>Xanthomonas oryzae</i> pv. <i>Oryzae</i> (Xoo)	Resistance

Table 2. Grain Characteristics of Cempo Ireng [3,10,17,28,29]

Grain Quality Traits	Cempo Ireng
1000-grain weight	24.51 g
Grain shape	Rounded
Glycemic index of the grains	Low (50 – 60)
Seed color	Black
Texture	Soft
Aroma	Fragrance
Anthocyanin contents	44.80 ppm (43.2%)
Carotenoid contents	0.38 mg/g
Water contents	5.5%
Glycemic index	14.41%
Amylose contents	2.27%
Carbohydrate contents	21.6%
Protein contents	11.65%
Lipid contents	10.85%
Fiber contents	1.13%
Phosphor (P)	22.57 ppm
Ferrum (Fe)	91.46 ppm
Calcium (Ca)	38.45 ppm

Transgenic Lines of Cempo Ireng

Long harvest period is one of the lack characteristic of Cempo Ireng. Shorten the flowering period of Cempo Ireng by using molecular genetic technique can enhance the rice productivity and support national food security. Flowering period in the rice plant is controlled by day length. Basic information of flowering genes have been investigated by a semi-quantitative analysis to identify the patterns of flowering genes expression. Under a neutral day condition in a tropical environment, two flowering genes *Hd3a* (Heading date 3a) and *RFT1* (rice

Flowering Locus T1), and also FT-like genes such as FT-L10, FT-L9, FT-L6, FT-L5, *Hd1*, and *OsCOL4* were expressed together. These flowering genes were investigated by isolated the RNA of the leaves at 48, 55, 68, 81, and 90 days after planted and cDNA synthesis for each sample. The flowering pathway of Cempo Ireng conserved the common rice flowering models [19,33].

In order to promote early flowering in Cempo Ireng, insertion flowering gene *Hd3a* can be done by transformation *rolC::Hd3a*-GFP mediated by *Agrobacterium tumefaciens* into callus of the Cempo Ireng [34,35]. According to Tamaki et al. [36], the expression of *Hd3a* in *japonica* rice sub-species was controlled by *rolC* promoter which accelerate the flowering period. Two different growth media, including 2N6 and MS 2,4-dichlorophenoxyacetic acid (2,4-D) were used to grow callus from scutellum. Based on the results, 2N6 media generate calli faster compared to MS 2,4-D media. Then, calli were ready for *Agrobacterium*-mediated transformation to insert *Hd3a* gene.

Mutation Lines of Cempo Ireng

Nowadays, the demand of Cempo Ireng has been increasing due to its health benefit, high nutritional value, low glycemic index, and free of gluten. Meanwhile, the productivity of Cempo Ireng is low because of the long harvest age and high plant stature which make the farmers are not interested to cultivate this variety. Plant mutations by gamma rays can be used to overcome these weaknesses. Induced mutation using gamma irradiation was expected to increase characters of Cempo Ireng genetically such as early flowering period, shorten the plant stature, and improve the rice productivity. The grains of Cempo Ireng irradiated with gamma-ray at a dose 100, 200, 300, 400, and 500 Gy. Results showed that mutant Cempo Ireng plant was superior compared to the control. The treatment with gamma-ray at 200 Gy showed significantly decrease the flowering age and plant height, and also increase the grain yield, grain weight, protein content, and anthocyanin concentration (Table 3) [6,17,29,37,38,39,40,41,42,43,44]. Mutations not only affect the morphological traits of Cempo Ireng, including plant height, grain weight, flowering age, number of grains per panicle, panicle type, apiculus color, grain color, leaf-blade color, ligule color, auricle color, leaf angle, and leaf surface but also affect the nutrition contents such as anthocyanin, protein, and amylase; and enhance the stress tolerance. In order to shorten the harvest age and to fix the plant height, and also to provide genetic variation of Cempo Ireng, plant breeding through gamma-ray irradiation was done.

Table 3. Effect of Gamma-Ray Irradiation in Cempo Ireng [6,17,29,37,38,39,40,41,42,43,44]

Doses (Gy)	Plant height (cm)	Weight of 1,000 grains (g)	Flowering age (days after sowing)	Harvest age (days after sowing)	Number of grains per panicle	Protein contents (%)	Amylase levels (%)	Anthocyanin level (ppm)
0	136.11 ^a	23.01 ^a	125.00 ^a	155.00 ^a	125.78 ^a	7.73 ^a	14.41 ^a	18.62 ^a
100	134.11 ^a	25.84 ^b	119.00 ^{ab}	149.00 ^{ab}	164.78 ^b	7.49 ^a	22.45 ^b	19.19 ^a
200	136.56 ^a	24.42 ^b	114.67 ^b	144.67 ^b	166.33 ^b	6.23 ^b	12.84 ^a	4.21 ^b
300	135.33 ^a	21.53 ^a	115.00 ^b	145.00 ^b	132.33 ^a	7.13 ^a	17.47 ^{ab}	11.84 ^c
400	120.11 ^b	18.69 ^a	122.33 ^{ab}	152.33 ^{ab}	117.44 ^c	10.04 ^c	8.07 ^c	4.99 ^b
500	120.56 ^b	17.23 ^c	117.33 ^b	147.33 ^b	123.56 ^a	10.09 ^c	17.91 ^{ab}	52.17 ^d

*Means followed with the same letter in the same column had no significant difference on mood median test level of 5%.

Gamma-ray irradiation in the Cempo Ireng causes genetic variation, including qualitative and quantitative diversity that change the morphological characters. These variations happened because the irradiation makes dramatic changes in DNA and chromosome structure due to the energy which penetrated by the gamma-ray irradiation is powerful. These changed traits are

inherited and can be a source of variations which benefit for plant breeders to make selections to choose plants with desired characteristics. Rice seeds treated with gamma-ray irradiation can produce different responses during the vegetative and reproductive stages such as morphological characteristics of roots, leaves, stems, flowers, and grains. Alteration in DNA and chromosome arrangement by gamma-ray irradiation affected the metabolism of the plant growth, including the photosynthetic activity which also influence the seeds formation and harvest age. Mutation by gamma-ray irradiation also increase protein and proline content. Decreased amylose content in the rice grains was also affected by gamma-ray irradiation at doses of 200 Gy which influenced the rice texture becomes fluffier. Gamma-ray irradiation potentially increase anthocyanin content which reflect in the color change of rice pericarp. Productivity of Cempo Ireng also can be increased by using colchicine chemical mutagens [39,45]. The various doses of colchicine can induce polyploidies in plants, so plants increase the productivity. Based on the experiments by using four colchicine concentrations (0, 250, 500, and 750 ppm), the significant phenotypic changes happened in 750 ppm.

Intensification System and Physical Treatments in Cempo Ireng Cultivation

Application of Jajar legowo technique 4:1 row with spacing between plants 25 cm x 25 cm in Cempo Ireng cultivation can increase the rice productivity. This technique can overcome the tall phenotype of Cempo Ireng which prone to lodge [46,47]. Treatment of paclobutrazol at the dose of 100 ppm in Cempo Ireng significantly increase the rice productivity because paclobutrazol shorten the plant height up to 55.92 cm, thicken the culm, increased culm diameter, reduced internodes length, and modified the structure of parenchyma cells of culm so the culm become stronger and significantly reduce the lodge by 25% [48,49]. Paclobutrazol is a plant growth regulator with the chemical name (2RS,3RS)-1-(4-chloro-phenyl) methyl-4,4-dimethyl (1h-1,2,4-trizol-1-yl) penten-3-ol which inhibit the biosynthesis of gibberellin.

Utilization of natural organic fertilizer such as KCl from coconut husk significantly increase the rice productivity of Cempo Ireng [50,51]. The element of KCl provide phosphor and nitrogen elements in soil which stimulate the biosynthesis of sitocynin that promote the development of tiller. KCl also activate the synthesis enzymes which accelerate the photosynthetic activity, improve water use efficiency, strengthen the roots, and increase the disease resistance. The results showed that application of organic KCl fertilizer at concentration of 20 ml/L significantly promotes the morphological growth and reproductive development of Cempo Ireng, including number of tillers by 19%, plant height, number of leaves by 100%, number of stomata, leaf thickness, early flowering period, and rice productivity.

Combination of paclobutrazol and blue light treatment on seed germination of Cempo Ireng slightly decreased the germination percentage, reduced a-amylase activity, and increased nitrate reductase activity than those subjected to the sunlight. Blue light having wave length of 320 – 490 nm which have powerful energy to change the DNA and chromosome arrangement. However, the application of these combination treatments significantly increased tiller numbers, chlorophyll content, Fe content, and shorten the plant height [52,53,54,55,56,57].

Rice productivity of Cempo Ireng also can be increased by application of paclobutrazol and cytokinin [58,59]. Paclobutrazol decreased the plant height and cytokinin increase the grain filling of Cempo Ireng. Cytokinin enhanced the assimilation allocation during photosynthetic activity and improve the grain quality traits, including grain weight, the contents of sucrose, amylose, and amylopectin.

Anthocyanin content of Cempo Ireng can be increased along with the shorten plant height by application of paclobutrazol and methyl jasmonate [60,61]. Methyl jasmonate as a phytohormone that regulate the biosynthesis of secondary metabolites in plants, including anthocyanin. Dominant type of anthocyanin in the grains of Cempo Ireng which treated with paclobutrazol of 25 ppm and methyl jasmonate of 7.5 mM were delphinidin 3 O- β -D galactoside, cyanidin 3-O- β -D galactoside, and cyanidine 3-O- β -D glucoside. Chorophyll, oxalic acid concentration in leaves, tiller number, and grain yield of Cempo Ireng also increased by application of combination paclobutrazol and methyl jasmonate with appropriate doses.

The resistance of Cempo Ireng to bacterial leaf blight disease can be increased by salicylic acid treatment [21,62]. Bacterial leaf blight disease caused by *Xanthomonas oryzae* (Xoo) that reduce the rice productivity up to 60% due to the chlorophyll content in the leaves significantly reduce that make the leaves become yellow and wilt, and decrease the photosynthetic activity. After applying the salicylic acid, the gene expression of the rice resistance gene *OsNPR1* was increasing.

Rice Bran of Cempo Ireng

Cempo Ireng bran as the by-product from the rice milling process contains high concentration of anthocyanin, macro- and micronutrients [10,63]. The fermentation process of the rice bran by using *Rhizopus oligosporus* at 30°C for 72 hours has been adopted to increase the bioactivity by produce the non-volatile and volatile compounds [1,64,65]. Fermentation process in the rice bran produced new compounds that were not identified in the non-fermented rice bran, such as nicotinic acid, isorhamnetin, isorhamnetin 7-glucoside, and quercetin. Fermented rice bran also produce aroma like vanilla, caramel, sweet, pungent, cereal, acid, rancid, smokey, nutty, fatty, milky, grass, and earthy [66,67]. The results showed that a total of 72 non-volatile compounds were investigated, including carbohydrates, nucleotides, peptides, vitamins, amino acids, lipids, and secondary metabolites. Volatile compounds which detected in the fermented rice bran consist of alcohols, aldehydes, acids, ketones, phenols, esters, benzene, terpenes, furans, lactones, pyridine, pyrazine, and thiazole. These diverse compounds showed anti-hypertensive effects and lower blood cholesterol.

Conclusions

Pigmented rice variety, Cempo Ireng has a big potential to become a functional food due to the high anthocyanin content, low glycemic index, and free of gluten. Because of the health benefit from Cempo Ireng, the demand of this rice variety is increasing. Meanwhile, the cultivation of Cempo Ireng is still low among the farmers. The tall phenotype, long harvest period and low productivity of Cempo Ireng are the limited factors. Transgenic methods, mutation technique, intensification systems, and physical treatment have been applied in Cempo Ireng to overcome those lack characteristics. In the future, Cempo Ireng also has a big potential to become a parent in cross breeding program because of the positive characters, such as high anthocyanin content that potentially lower the blood cholesterol, low glycemic index which prevent diabetic, and free of gluten that good for gluten allergic consumers. The rice bran of Cempo Ireng also still have high anthocyanin content which potentially use for functional food. Parboiled of Cempo Ireng also have been developing to reduce the cooking time and also to increase the texture of Cempo Ireng.

References

- [1] Ardiansyah; Nada, A.; Rahmawati, N.T.I.; Oktriani, A.; David, W.; Astuti, R.M.; Handoko, D.D.; Kusbiantoro, B.; Budijanto, S.; Shirakawa, H. Volatile Compounds, Sensory Profile and Phenolic Compounds in Fermented Rice Bran. *Plants* 2021, 10, 1073. Doi: 10.3390/plants10061073
- [2] Dwiningsih, Y. Molecular genetic analysis of drought resistance and productivity traits of rice genotypes. University of Arkansas, Fayetteville, USA. 2020. 2020a.
- [3] Kristamini and Wiranti, E. 2017. Clustering of 18 local black rice base on total anthocyanin. *Biology, Medicine, & Natural Product Chemistry*, 6, 2, 47-51. Doi: 10.14421/biomedich.2017.62.47-51
- [4] Wijayanti, E. 2004. Potensi dan prospek pangan fungsional indigenous Indonesia. Presented at Seminar Nasional Pangan Fungsional Indigenous Indonesia: Potensi, regulasi, keamanan, efikasi dan peluang pasar. Bandung, 6-7 October 2004.
- [5] Pratiwi, R., Amalia, A.R., Tunjung, W., & Rumiyati. 2019. Active fractions of black rice bran cv Cempo Ireng inducing apoptosis and S-phase cell cycle arrest in T471D breast cancer cells. *J. Math. Fund. Sci.*, 51, 1, 47-59.
- [6] Rahmawati, A., Yuniautti, E., & Nandariyah. 2020. Increased anthocyanin content in seven furrows of Cempo Ireng black rice with mutation induction. *IOP Conf. Series: Earth and Environmental Science* 466, 012010. doi:10.1088/1755-1315/466/1/012010
- [7] Dwiningsih Y., Kumar A., Thomas J., Ruiz C., Alkahtani J., Al-hashimi A., Pereira A. Identification of Genomic Regions Controlling Chalkiness and Grain Characteristics in a Recombinant Inbred Line Rice Population Based on High-Throughput SNP Markers. *Genes* 2021a, 12, 11, 1690. <https://doi.org/10.3390/genes12111690>
- [8] Takashi, I., X. Bing, Y. Yoichi, N. Masaharu and K. Tetsuya. 2001. Antioxidant activity of anthocyanin extract from purple black rice. *J. Med. Food*. 4: 211- 218.
- [9] Ryu, S.N., S.Z. Park, and C.T. Ho. 1998. High performances liquid chromatographic determination of anthocyanin pigments in some varieties of black rice. *J. Food Drug Analysis* 6: 1710-1715.
- [10] Apridamayanti, P., Pratiwi, R., Purwestri, Y.A., Tunjung, W.A., & Rumiyati. 2017. Anthocyanin, nutrient contents, and antioxidant activity of black rice bran of *Oryza sativa* L. ‘Cempo Ireng’ from Sleman, Yogyakarta, Indonesia. *Indonesian Journal of Biotechnology*, 22, 1, 49-54. Doi: 10.22146/ijbiotech.26401
- [11] Dwiningsih, Y., Kumar, A., Thomas, J., Yingling, S., & Pereira, A. Molecular genetic analysis of drought resistance and productivity in US rice cultivars. *Plant and Animal Genome XXVII Conference* (January 12-16, 2019). 2019.
- [12] Pratiwi, R. & Purwestri, Y.A. 2017. Black rice as a functional food in Indonesia. *Functional Foods in Health and Disease*, 7, 3, 182-194
- [13] Lee, J.C., J.D. Kim, F.H. Hsieh, and J.B. Eun. 2008. Production of black rice cake using ground black rice and medium-grain brown rice. *Int'l. J. Food Sci. Technol.* 43 (6): 1078-1082
- [14] Philpot, M., K.S. Gould, C. Lim, and L.R. Ferguson. 2006. In situ and in vitro antioxidant activity of sweet potato anthocyanins. *J. Agric. Food Chem.* 54: 1710-1715.
- [15] Nam, S.H., S.P. Choi, M.Y. Kang, H.J. Koh, N. Kozukue, and M. Friedman. 2006. Antioxidative activities of bran from twenty one pigmented rice cultivars. *Food Chem.* 94: 613-620.
- [16] Ge, X., Khan, Z.I., Chen, F., Akhtar, M., Ahmad, K., Ejaz, A., Ashraf, M.A., Nadeem, M., Akhtar, S., Alkahtani, J., Dwiningsih, Y., & Elshikh, M.S. A study on the contamination assessment, health risk and mobility of two heavy metals in the soil-plants-ruminants system of a typical agricultural region in the semi-arid environment. *Environmental Science and Pollution Research*, 2022;29,14584–14594. <https://doi.org/10.1007/s11356-021-16756-4>
- [17] Pujiasmanto, B., Ningrum, M.U., Rahayu, M., Nandariyah, Sutarno, Riyatun, & Suharyana. 2021. Yield trials of black rice Cempo Ireng M7 generation of Gamma-Ray irradiation. *IOP Conf. Series: Earth and Environmental Science* 905, 012042. Doi: 10.1088/1755-1315/905/1/012042
- [18] Maqsood, A., Khan, Z.I., Ahmad, K., Akhtar, S., Ashfaq, A., Malik, I.S., Sultana, R., Nadeem, M., Alkahtani, J., Dwiningsih, Y., & Elshikh, M. Quantitative evaluation of zinc metal in meadows and ruminants for health assessment: implications for humans. *Environmental Science and Pollution Research*, 2022; 29, 15, 21634–21641. <https://doi.org/10.1007/s11356-021-17264-1>
- [19] Purwestri YA, Susanto FA, and Fauzia AN. 2017. The preliminary study of enhancing black rice as functional food: expression pattern of flowering genes in long harvest black rice cultivar Cempo Ireng. *Proceedings of Pakistan Academy Sciences*, in press.
- [20] Dwiningsih, Y., Thomas, J., Kumar, A., Gupta, C., Ruiz, C., Yingling, S., Crowley, E., & Pereira, A. Molecular genetic analysis of drought resistance and productivity mechanisms in rice. *Plant and Animal Genome XXVIII Conference*, January 11-15, 2020. 2020b.

[21] Maulana, I., Triyaningsih, Nuringtyas, T.R., & Purwestri, Y.A. 2019. Expression of rice resistance gene *OsNPRI* against Bacterial Leaf Blight on black rice cultivar 'Cempo Ireng' after salicylic acid treatment. *Asia Pacific Journal of Sustainable Agriculture Food and Energy*, 9, 1, 14-20. ISSN: 2338-1345.

[22] Dwiningsih Y., Kumar A., Thomas J., Ruiz C., Alkahtani J., Baisakh N., & Pereira A. Quantitative trait loci and candidate gene identification for chlorophyll content in RIL rice population under drought conditions. *Indonesian Journal of Natural Pigments*, 2021, 2021b;3(2):54-64. <https://doi.org/10.33479/ijnp.2021.03.2.54>

[23] Sitrراسی, R., Nallal, U.M., Razia, M., Chung, W.J., Shim, J., Chandrasekaran, M., Dwiningsih, Y., Rasheed, R.A., Alkahtani, J., Elshikh, M.S., Debnath, O., & Ravindran, B. Inhibition of multi-drug resistant microbial pathogens using an ecofriendly root extract of *Furcraea foetida* silver nanoparticles. *Journal of King Saud University-Science*, 2022, 34, 2, 101794. <https://doi.org/10.1016/j.jksus.2021.101794>

[24] Hidayah, A., Nisak, R.R., Susanto, F.A., Nuringtyas, T.R., Yamaguchi, N., & Purwestri, Y.A. 2021. Seed Halopriming improves salinity tolerance of some rice cultivars during seedling stage. Research Square. Doi: 10.21203/rs.3.rs-1168150/v1

[25] Sutrisno, Susanto FA, Wijayanti P, Retnoningrum MD, Nuringtyas TR, Joko T, Purwestri YA (2018) Screening of resistant Indonesian black rice cultivars against bacterial leaf blight. *Euphytica* 214(199). <https://doi.org/10.1007/s10681-018-2279-z>

[26] Purwestri YA, Refli (2016) The Response of Antioxidant Genes in Rice (*Oryza sativa L.*) Seedling Cv. Cempo Ireng under Drought and Salinity Stresses. *AIP Conference Proceedings* 1744, 020047. <https://doi.org/10.1063/1.4953521>

[27] Dwiningsih Y., Thomas J., Kumar A., Gupta C., Gill N., Ruiz C., Alkahtani J., Baisakh N., & Pereira A. Identification of QTLs and Candidate Loci Associated with Drought-Related Traits of the K/Z RIL Rice Population. *Research Square*; 2022; 2022a. <https://doi.org/10.21203/rs.3.rs-1609741/v1>

[28] Gusrianto, W.A. 2015. Perbedaan Mutu Organoleptik Beras Hitam Varietas Cempo Ireng, Jowo Melik, dan Toraja Sebagai Pangan Fungsional. Sarjana thesis, Universitas Brawijaya.

[29] Salsabila, N., Nandariyah, Yuniautti, E., Pujiasmanto, B., & Sutarno. 2021. Morphological characterization of 3 potential lines Cempo Ireng black rice result of Gamma-Ray irradiation. *IOP Conf. Series: Earth and Environmental Science*, 905, 012024. Doi: 10.1088/1755-1315/905/1/012024

[30] Dwiningsih, Y. & Alkahtani, J. Genetics, Biochemistry and Biophysical Analysis of Anthocyanin in Rice (*Oryza sativa L.*). *Advance Sustainable Science, Engineering and Technology (ASSET)*, 2022, 2022b, 4(1). <https://doi.org/10.26877/asset.v4i1.11659>

[31] Bashir, S., Gulshan, A.B., Iqbal, J., Husain, A., Al wahabi, M.S., Alkahtani, J., Dwiningsih, Y., Bakhsh, A., Ahmed, N., Khan, M.J., Ibrahim, M., & Diao, Z-H. Comparative role of animal manure and vegetable waste induced compost for polluted soil restoration and maize growth. *Saudi Journal of Biological Sciences*, 2021, 28, 4, 2534-2539. <https://doi.org/10.1016/j.sjbs.2021.01.057>

[32] Purwestri, Y.A., Susanto, F.A., & Fauzia, A. N. 2019. Flowering gene expression in Indonesia long harvest black rice (*Oryza sativa L.* 'Cempo Ireng'). *Australian Journal of Crop Science*, 13, 06, 874-880. Doi: 10.21475/ajcs.19.13.06.p1588

[33] Ali, M.H., Khan, M.I., Bashir, S., Azam, M., Naveed, M., Qadri, R., Bashir, S., Mehmood, F., Shoukat, M.A., Li, Y., Alkahtani, J., Elshikh, M.S., & Dwiningsih, Y. Biochar and *Bacillus* sp. MN54 Assisted Phytoremediation of Diesel and Plant Growth Promotion of Maize in Hydrocarbons Contaminated Soil. *Agronomy*, 2021, 11, 9, 1795. <https://doi.org/10.3390/agronomy11091795>

[34] Purwestri, Y.A., Sari, R., Anggraeni, L., & Sasongko, A. 2015. *Agrobacterium tumefaciens* mediated transformation of *rolC::Hd3a-GFP* in black rice (*Oryza sativa L.* cv. Cempo Ireng) to promote early flowering. *Procedia Chemistry*, 14, 469-473.

[35] Dwiningsih Y., Rahmaningsih M., & Alkahtani J. Development of single nucleotide polymorphism (SNP) markers in tropical crops. *Advance Sustainable Science, Engineering and Technology (ASSET)*, 2020; 2020c; 2(2).

[36] Tamaki S, Matsuo S, Wong H, Yokoi S, Shimamoto K. Hd3a protein is a mobile flowering signal in rice. *Sci* 2007;316:1033-1036.

[37] Suryanti, V., Riyatun, Suharyana, Sutarno, & Saputra, O. 2020. Antioxidant activity and compound constituents of gamma-irradiated black rice (*Oryza sativa L.*) var. Cempo Ireng indigenous of Indonesia. *Biodiversitas*, 21, 9, 4205-4212. Doi: 10.13057/biodiv/d210935

[38] Nandariyah, Devitha, M., Parjanto, Suharyana, Riyatun, & Sutarno. 2020. Evaluation agronomy character of irradiated black rice Cempo Ireng mutant strains M5 with 300 Gy of Gamma Rays. *AIP Conference Proceedings* 2296, 020043 (2020). Doi: 10.1063/5.0030491

[39] Prabawa, P. & Purba, J. 2019. Identifikasi Perubahan Fenotip Padi Beras Hitam (*Oryza sativa L.*) Cempo Ireng Hasil Perlakuan Kolkisin. Agro Bali (Agricultural Journal), 2, 1, 1-7.

[40] Riyatun, Suharyana, Ramelan, A.H., Saputra, O.A., & Suryanti, V. 2017. Proximate Nutritional Evaluation of Gamma Irradiated Black Rice (*Oryza sativa L.* cv. Cempo Ireng). IOP Conf. Series: Materials Science and Engineering, 333, 012073. Doi: 10.1088/1757-899X/333/1/012073

[41] Yuwono, S. & Sutoyo. 2017. Early Growth Performance Some Varieties of Black Rice (*Oryza sativa L.*) Irradiated using Gamma Ray. International Journal of Advances in Engineering & Technology, 10, 2, 145-153. ISSN:22311963

[42] Masruroh, F., Samanhudi, Sulanjari, & Yunus, A. 2016. Improvement of rice (*Oryza sativa L.*) var. Ciherang and Cempo Ireng productivity using gamma irradiation. Journal of Agricultural Science and Technology B 6, 289-294. Doi: 10.17265/2161-6264/2016.05.001

[43] Widya saputra, R., Syamsir, E., & Budijanto, S. 2019. Color and Hardness Comparison between Parboiled and Normal Black Rice. Food Scien Tech Journal, 1, 2, 2685-4279. Doi: 10.33512/fsj.v1i2.6723

[44] Adil M, Bashir S, Bashir S, Aslam Z, Ahmad N, Younas T, Asghar RMA, Alkahtani J, Dwiningsih Y and Elshikh MS (2022) Zinc oxide nanoparticles improved chlorophyll contents, physical parameters, and wheat yield under salt stress. *Front. Plant Sci.* 13:932861. doi: 10.3389/fpls.2022.932861

[45] Alkahtani, J., Elshikh, M.S., Dwiningsih, Y., Rathi, M.A., Sathya, R., & Vijayaraghavan, P. (2022). In-vitro antidepressant property of methanol extract of *Bacopa monnieri*. *Journal of King Saud University – Science*, 34, 102299. Doi: 10.1016/j.jksus.2022.102299

[46] Nurhidayah, S., Nasrudin, Hamdah, H., & Rahayu, Y. 2022. Adopsi Teknologi Jajar Legowo, pada Pertanaman Padi Hitam di Kelompok Taruna Tani Muarahurip Kota Tasikmalaya. *Jurnal IKRAITH-ABDIMAS*, 1, 5.

[47] Alshiekheid, M. A., Dwiningsih, Y., Sabour, A. A., & Alkahtani, J. (2022). Phytochemical Composition and Antibacterial Activity of Zingiber cassumunar Roxb. against Agricultural and Foodborne Pathogens. Doi: 10.20944/preprints202208.0511.v1

[48] Darussalam & Dewi, K. 2022. Paclobutrazol and cytokinin regulation on culm growth of black rice (*Oryza sativa L.* "Cempo Ireng"). *Bioeksperimen*, 8, 2. ISSN: 2460-1365

[49] Dwiningsih, Y.; Alkahtani, J. Phenotypic Variations, Environmental Effects and Genetic Basis Analysis of Grain Elemental Concentrations in Rice (*Oryza sativa L.*) for Improving Human Nutrition . *Preprints 2022*, 2022c, 2022090263. doi: 10.20944/preprints202209.0263.v1.

[50] Fitriani. 2017. Respon anatomi batang tanaman padi hitam (*Oryza sativa L.* "Cempo Ireng") dengan aplikasi paclobutrazol dan pupuk organic cair. *Elkawnie: Journal of Islamic Science and Technology*, 3, 1.

[51] Dwiningsih, Y.; Alkahtani, J. Rojolele: a Premium Aromatic Rice Variety in Indonesia . *Preprints 2022d*, 2022100373. doi: 10.20944/preprints202210.0373.v1.

[52] Dewi, K., Agustina, R., & Nurmaliha, F. 2016. Effects of blue light and paclobutrazol on seed germination, vegetative growth and yield of black rice (*Oryza sativa L.* 'Cempo Ireng'). *BIOTROPIA*, 23, 2, 84-95. Doi: 10.11598/btb.2016.23.2.478

[53] Dwiningsih, Y., & Al-Kahtani, J. (2022e). Genome-Wide Association Study of Complex Traits in Maize Detects Genomic Regions and Genes for Increasing Grain Yield and Grain Quality. *Advance Sustainable Science Engineering and Technology*, 4(2), 0220209. doi: 10.26877/asset.v4i2.12678

[54] Lone, J., Shikari, A., Sofi, N., Ganie, S., Sharma, M., Sharma, M., Kumar, M., Saleem, M.H., Almaary, K.S., Elshikh, M.S. and Dwiningsih, Y., 2022. Screening technique based on seed and early seedling parameters for cold tolerance of selected F2-derived F3 rice genotypes under controlled conditions. *Sustainability*, 14(14), p.8447. <https://doi.org/10.3390/su14148447>

[55] Dwiningsih, Y., Kumar, A., Thomas, J. and Pereira, A., 2017. Identification drought-tolerance rice variety for reducing climatic impacts on rice production. In *Fulbright Enrichment Seminar Climate Change, Estes Park, Colorado, USA*.

[56] Rock, W. R. L. (2020). Artificial Intelligence (AI) in Arkansas (AR).

[57] Ismanto, A., Hadibarata, T., Widada, S., Indrayanti, E., Ismunarti, D., Safinatunnajah, N., Kusumastuti, W., Dwiningsih, Y., & Alkahtani, J. 2022. Groundwater contamination status in Malaysia: level of heavy metal, source, health impact, and remediation technologies. *Bioprocess and Biosystems Engineering*. <https://doi.org/10.1007/s00449-022-02826-5>

[58] Dewi, K. & Darussalam. 2018. Effect of paclobutrazol and cytokinin on growth and source–sink relationship during grain filling of black rice (*Oryza sativa L.* "Cempo Ireng"). *Indian Journal of Plant Physiology*. ISSN: 0019-5502

[59] Dwiningsih, Y., Kumar, A., Thomas, J., Gupta, C., Ruiz, C., Alkahtani, J., Baisakh, N. and Pereira, A., 2021c. Identification and expression of abscisic acid-regulated genes in US RIL rice population under drought conditions. In *82nd Meeting of Southern Section of the American Society of Plant Biologists*.

[60] Dewi, K. 2018. Growth, yield and anthocyanin content in black rice (*Oryza sativa* L. 'Cempo Ireng') treated with paclobutrazol and methyl jasmonate. Indian Journal of Plant Physiology. ISSN: 0019-5502

[61] Dwiningsih, Y., Kumar, A., Thomas, J., Yingling, S. and Pereira, A., 2020b. Identification of QTLs associated with drought resistance traits at reproductive stage in K/Z RILs rice population. In *5th Annual Meeting of the Arkansas Bioinformatics Consortium AR-BIC*.

[62] Dwiningsih, Y., Kumar, A., Thomas, J., Yingling, S. and Pereira, A., 2019b. Molecular genetic analysis of drought resistance and productivity in K/Z RIL rice population. *Arkansas Bioinformatics Consortium*.

[63] Dwiningsih, Y., Thomas, J., Kumar, A., Gupta, C., Crowley, E., Ruiz, C. and Pereira, A., 2019c. Drought stress response in US recombinant inbred line of rice population. In *National Science Foundation (NSF) 26th National Conference* (Vol. 26, No. 76, p. 127).

[64] Ardiansyah; Nada, A.; Rahmawati, N.T.I.; Oktriani, A.; David, W.; Astuti, R.M.; Handoko, D.D.; Kusbiantoro, B.; Budijanto, S.; Shirakawa, H. 2021. Volatile Compounds, Sensory Profile and Phenolic Compounds in Fermented Rice Bran. *Plants* 2021, 10, 1073. <https://doi.org/10.3390/plants10061073>

[65] Dwiningsih, Y., Thomas, J., Kumar, A., Gupta, C., Yingling, S., Basu, S. and Pereira, A., 2018. Circadian expression patterns of the HYR gene. *Arkansas Bioinformatics Consortium*, 7(11), p.34.

[66] Nadhifah, A., Fibri, D., Handoko, D., David, W., Budijanto, S., Shirakawa, H., & Ardiansyah. 2022. The volatile compounds and aroma profile of some pigmented rice brans after fermentation. *Current Research in Nutrition and Food Science*, 10, 1, 145-170. ISSN: 2347-467X

[67] Dwiningsih, Y. and Alkahtani, J., 2022. Agronomics, Genomics, Breeding and Intensive Cultivation of Ciherang Rice Variety. *Preprints* 2022e. 2022110489. doi: 10.20944/preprints202211.0489.v1