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Abstract: This article develops duality principles and numerical results for a large class of non-convex

variational models. The main results are based on fundamental tools of convex analysis, duality theory

and calculus of variations. More specifically the approach is established for a class of non-convex

functionals similar as those found in some models in phase transition. Finally, in the last section we

present a concerning numerical example and the respective software.
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1. Introduction

In this section we establish a dual formulation for a large class of models in non-convex

optimization.

The main duality principle is applied to double well models similar as those found in the phase

transition theory.

Such results are based on the works of J.J. Telega and W.R. Bielski [2,3,14,15] and on a D.C.

optimization approach developed in Toland [16].

About the other references, details on the Sobolev spaces involved are found in [1]. Related results

on convex analysis and duality theory are addressed in [5–7,9,13].

Finally, in this text we adopt the standard Einstein convention of summing up repeated indices,

unless otherwise indicated.

In order to clarify the notation, here we introduce the definition of topological dual space.

Definition 1.1 (Topological dual spaces). Let U be a Banach space. We shall define its dual topological

space, as the set of all linear continuous functionals defined on U. We suppose such a dual space of U, may be

represented by another Banach space U∗, through a bilinear form ⟨·, ·⟩U : U × U∗ → R (here we are referring

to standard representations of dual spaces of Sobolev and Lebesgue spaces). Thus, given f : U → R linear and

continuous, we assume the existence of a unique u∗ ∈ U∗ such that

f (u) = ⟨u, u∗⟩U , ∀u ∈ U. (1)

The norm of f , denoted by ∥ f ∥U∗ , is defined as

∥ f ∥U∗ = sup
u∈U

{|⟨u, u∗⟩U | : ∥u∥U ≤ 1} ≡ ∥u∗∥U∗ . (2)

At this point we start to describe the primal and dual variational formulations.

2. A general duality principle non-convex optimization

In this section we present a duality principle applicable to a model in phase transition.

This case corresponds to the vectorial one in the calculus of variations.
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Let Ω ⊂ R
n be an open, bounded, connected set with a regular (Lipschitzian) boundary denoted

by ∂Ω.

Consider a functional J : V → R where

J(u) = F(∇u1, · · · ,∇uN) + G(u1, · · · , uN)− ⟨ui, fi⟩L2 ,

and where

V = {u = (u1, · · · , uN) ∈ W1,p(Ω;RN) : u = u0 on ∂Ω},

f ∈ L2(Ω;RN), and 1 < p < +∞.

We assume there exists α ∈ R such that

α = inf
u∈V

J(u).

Moreover, suppose F and G are Fréchet differentiable but not necessarily convex. A global

optimum point may not be attained for J so that the problem of finding a global minimum for J may

not be a solution.

Anyway, one question remains, how the minimizing sequences behave close the infimum of J.

We intend to use duality theory to approximately solve such a global optimization problem.

Denoting V0 = W
1,p
0 (Ω;RN), Y1 = Y∗

1 = L2(Ω;RN×n), Y2 = Y∗
2 = L2(Ω;RN×n), Y3 = Y∗

3 =

L2(Ω;RN), at this point we define, F1 : V × V0 → R, G1 : V → R, G2 : V → R, G3 : V0 → R and

G4 : V → R, by

F1(∇u,∇φ) = F(∇u1 +∇φ1, · · · ,∇uN +∇φN) +
K

2

∫

Ω

∇uj · ∇uj dx

+
K2

2

∫

Ω

∇φj · ∇φj dx (3)

and

G1(u1, · · · , un) = G(u1, · · · , uN) +
K1

2

∫

Ω

uj uj dx − ⟨ui, fi⟩L2 ,

G2(∇u1, · · · ,∇uN) =
K1

2

∫

Ω

∇uj · ∇uj dx,

G3(∇φ1, · · · ,∇φN) =
K2

2

∫

Ω

∇φj · ∇φj dx,

and

G4(u1, · · · , uN) =
K1

2

∫

Ω

uj uj dx.

Define now J1 : V × V0 → R,

J1(u, φ) = F(∇u +∇φ) + G(u)− ⟨ui, fi⟩L2 .
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Observe that

J1(u, φ) = F1(∇u,∇φ) + G1(u)− G2(∇u)− G3(∇φ)− G4(u)

≤ F1(∇u,∇φ) + G1(u)− ⟨∇u, z∗1⟩L2 − ⟨∇φ, z∗2⟩L2 − ⟨u, z∗3⟩L2

+ sup
v1∈Y1

{⟨v1, z∗1⟩L2 − G2(v1)}

+ sup
v2∈Y2

{⟨v2, z∗2⟩L2 − G3(v2)}

+ sup
u∈V

{⟨u, z∗3⟩L2 − G4(u)}

= F1(∇u,∇φ) + G1(u)− ⟨∇u, z∗1⟩L2 − ⟨∇φ, z∗2⟩L2 − ⟨u, z∗3⟩L2

+G∗
2 (z

∗
1) + G∗

3 (z
∗
2) + G∗

4 (z
∗
3)

= J∗1 (u, φ, z∗), (4)

∀u ∈ V, φ ∈ V0, z∗ = (z∗1 , z∗2 , z∗3) ∈ Y∗ = Y∗
1 × Y∗

2 × Y∗
3 .

Here we assume K, K1, K2 are large enough so that F1 and G1 are convex.

Hence, from the general results in [16], we may infer that

inf
(u,φ)∈V×V0

J(u, φ) = inf
(u,φ,z∗)∈V×V0×Y∗

J∗1 (u, φ, z∗). (5)

On the other hand

inf
u∈V

J(u) ≥ inf
(u,φ)∈V×V0

J1(u, φ) ≥ inf
u∈V

QJ(u) = inf
u∈V

J(u),

where QJ(u) refers to a standard quasi-convex regularization of J.

From these last two results we may obtain

inf
u∈V

J(u) = inf
(u,φ,z∗)∈V×V0×Y∗

J∗1 (u, φ, z∗).

Moreover, from standards results on convex analysis, we may have

inf
u∈V

J∗1 (u, φ, z∗) = inf
u∈V

{F1(∇u,∇φ) + G1(u)

−⟨∇u, z∗1⟩L2 − ⟨∇φ, z∗2⟩L2 − ⟨u, z∗3⟩L2

+G∗
2 (z

∗
1) + G∗

3 (z
∗
2) + G∗

4 (z
∗
3)}

= sup
(v∗1 ,v∗2)∈C∗

{−F∗
1 (v

∗
1 + z∗1 ,∇φ)− G∗

1 (v
∗
2 + z∗3)− ⟨∇φ, z∗2⟩L2

+G∗
2 (z

∗
1) + G∗

3 (z
∗
2) + G∗

4 (z
∗
3)}, (6)

where

C∗ = {v∗ = (v∗1 , v∗2) ∈ Y∗
1 × Y∗

3 : − div(v∗1)i + (v∗2)i = 0, ∀i ∈ {1, · · · , N}},

F∗
1 (v

∗
1 + z∗1 ,∇φ) = sup

v1∈Y1

{⟨v1, z∗1 + v∗1⟩L2 − F1(v1,∇φ)},

and

G∗
1 (v

∗
2 + z∗2) = sup

u∈V

{⟨u, v∗2 + z∗2⟩L2 − G1(u)}.

Thus, defining

J∗2 (φ, z∗, v∗) = F∗
1 (v

∗
1 + z∗1 ,∇φ)− G∗

1 (v
∗
2 + z∗3)− ⟨∇φ, z∗2⟩L2 + G∗

2 (z
∗
1) + G∗

3 (z
∗
2) + G∗

4 (z
∗
3),
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we have got

inf
u∈V

J(u) = inf
(u,φ)∈V×V0

J1(u, φ)

= inf
(u,φ,z∗)∈V×V0×Y∗

J∗1 (u, φ, z∗)

= inf
z∗∈Y∗

{

inf
φ∈V0

{

sup
v∗∈C∗

J∗2 (φ, z∗, v∗)

}}

. (7)

Finally, observe that

inf
u∈V

J(u)

= inf
z∗∈Y∗

{

inf
φ∈V0

{

sup
v∗∈C∗

J∗2 (φ, z∗, v∗)

}}

≥ sup
v∗∈C∗

{

inf
(z∗ ,φ)∈Y∗×V0

J∗2 (φ, z∗, v∗)
}

. (8)

This last variational formulation corresponds to a concave relaxed formulation in v∗ concerning

the original primal formulation.

3. Another duality principle for a simpler related model in phase transition with a respective
numerical example

In this section we present another duality principle for a related model in phase transition.

Let Ω = [0, 1] ⊂ R and consider a functional J : V → R where

J(u) =
1

2

∫

Ω

((u′)2 − 1)2 dx +
1

2

∫

Ω

u2 dx − ⟨u, f ⟩L2 ,

and where

V = {u ∈ W1,4(Ω) : u(0) = 0 and u(1) = 1/2}

and f ∈ L2(Ω).

A global optimum point is not attained for J so that the problem of finding a global minimum for

J has no solution.

Anyway, one question remains, how the minimizing sequences behave close the infimum of J.

We intend to use duality theory to approximately solve such a global optimization problem.

Denoting V0 = W1,4
0 (Ω), at this point we define, F : V → R and F1 : V × V0 → R by

F(u) =
1

2

∫

Ω

((u′)2 − 1)2 dx,

and

F1(u, φ) =
1

2

∫

Ω

((u′ + φ′)2 − 1)2 dx.

Observe

F(u) ≥ inf
φ∈V0

F1(u, φ) ≥ QF(u), ∀u ∈ V,

where QF(u) refers to a quasi-convex regularization of F.

We define also

F2 : V × V0 → R,

F3 : V × V0 → R
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and

G : V × V0 → R

by

F2(u, φ) =
1

2

∫

Ω

((u′ + φ′)2 − 1)2 dx +
1

2

∫

Ω

u2 dx − ⟨u, f ⟩L2 ,

F3(u, φ) = F2(u, φ) +
K

2

∫

Ω

(u′)2 dx

+
K1

2

∫

Ω

(φ′)2 dx (9)

and

G(u, φ) =
K

2

∫

Ω

(u′)2 dx

+
K1

2

∫

Ω

(φ′)2 dx (10)

Observe that if K > 0, K1 > 0 is large enough, both F3 and G are convex.

Denoting Y = Y∗ = L2(Ω) we also define the polar functional G∗ : Y∗ × Y∗ → R by

G∗(v∗, v∗0) = sup
(u,φ)∈V×V0

{⟨u, v∗⟩L2 + ⟨φ, v∗0⟩L2 − G(u, φ)}.

Observe that

inf
u∈U

J(u) ≥ inf
((u,φ),(v∗ ,v∗0))∈V×V0×[Y∗ ]2

{G∗(v∗, v∗0)− ⟨u, v∗⟩L2 − ⟨φ, v∗0⟩L2 + F3(u, φ)}.

With such results in mind, we define a relaxed primal dual variational formulation for the primal

problem, represented by J∗1 : V × V0 × [Y∗]2 → R, where

J∗1 (u, φ, v∗, v∗0) = G∗(v∗, v∗0)− ⟨u, v∗⟩L2 − ⟨φ, v∗0⟩L2 + F3(u, φ).

Having defined such a functional, we may obtain numerical results by solving a sequence of

convex auxiliary sub-problems, through the following algorithm.

1. Set K ≈ 150 and K1 = K/20 and 0 < ε ≪ 1.
2. Choose (u1, φ1) ∈ V × V0, such that ∥u1∥1,∞ ≪ K/4 and ∥φ1∥1,∞ ≪ K/4.
3. Set n = 1.
4. Calculate (v∗n, (v∗0)n) solution of the system of equations:

∂J∗1 (un, φn, v∗n, (v∗0)n)

∂v∗
= 0

and
∂J∗1 (un, φn, v∗n, (v∗0)n)

∂v∗0
= 0,

that is
∂G∗(v∗n, (v∗0)n)

∂v∗
− un = 0

and
∂G∗(v∗n, (v∗0)n)

∂v∗0
− φn = 0
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so that

v∗n =
∂G(un, φn)

∂u

and

(v∗0)
∗
n =

∂G(un, φn)

∂φ

5. Calculate (un+1, φn+1) by solving the system of equations:

∂J∗1 (un+1, φn+1, v∗n, (v∗0)n)

∂u
= 0

and
∂J∗1 (un+1, φn+1, v∗n, (v∗0)n)

∂φ
= 0

that is

−v∗n +
∂F3(un+1, φn+1)

∂u
= 0

and

−(v∗0)n +
∂F3(un+1, φn+1)

∂φ
= 0

6. If max{∥un − un+1∥∞, ∥φn+1 − φn∥∞} ≤ ε, then stop, else set n := n + 1 and go to item 4.

For the case in which f (x) = 0, we have obtained numerical results for K = 1500 and K1 = K/20.

For such a concerning solution u0 obtained, please see Figure 1. For the case in which f (x) = sin(πx)/2,

we have obtained numerical results for K = 100 and K1 = K/20. For such a concerning solution u0

obtained, please see Figure 2.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-0.1

0

0.1

0.2

0.3

0.4

0.5

Figure 1. solution u0(x) for the case f (x) = 0.

Remark 3.1. Observe that the solutions obtained are approximate critical points. They are not, in a classical

sense, the global solutions for the related optimization problems. Indeed, such solutions reflect the average

behavior of weak cluster points for concerning minimizing sequences.
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Figure 2. solution u0(x) for the case f (x) = sin(πx)/2.

4. A convex dual variational formulation for a third similar model

In this section we present another duality principle for a third related model in phase transition.

Let Ω = [0, 1] ⊂ R and consider a functional J : V → R where

J(u) =
1

2

∫

Ω

min{(u′ − 1)2, (u′ + 1)2} dx +
1

2

∫

Ω

u2 dx − ⟨u, f ⟩L2 ,

and where

V = {u ∈ W1,2(Ω) : u(0) = 0 and u(1) = 1/2}

and f ∈ L2(Ω).

A global optimum point is not attained for J so that the problem of finding a global minimum for

J has no solution.

Anyway, one question remains, how the minimizing sequences behave close to the infimum of J.

We intend to use the duality theory to solve such a global optimization problem in an appropriate

sense to be specified.

At this point we define, F : V → R and G : V → R by

F(u) =
1

2

∫

Ω

min{(u′ − 1)2, (u′ + 1)2} dx

=
1

2

∫

Ω

(u′)2 dx −
∫

Ω

|u′| dx + 1/2

≡ F1(u
′), (11)

and

G(u) =
1

2

∫

Ω

u2 dx − ⟨u, f ⟩L2 .

Denoting Y = Y∗ = L2(Ω) we also define the polar functional F∗
1 : Y∗ → R and G∗ : Y∗ → R by

F∗
1 (v

∗) = sup
v∈Y

{⟨v, v∗⟩L2 − F1(v)}

=
1

2

∫

Ω

(v∗)2 dx +
∫

Ω

|v∗| dx, (12)
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and

G∗((v∗)′) = sup
u∈V

{−⟨u′, v∗⟩L2 − G(u)}

=
1

2

∫

Ω

((v∗)′ + f )2 dx − 1

2
v∗(1). (13)

Observe this is the scalar case of the calculus of variations, so that from the standard results on

convex analysis, we have

inf
u∈V

J(u) = max
v∗∈Y∗

{−F∗
1 (v

∗)− G∗(−(v∗)′)}.

Indeed, from the direct method of the calculus of variations, the maximum for the dual formulation

is attained at some v̂∗ ∈ Y∗.

Moreover, the corresponding solution u0 ∈ V is obtained from the equation

u0 =
∂G((v̂∗)′)

∂(v∗)′
= (v̂∗)′ + f .

Finally, the Euler-Lagrange equations for the dual problem stands for

{

(v∗)′′ + f ′ − v∗ − sign(v∗) = 0, in Ω,

(v∗)′(0) = 0, (v∗)′(1) = 1/2,
(14)

where sign(v∗(x)) = 1 if v∗(x) > 0, sign(v∗(x)) = −1, if v∗(x) < 0 and

−1 ≤ sign(v∗(x)) ≤ 1,

if v∗(x) = 0.

We have computed the solutions v∗ and corresponding solutions u0 ∈ V for the cases in which

f (x) = 0 and f (x) = sin(πx)/2.

For the solution u0(x) for the case in which f (x) = 0, please see Figure 3.

For the solution u0(x) for the case in which f (x) = sin(πx)/2, please see Figure 4.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 3. solution u0(x) for the case f (x) = 0.
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 4. solution u0(x) for the case f (x) = sin(πx)/2.

Remark 4.1. Observe that such solutions u0 obtained are not the global solutions for the related primal

optimization problems. Indeed, such solutions reflect the average behavior of weak cluster points for concerning

minimizing sequences.

4.1. The algorithm through which we have obtained the numerical results

In this subsection we present the software in MATLAB through which we have obtained the last

numerical results.

This algorithm is for solving the concerning Euler-Lagrange equations for the dual problem, that

is, for solving the equation

{

(v∗)′′ + f ′ − v∗ − sign(v∗) = 0, in Ω,

(v∗)′(0) = 0, (v∗)′(1) = 1/2.
(15)

Here the concerning software in MATLAB. We emphasize to have used the smooth approximation

|v∗| ≈
√

(v∗)2 + e1,

where a small value for e1 is specified in the next lines.

*************************************

1. clear all
2. m8 = 800; (number of nodes)
3. d = 1/m8;
4. e1 = 0.00001;
5. f or i = 1 : m8

yo(i, 1) = 0.01;

y1(i, 1) = sin(π ∗ i/m8)/2;

end;
6. f or i = 1 : m8 − 1

dy1(i, 1) = (y1(i + 1, 1)− y1(i, 1))/d;

end;

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 May 2023                   doi:10.20944/preprints202302.0051.v13

https://doi.org/10.20944/preprints202302.0051.v13


10 of 40

7. f or k = 1 : 3000 (we have fixed the number of iterations)

i = 1;

h3 = 1/
√

vo(i, 1)2 + e1;

m12 = 1 + d2 ∗ h3 + d2;

m50(i) = 1/m12;

z(i) = m50(i) ∗ (dy1(i, 1) ∗ d2);
8. f or i = 2 : m8 − 1

h3 = 1/
√

vo(i, 1)2 + e1;

m12 = 2 + h3 ∗ d2 + d2 − m50(i − 1);

m50(i) = 1/m12;

z(i) = m50(i) ∗ (z(i − 1) + dy1(i, 1) ∗ d2);

end;
9. v(m8, 1) = (d/2 + z(m8 − 1))/(1 − m50(m8 − 1));

10. f or i = 1 : m8 − 1

v(m8 − i, 1) = m50(m8 − i) ∗ v(m8 − i + 1) + z(m8 − i);

end;
11. v(m8/2, 1)
12. vo = v;

end;
13. f or i = 1 : m8 − 1

u(i, 1) = (v(i + 1, 1)− v(i, 1))/d + y1(i, 1);

end;
14. f or i = 1 : m8 − 1

x(i) = i ∗ d;

end;

plot(x, u(:, 1))

********************************

5. An improvement of the convexity conditions for a non-convex related model through an
approximate primal formulation

In this section we develop an approximate primal dual formulation suitable for a large class of

variational models.

Here, the applications are for the Kirchhoff-Love plate model, which may be found in Ciarlet,

[10].

At this point we start to describe the primal variational formulation.

Let Ω ⊂ R
2 be an open, bounded, connected set which represents the middle surface of a plate

of thickness h. The boundary of Ω, which is assumed to be regular (Lipschitzian), is denoted by ∂Ω.

The vectorial basis related to the cartesian system {x1, x2, x3} is denoted by (aα, a3), where α = 1, 2 (in

general Greek indices stand for 1 or 2), and where a3 is the vector normal to Ω, whereas a1 and a2 are

orthogonal vectors parallel to Ω. Also, n is the outward normal to the plate surface.

The displacements will be denoted by

û = {ûα, û3} = ûαaα + û3a3.
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The Kirchhoff-Love relations are

ûα(x1, x2, x3) = uα(x1, x2)− x3w(x1, x2),α

and û3(x1, x2, x3) = w(x1, x2). (16)

Here −h/2 ≤ x3 ≤ h/2 so that we have u = (uα, w) ∈ U where

U =
{

u = (uα, w) ∈ W1,2(Ω;R2)× W2,2(Ω),

uα = w =
∂w

∂n
= 0 on ∂Ω}

= W1,2
0 (Ω;R2)× W2,2

0 (Ω).

It is worth emphasizing that the boundary conditions here specified refer to a clamped plate.

We also define the operator Λ : U → Y × Y, where Y = Y∗ = L2(Ω;R2×2), by

Λ(u) = {γ(u), κ(u)},

γαβ(u) =
uα,β + uβ,α

2
+

w,αw,β

2
,

καβ(u) = −w,αβ.

The constitutive relations are given by

Nαβ(u) = Hαβλµγλµ(u), (17)

Mαβ(u) = hαβλµκλµ(u), (18)

where: {Hαβλµ} and
{

hαβλµ = h2

12 Hαβλµ

}

, are symmetric positive definite fourth order tensors. From

now on, we denote {Hαβλµ} = {Hαβλµ}−1 and {hαβλµ} = {hαβλµ}−1.

Furthermore {Nαβ} denote the membrane force tensor and {Mαβ} the moment one. The plate

stored energy, represented by (G ◦ Λ) : U → R is expressed by

(G ◦ Λ)(u) =
1

2

∫

Ω

Nαβ(u)γαβ(u) dx +
1

2

∫

Ω

Mαβ(u)καβ(u) dx (19)

and the external work, represented by F : U → R, is given by

F(u) = ⟨w, P⟩L2 + ⟨uα, Pα⟩L2 , (20)

where P, P1, P2 ∈ L2(Ω) are external loads in the directions a3, a1 and a2 respectively. The potential

energy, denoted by J : U → R is expressed by:

J(u) = (G ◦ Λ)(u)− F(u)

Define now J3 : Ũ → R by

J3(u) = J(u) + J5(w).

where

J5(w) = 10
∫

Ω

aK b w

ln(a) K3/2
dx + 10

∫

Ω

a−K(b w−1/100)

ln(a) K3/2
dx.

In such a case for a = 2.71, K = 185, b = P/|P| in Ω and

Ũ = {u ∈ U : ∥w∥∞ ≤ 0.01 and P w ≥ 0 a.e. in Ω},
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we get

∂J3(u)

∂w
=

∂J(u)

∂w
+

∂J5(u)

∂w

≈ ∂J(u)

∂w
+O(±3.0), (21)

and

∂2 J3(u)

∂w2
=

∂2 J(u)

∂w2
+

∂2 J5(u)

∂w2

≈ ∂2 J(u)

∂w2
+O(850). (22)

This new functional J3 has a relevant improvement in the convexity conditions concerning the

previous functional J.

Indeed, we have obtained a gain in positiveness for the second variation
∂2 J(u)

∂w2 , which has

increased of order O(700 − 1000).

Moreover the difference between the approximate and exact equation

∂J(u)

∂w
= 0

is of order O(±3.0) which corresponds to a small perturbation in the original equation for a load of

P = 1500 N/m2, for example. Summarizing, the exact equation may be approximately solved in an

appropriate sense.

6. An approximate convex variational formulation for another related model

In this section, we obtain an approximate convex variational formulation for a related model,

more specifically, for a Ginzburg-Landau type equation.

Let Ω ⊂ R
3 be an open, bounded and connected set with a regular (Lipschitzian) boundary

denoted by ∂Ω.

Consider a functional J : V → R where

J(u) =
γ

2

∫

Ω

∇u · ∇u dx +
α

2

∫

Ω

(u2 − β)2 dx

−⟨u, f ⟩L2 , (23)

where γ > 0, α > 0, β > 0, V = W1,2
0 (Ω) and f ∈ L2(Ω).

We define

A+ = {u ∈ V : u f ≥ 0, a.e. in Ω},

V2 = {u ∈ V : ∥u∥∞ ≤ 1},

and

V1 = V2 ∩ A+.

At this point we define v = u/10 so that

J(u) = J1(v)

=
102γ

2

∫

Ω

∇v · ∇v dx +
α

2

∫

Ω

((10v)2 − β) dx

−⟨10v, f ⟩L2 . (24)
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Moreover we define

J2(v) =
1

10
J1(v)

=
10γ

2

∫

Ω

∇v · ∇v dx +
α

20

∫

Ω

((10v)2 − β) dx

−⟨v, f ⟩L2 , (25)

and J3 : U3 → R where

J3(v) = J2(v) + J5(v)

where

J5(v) = K1

(

∫

Ω

aK3 (5 b w)

ln(a) K4
dx +

∫

Ω

a−K3 (5 b w−0.5)

ln(a) K4
dx

)

.

Here K1 = 1/360, a = 2.71, K = 2, b = f /| f | in Ω and

U2 = {v ∈ V : f v ≥ 0, a.e. in Ω},

U4 = {v ∈ V : ∥v∥∞ ≤ 1/10},

and

U3 = U2 ∩ U4.

Thus, with such numerical values, we may obtain

∂J3(v)

∂v
=

∂J2(v)

∂v
+

∂J5(v)

∂v

≈ ∂J2(v)

∂v
+O(± 0.3), (26)

and

∂2 J3(v)

∂v2
=

∂2 J2(v)

∂v2
+

∂2 J5(v)

∂v2

≈ ∂2 J2(v)

∂v2
+O(7.0). (27)

Remark 6.1. This new functional J1 has a relevant improvement in the convexity conditions concerning the

previous functional J.

Indeed, we have obtained a gain in positiveness for the second variation
∂2 J2(v)

∂v2 , which has increased of

order O(5 − 14).

Moreover the difference between the approximate and exact equation

∂J2(v)

∂v
= 0

is of order O(±0.3) which for appropriate parameters γ > 0, α > 0 and β > 0, corresponds to a small

perturbation in the original equation. Summarizing, the exact equation may be approximately solved in an

appropriate sense.

Finally, for this last example, we highlight it is relatively easy to improve even more both such an

approximation quality and the convexity conditions concerning the original variational model.

With such statements and results in mind, we may prove the following theorem.
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Theorem 6.2. Suppose γ > 0, α > 0 and β > 0 are such that

∂2 J3(v)

∂v2
> 0,

in U3

Assume also, v0 ∈ U3 is such that

δJ3(v0) = 0.

Under such hypotheses, J3 is convex on U3 so that

J3(v0) = min
v∈U3

J3(v).

Moreover,

δJ(u0) = 0 +O(± 0.3),

where u0 = 10v0 ∈ V1

Proof. From the hypotheses

∂2 J3(v)

∂v2
> 0

in U3, so that J3 is convex on the convex set U3.

Consequently, since δJ3(v0) = 0, we obtain

J3(v0) = min
v∈U3

J3(v).

Finally, from the approximation indicated in the last remark and u0 ∈ V1 we get

δJ(u0) = 0 +O(± 0.3).

The proof is complete.

7. An exact convex dual variational formulation for a non-convex primal one

In this section we develop a convex dual variational formulation suitable to compute a critical

point for the corresponding primal one.

Let Ω ⊂ R
2 be an open, bounded, connected set with a regular (Lipschitzian) boundary denoted

by ∂Ω.

Consider a functional J : V → R where

J(u) = F(ux, uy)− ⟨u, f ⟩L2 ,

V = W1,2
0 (Ω) and f ∈ L2(Ω).

Here we denote Y = Y∗ = L2(Ω) and Y1 = Y∗
1 = L2(Ω)× L2(Ω).

Defining

V1 = {u ∈ V : ∥u∥1,∞ ≤ K1}

for some appropriate K1 > 0, suppose also F is twice Fréchet differentiable and

det

{

∂2F(ux, uy)

∂v1∂v2

}

̸= 0,

∀u ∈ V1.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 May 2023                   doi:10.20944/preprints202302.0051.v13

https://doi.org/10.20944/preprints202302.0051.v13


15 of 40

Define now F1 : V → R and F2 : V → R by

F1(ux, uy) = F(ux, uy) +
ε

2

∫

Ω

u2
x dx +

ε

2

∫

Ω

u2
y dx,

and

F2(ux, uy) =
ε

2

∫

Ω

u2
x dx +

ε

2

∫

Ω

u2
y dx,

where here we denote dx = dx1dx2.

Moreover, we define the respective Legendre transform functionals F∗
1 and F∗

2 as

F∗
1 (v

∗) = ⟨v1, v∗1⟩L2 + ⟨v2, v∗2⟩L2 − F1(v1, v2),

where v1, v2 ∈ Y are such that

v∗1 =
∂F1(v1, v2)

∂v1
,

v∗2 =
∂F1(v1, v2)

∂v2
,

and

F∗
2 (v

∗) = ⟨v1, v∗1 + f1⟩L2 + ⟨v2, v∗2⟩L2 − F2(v1, v2),

where v1, v2 ∈ Y are such that

v∗1 + f1 =
∂F2(v1, v2)

∂v1
,

v∗2 =
∂F2(v1, v2)

∂v2
.

Here f1 is any function such that

( f1)x = f , in Ω.

Furthermore, we define

J∗(v∗) = −F∗
1 (v

∗) + F∗
2 (v

∗)

= −F∗
1 (v

∗) +
1

2ε

∫

Ω

(v∗1 + f1)
2 dx +

1

2ε

∫

Ω

(v∗2)
2 dx. (28)

Observe that through the target conditions

v∗1 + f1 = εux,

v∗2 = εuy,

we may obtain the compatibility condition

(v∗1 + f1)y − (v∗2)x = 0.

Define now

A∗ = {v∗ = (v∗1 , v∗2) ∈ Br(0, 0) ⊂ Y∗
1 : (v∗1 + f1)y − (v∗2)x = 0, in Ω},

for some appropriate r > 0 such that J∗ is convex in Br(0, 0).

Consider the problem of minimizing J∗ subject to v∗ ∈ A∗.
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Assuming r > 0 is large enough so that the restriction in r is not active, at this point we define the

associated Lagrangian

J∗1 (v
∗, ϕ) = J∗(v∗) + ⟨ϕ, (v∗1 + f )y − (v∗2)x⟩L2 ,

where ϕ is an appropriate Lagrange multiplier.

Therefore

J∗1 (v
∗) = −F∗

1 (v
∗) +

1

2ε

∫

Ω

(v∗1 + f1)
2 dx +

1

2ε

∫

Ω

(v∗2)
2 dx

+⟨ϕ, (v∗1 + f )y − (v∗2)x⟩L2 . (29)

The optimal point in question will be a solution of the corresponding Euler-Lagrange equations

for J∗1 .

From the variation of J∗1 in v∗1 we obtain

−∂F∗
1 (v

∗)
∂v∗1

+
v∗1 + f

ε
− ∂ϕ

∂y
= 0. (30)

From the variation of J∗1 in v∗2 we obtain

−∂F∗
1 (v

∗)
∂v∗2

+
v∗2
ε
+

∂ϕ

∂x
= 0. (31)

From the variation of J∗1 in ϕ we have

(v∗1 + f )y − (v∗2)x = 0.

From this last equation, we may obtain u ∈ V such that

v∗1 + f = εux,

and

v∗2 = εuy.

From this and the previous extremal equations indicated we have

−∂F∗
1 (v

∗)
∂v∗1

+ ux −
∂ϕ

∂y
= 0,

and

−∂F∗
1 (v

∗)
∂v∗2

+ uy +
∂ϕ

∂x
= 0.

so that

v∗1 + f =
∂F1(ux − ϕy, uy + ϕx)

∂v1
,

and

v∗2 =
∂F1(ux − ϕy, uy + ϕx)

∂v2
.

From this and equation (36) and (37) we have

−ε

(

∂F∗
1 (v

∗)
∂v∗1

)

x

− ε

(

∂F∗
1 (v

∗)
∂v∗2

)

y

+(v∗1 + f1)x + (v∗2)y

= −εuxx − εuyy + (v∗1)x + (v∗2)y + f = 0. (32)
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Replacing the expressions of v∗1 and v∗2 into this last equation, we have

−εuxx − εuyy +

(

∂F1(ux − ϕy, uy + ϕx)

∂v1

)

x

+

(

∂F1(ux − ϕy, uy + ϕx)

∂v2

)

y

+ f = 0,

so that
(

∂F(ux − ϕy, uy + ϕx)

∂v1

)

x

+

(

∂F(ux − ϕy, uy + ϕx)

∂v2

)

y

+ f = 0, in Ω. (33)

Observe that if

∇2 ϕ = 0

then there exists û such that u and ϕ are also such that

ux − ϕy = ûx

and

uy + ϕx = ûy.

The boundary conditions for ϕ must be such that û ∈ W1,2
0 .

From this and equation (39) we obtain

δJ(û) = 0.

Summarizing, we may obtain a solution û ∈ W1,2
0 of equation δJ(û) = 0 by minimizing J∗ on A∗.

Finally, observe that clearly J∗ is convex in an appropriate large ball Br(0, 0) for some appropriate

r > 0

8. An exact convex dual variational formulation for a non-convex primal one

In this section we develop a convex dual variational formulation suitable to compute a critical

point for the corresponding primal one.

Let Ω ⊂ R
2 be an open, bounded, connected set with a regular (Lipschitzian) boundary denoted

by ∂Ω.

Consider a functional J : V → R where

J(u) = F(ux, uy)− ⟨u, f ⟩L2 ,

V = W1,2
0 (Ω) and f ∈ L2(Ω).

Here we denote Y = Y∗ = L2(Ω) and Y1 = Y∗
1 = L2(Ω)× L2(Ω).

Defining

V1 = {u ∈ V : ∥u∥1,∞ ≤ K1}

for some appropriate K1 > 0, suppose also F is twice Fréchet differentiable and

det

{

∂2F(ux, uy)

∂v1∂v2

}

̸= 0,

∀u ∈ V1.

Define now F1 : V → R and F2 : V → R by

F1(ux, uy) = F(ux, uy) +
ε

2

∫

Ω

u2
x dx +

ε

2

∫

Ω

u2
y dx,

and

F2(ux, uy) =
ε

2

∫

Ω

u2
x dx +

ε

2

∫

Ω

u2
y dx,

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 May 2023                   doi:10.20944/preprints202302.0051.v13

https://doi.org/10.20944/preprints202302.0051.v13


18 of 40

where here we denote dx = dx1dx2.

Moreover, we define the respective Legendre transform functionals F∗
1 and F∗

2 as

F∗
1 (v

∗) = ⟨v1, v∗1⟩L2 + ⟨v2, v∗2⟩L2 − F1(v1, v2),

where v1, v2 ∈ Y are such that

v∗1 =
∂F1(v1, v2)

∂v1
,

v∗2 =
∂F1(v1, v2)

∂v2
,

and

F∗
2 (v

∗) = ⟨v1, v∗1 + f1⟩L2 + ⟨v2, v∗2⟩L2 − F2(v1, v2),

where v1, v2 ∈ Y are such that

v∗1 + f1 =
∂F2(v1, v2)

∂v1
,

v∗2 =
∂F2(v1, v2)

∂v2
.

Here f1 is any function such that

( f1)x = f , in Ω.

Furthermore, we define

J∗(v∗) = −F∗
1 (v

∗) + F∗
2 (v

∗)

= −F∗
1 (v

∗) +
1

2ε

∫

Ω

(v∗1 + f1)
2 dx +

1

2ε

∫

Ω

(v∗2)
2 dx. (34)

Observe that through the target conditions

v∗1 + f1 = εux,

v∗2 = εuy,

we may obtain the compatibility condition

(v∗1 + f1)y − (v∗2)x = 0.

Define now

A∗ = {v∗ = (v∗1 , v∗2) ∈ Br(0, 0) ⊂ Y∗
1 : (v∗1 + f1)y − (v∗2)x = 0, in Ω},

for some appropriate r > 0 such that J∗ is convex in Br(0, 0).

Consider the problem of minimizing J∗ subject to v∗ ∈ A∗.

Assuming r > 0 is large enough so that the restriction in r is not active, at this point we define the

associated Lagrangian

J∗1 (v
∗, ϕ) = J∗(v∗) + ⟨ϕ, (v∗1 + f )y − (v∗2)x⟩L2 ,

where ϕ is an appropriate Lagrange multiplier.

Therefore

J∗1 (v
∗) = −F∗

1 (v
∗) +

1

2ε

∫

Ω

(v∗1 + f1)
2 dx +

1

2ε

∫

Ω

(v∗2)
2 dx

+⟨ϕ, (v∗1 + f )y − (v∗2)x⟩L2 . (35)
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The optimal point in question will be a solution of the corresponding Euler-Lagrange equations

for J∗1 .

From the variation of J∗1 in v∗1 we obtain

−∂F∗
1 (v

∗)
∂v∗1

+
v∗1 + f

ε
− ∂ϕ

∂y
= 0. (36)

From the variation of J∗1 in v∗2 we obtain

−∂F∗
1 (v

∗)
∂v∗2

+
v∗2
ε
+

∂ϕ

∂x
= 0. (37)

From the variation of J∗1 in ϕ we have

(v∗1 + f )y − (v∗2)x = 0.

From this last equation, we may obtain u ∈ V such that

v∗1 + f = εux,

and

v∗2 = εuy.

From this and the previous extremal equations indicated we have

−∂F∗
1 (v

∗)
∂v∗1

+ ux −
∂ϕ

∂y
= 0,

and

−∂F∗
1 (v

∗)
∂v∗2

+ uy +
∂ϕ

∂x
= 0.

so that

v∗1 + f =
∂F1(ux − ϕy, uy + ϕx)

∂v1
,

and

v∗2 =
∂F1(ux − ϕy, uy + ϕx)

∂v2
.

From this and equation (36) and (37) we have

−ε

(

∂F∗
1 (v

∗)
∂v∗1

)

x

− ε

(

∂F∗
1 (v

∗)
∂v∗2

)

y

+(v∗1 + f1)x + (v∗2)y

= −εuxx − εuyy + (v∗1)x + (v∗2)y + f = 0. (38)

Replacing the expressions of v∗1 and v∗2 into this last equation, we have

−εuxx − εuyy +

(

∂F1(ux − ϕy, uy + ϕx)

∂v1

)

x

+

(

∂F1(ux − ϕy, uy + ϕx)

∂v2

)

y

+ f = 0,

so that
(

∂F(ux − ϕy, uy + ϕx)

∂v1

)

x

+

(

∂F(ux − ϕy, uy + ϕx)

∂v2

)

y

+ f = 0, in Ω. (39)

Observe that if

∇2 ϕ = 0
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then there exists û such that u and ϕ are also such that

ux − ϕy = ûx

and

uy + ϕx = ûy.

The boundary conditions for ϕ must be such that û ∈ W1,2
0 .

From this and equation (39) we obtain

δJ(û) = 0.

Summarizing, we may obtain a solution û ∈ W1,2
0 of equation δJ(û) = 0 by minimizing J∗ on A∗.

Finally, observe that clearly J∗ is convex in an appropriate large ball Br(0, 0) for some appropriate

r > 0

9. Another primal dual formulation for a related model

Let Ω ⊂ R
3 be an open, bounded and connected set with a regular boundary denoted by ∂Ω.

Consider the functional J : V → R where

J(u) =
γ

2

∫

Ω

∇u · ∇u dx +
α

2

∫

Ω

(u2 − β)2 dx

−⟨u, f ⟩L2 , (40)

α > 0, β > 0, γ > 0, V = W1,2
0 (Ω) and f ∈ L2(Ω).

Denoting Y = Y∗ = L2(Ω), define now J∗1 : V × Y∗ → R by

J∗1 (u, v∗0) = −γ

2

∫

Ω

∇u · ∇u dx − ⟨u2, v∗0⟩L2

+
K1

2

∫

Ω

(−γ∇2u + 2v∗0u − f )2 dx + ⟨u, f ⟩L2

+
1

2α

∫

Ω

(v∗0)
2 dx + β

∫

Ω

v∗0 dx, (41)

Define also

A+ = {u ∈ V : u f ≥ 0, a.e. in Ω},

V2 = {u ∈ V : ∥u∥∞ ≤ K3},

and

V1 = V2 ∩ A+

for some appropriate K3 > 0 to be specified.

Moreover define

B∗ = {v∗0 ∈ Y∗ : ∥v∗0∥∞ ≤ K}

for some appropriate K > 0 to be specified.

Observe that, denoting

ϕ = −γ∇2u + 2v∗0u − f

we have
∂2 J∗1 (u, v∗0)

∂(v∗0)
2

=
1

α
+ 4K1u2

∂2 J∗1 (u, v∗0)
∂u2

= γ∇2 − 2v∗0 + K1(−γ∇2 + 2v∗0)
2
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and
∂2 J∗1 (u, v∗0)

∂u∂v∗0
= K1(2ϕ + 2(−γ∇2u + 2v∗0u))− 2u

so that

det{δ2 J∗1 (u, v∗0)}

=
∂2 J∗1 (u, v∗0)

∂(v∗0)
2

∂2 J∗1 (u, v∗0)
∂u2

−
(

∂2 J∗1 (u, v∗0)
∂u∂v∗0

)2

=
K1(−γ∇2 + 2v∗0)

2

α
− γ∇2 + 2v∗0 + 4αu2

α

−4K2
1 ϕ2 − 8K1 ϕ(−γ∇2 + 2v∗0)u + 8K1 ϕu

+4K1(−γ∇2u + 2v∗0u)u. (42)

Observe now that a critical point ϕ = 0 and (−γ∇2u + 2v∗0u)u = f u ≥ 0 in Ω.

Therefore, for an appropriate large K1 > 0, also at a critical point, we have

det{δ2 J∗1 (u, v∗0)}

= 4K1 f u − δ2 J(u)

α
+ K1

(−γ∇2 + 2v∗0)
2

α
> 0. (43)

Remark 9.1. From this last equation we may observe that J∗1 has a large region of convexity about any critical

point (u0, v̂∗0), that is, there exists a large r > 0 such that J∗1 is convex on Br(u0, v̂∗0).

With such results in mind, we may easily prove the following theorem.

Theorem 9.2. Assume K1 ≫ max{1, K, K3} and suppose (u0, v̂∗0) ∈ V1 × B∗ is such that

δJ∗1 (u0, v̂∗0) = 0.

Under such hypotheses, there exists r > 0 such that J∗1 is convex in E∗ = Br(u0, v̂∗0) ∩ (V1 × B∗),

δJ(u0) = 0,

and

−J(u0) = J1(u0, v̂∗0) = inf
(u,v∗0)∈E∗

J∗1 (u, v∗0).

10. A third primal dual formulation for a related model

Let Ω ⊂ R
3 be an open, bounded and connected set with a regular boundary denoted by ∂Ω.

Consider the functional J : V → R where

J(u) =
γ

2

∫

Ω

∇u · ∇u dx +
α

2

∫

Ω

(u2 − β)2 dx

−⟨u, f ⟩L2 , (44)

α > 0, β > 0, γ > 0, V = W1,2
0 (Ω) and f ∈ L2(Ω).

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 May 2023                   doi:10.20944/preprints202302.0051.v13

https://doi.org/10.20944/preprints202302.0051.v13


22 of 40

Denoting Y = Y∗ = L2(Ω), define now J∗1 : V × Y∗ × Y∗ → R by

J∗1 (u, v∗0 , v∗1) =
γ

2

∫

Ω

∇u · ∇u dx +
1

2

∫

Ω

K u2 dx

−⟨u, v∗1⟩L2 +
1

2

∫

Ω

(v∗1)
2

(−2v∗0 + K)
dx

+
1

2(α + ε)

∫

Ω

(v∗0 − α(u2 − β))2 dx + ⟨u, f ⟩L2

− 1

2α

∫

Ω

(v∗0)
2 dx − β

∫

Ω

v∗0 dx, (45)

where ε > 0 is a small real constant.

Define also

A+ = {u ∈ V : u f ≥ 0, a.e. in Ω},

V2 = {u ∈ V : ∥u∥∞ ≤ K3},

and

V1 = V2 ∩ A+

for some appropriate K3 > 0 to be specified.

Moreover define

B∗ = {v∗0 ∈ Y∗ : ∥v∗0∥∞ ≤ K4}

and

D∗ = {v∗1 ∈ Y∗ : ∥v∗1∥ ≤ K5},

for some appropriate real constants K4, K5 > 0 to be specified.

Remark 10.1. Define now

H1(u, v∗0) = −γ∇2 + 2v∗0 + 4αu2

and

Êv∗0
= {u ∈ V : H1(u, v∗0) ≥ 0}.

For a fixed v∗0 ∈ B∗, we are going to prove that C∗ = Êv∗0
∩ V1 is a convex set.

Assume, for a finite dimensional problem version, in a finite differences or finite element context, that

−γ∇2 − 2αβ ≤ 0,

so that for K1 > 0 be sufficiently large, we have

−γ∇2 + 2v∗0 − K1u2 ≤ 0.

Observe now that

H1(u, v∗0) = −γ∇2 + 2v∗0 − K1u2 + 4αu2 + K1u2.

Let u1, u2 ∈ C∗ and λ ∈ [0, 1].

Thus

sign (u1) = sign (u2) in Ω

so that

λ|u1|+ (1 − λ)|u2| = |λu1 + (1 − λ)u2| in Ω.

Observe now that

H1(u1, v∗0) ≥ 0
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and

H1(u2, v∗0) ≥ 0

so that

4αu2
1 + K1u2

1 ≥ γ∇2 − 2v∗0 + K1u2
1 ≥ 0,

and

4αu2
2 + K1u2

1 ≥ γ∇2 − 2v∗0 + K1u2
2 ≥ 0,

so that

√

4α + K1|u1| ≥
√

γ∇2 − 2v∗0 + K1u2
1

and
√

4α + K1|u2| ≥
√

γ∇2 − 2v∗0 + K1u2
2.

From such results we obtain

√

4α + K1|λu1 + (1 − λ)u2| =
√

4α + K1(λ|u1|+ (1 − λ|u2|)
≥ λ

√

γ∇2 − 2v∗0 + K1u2
1 + (1 − λ)

√

γ∇2 − 2v∗0 + K1u2
2

≥
√

γ∇2 − 2v∗0 + K1(λu1 + (1 − λ)u2)2. (46)

From this we obtain

(4α + K1)(λu1 + (1 − λ)u2)
2 ≥ γ∇2 − 2v∗0 + K1(λu1 + (1 − λ)u2)

2,

so that

H1(λu1 + (1 − λ)u2, v∗0) ≥ 0.

Hence Êv∗0
is convex. Since V1 is also clearly convex, we have obtained that C∗ = Êv∗0

∩ V1 is convex.

Such a result we will be used many times in the next sections.

Observe that, defining

ϕ = v∗0 − α(u2 − β)

we may obtain

∂2 J∗1 (u, v∗0 , v∗1)
∂u2

= −γ∇2 + K +
α

α + ε
4u2 − 2ϕ

α

α + ε

∂2 J∗1 (u, v∗0 , v∗1)
∂(v∗1)

2
=

1

−2v∗0 + K

and
∂2 J∗1 (u, v∗0 , v∗1)

∂u∂v∗1
= −1

so that

det

{

∂2 J∗1 (u, v∗0 , v∗1)
∂u∂v∗1

}

=
∂2 J∗1 (u, v∗1 , v∗0)

∂(v∗1)
2

∂2 J∗1 (u, v∗1 , v∗0)
∂u2

−
(

∂2 J∗1 (u, v∗1 , v∗0)
∂u∂v∗1

)2

=
−γ∇2 + 2v∗0 + 4 α2

α+ε u2 − 2 α
α+ε ϕ

−2v∗0 + K

≡ H(u, v∗0). (47)
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However, at a critical point, we have ϕ = 0 so that, we define

C∗
v∗0

= {u ∈ V : ϕ ≤ 0}.

From such results, assuming K ≫ max{K3, K4, K5}, define now

Ev∗0
= {u ∈ V : H(u, v∗0) > 0}.

Observe that similarly as it was develop in remark 10.1, we may prove that Ev∗0
is a convex set.

With such results in mind, we may easily prove the following theorem.

Theorem 10.2. Suppose (u0, v̂∗1 , v̂∗0) ∈ E∗ = (V1 ∩ Cv̂∗0
∩ Ev̂∗0

)× D∗ × B∗ is such that

δJ∗1 (u0, v̂∗0 , v̂∗1) = 0.

Under such hypotheses, we have that

δJ(u0) = 0

and

J(u0) = inf
u∈V1

J(u)

= J∗1 (u0, v̂∗1 , v̂∗0)

= inf
(u,v∗1)∈V1×D∗

{

sup
v∗0∈B∗

J∗1 (u, v∗1 , v∗0)

}

= sup
v∗0∈B∗

{

inf
(u,v∗1)∈V1×D∗

J∗1 (u, v∗1 , v∗0)

}

. (48)

Proof. The proof that

δJ(u0) = 0

and

J(u0) = J∗1 (u0, v̂∗1 , v̂∗0)

may be easily made similarly as in the previous sections.

Moreover, from the hypotheses, we have

J∗1 (u0, v̂∗1 , v̂∗0) = inf
(u,v∗1)∈V1×D∗

J∗1 (u, v∗1 , v̂∗0)

and

J∗1 (u0, v̂∗1 , v̂∗0) = sup
v∗0∈B∗

J∗1 (u0, v̂∗1 , v∗0).

From this, from a standard saddle point theorem and the remaining hypotheses, we may infer

that

J(u0) = J∗1 (u0, v̂∗1 , v̂∗0)

= inf
(u,v∗1)∈V1×D∗

{

sup
v∗0∈B∗

J∗1 (u, v∗1 , v∗0)

}

= sup
v∗0∈B∗

{

inf
(u,v∗1)∈V1×D∗

J∗1 (u, v∗1 , v∗0)

}

. (49)
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Moreover, observe that

J∗1 (u0, v̂∗1 , v̂∗0) = inf
(u,v∗1)∈V1×D∗

J∗1 (u, v∗1 , v̂∗0)

≤ γ

2

∫

Ω

∇u · ∇u dx +
K

2

∫

Ω

u2 dx

+⟨u2, v̂∗0⟩L2 − K

2

∫

Ω

u2 dx

− 1

2α

∫

Ω

(v̂∗0)
2 dx − β

∫

Ω

v̂∗0 dx

+
1

2(α + ε)

∫

Ω

(v̂∗0 − α(u2 − β))2 dx − ⟨u, f ⟩L2

≤ sup
v∗0∈Y∗

{

γ

2

∫

Ω

∇u · ∇u dx + ⟨u2, v∗0⟩

− 1

2α

∫

Ω

(v∗0)
2 dx − β

∫

Ω

v∗0 dx

+
1

2(α + ε)

∫

Ω

(v∗0 − α(u2 − β))2 dx − ⟨u, f ⟩L2

}

=
γ

2

∫

Ω

∇u · ∇u dx +
α

2

∫

Ω

(u2 − β)2 dx

−⟨u, f ⟩L2 , ∀u ∈ V1. (50)

Summarizing, we have got

J(u0) = J∗1 (u0, v̂∗1 , v̂∗0) ≤ inf
u∈V1

J(u).

From such results, we may infer that

J(u0) = inf
u∈V1

J(u)

= J∗1 (u0, v̂∗1 , v̂∗0)

= inf
(u,v∗1)∈V1×D∗

{

sup
v∗0∈B∗

J∗1 (u, v∗1 , v∗0)

}

= sup
v∗0∈B∗

{

inf
(u,v∗1)∈V1×D∗

J∗1 (u, v∗1 , v∗0)

}

. (51)

The proof is complete.

11. A fourth primal dual formulation for a related model

Let Ω ⊂ R
3 be an open, bounded and connected set with a regular boundary denoted by ∂Ω.

Consider the functional J : V → R where

J(u) =
γ

2

∫

Ω

∇u · ∇u dx +
α

2

∫

Ω

(u2 − β)2 dx

−⟨u, f ⟩L2 , (52)

α > 0, β > 0, γ > 0, V = W1,2
0 (Ω) and f ∈ L2(Ω).
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Denoting Y = Y∗ = L2(Ω), define now J∗1 : V × Y∗ → R by

J∗1 (u, v∗0) =
γ

2

∫

Ω

∇u · ∇u dx − ⟨u2, v∗0⟩L2

+
1

2(α + ε)

∫

Ω

(v∗0 − α(u2 − β))2 dx − ⟨u, f ⟩L2

− 1

2α

∫

Ω

(v∗0)
2 dx − β

∫

Ω

v∗0 dx, (53)

where ε > 0 is a small real constant.

Define also

A+ = {u ∈ V : u f ≥ 0, a.e. in Ω},

V2 = {u ∈ V : ∥u∥∞ ≤ K3},

and

V1 = V2 ∩ A+

for some appropriate real constant K3 > 0.

Moreover define

B∗ = {v∗0 ∈ Y∗ : ∥v∗0∥∞ ≤ K4}

for some appropriate real constant K4 > 0.

Observe that, denoting ϕ = v∗0 − α(u2 − β), we may obtain

∂2 J∗1 (u, v∗0)
∂u2

= −γ∇2 + 2v0

+
α2

α + ε
4u2 − 2

ϕ

α + ε
α

≡ H(u, v∗0), (54)

and
∂2 J∗1 (u, v∗0)

∂(v∗0)
2

= − 1

α
+

1

α + ε
< 0

However, at a critical point, we have ϕ = 0 so that, we define

C∗
v∗0

= {u ∈ V : ϕ ≤ 0}.

Define also,

Ev∗0
= {u ∈ V : H(u, v∗0) > 0}.

Remark 11.1. Similarly as it was developed in remark 10.1 we may prove that such a Ev∗0
is a convex set.

With such results in mind, we may easily prove the following theorem.

Theorem 11.2. Suppose (u0, v̂∗0) ∈ E∗ = (V1 ∩ Cv̂∗0
∩ Ev̂∗0

)× B∗ is such that

δJ∗1 (u0, v̂∗0) = 0.

Under such hypotheses, we have that

δJ(u0) = 0

and
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J(u0) = inf
u∈V1

J(u)

= J∗1 (u0, v̂∗0)

= inf
u∈V1

{

sup
v∗0∈B∗

J∗1 (u, v∗0)

}

= sup
v∗0∈B∗

{

inf
u∈V1

J∗1 (u, v∗0)
}

. (55)

Proof. The proof that

δJ(u0) = 0

and

J(u0) = J∗1 (u0, v̂∗0)

may be easily made similarly as in the previous sections.

Moreover, from the hypotheses, we have

J∗1 (u0, v̂∗0) = inf
u∈V1

J∗1 (u, v̂∗0)

and

J∗1 (u0, v̂∗0) = sup
v∗0∈B∗

J∗1 (u0, v∗0).

From this, from a standard saddle point theorem and the remaining hypotheses, we may infer

that

J(u0) = J∗1 (u0, v̂∗0)

= inf
u∈V1

{

sup
v∗0∈B∗

J∗1 (u, v∗0)

}

= sup
v∗0∈B∗

{

inf
u∈V1

J∗1 (u, v∗0)
}

. (56)

Moreover, observe that

J∗1 (u0, v̂∗0) = inf
u∈V1

J∗1 (u, v̂∗0)

≤ γ

2

∫

Ω

∇u · ∇u dx + ⟨u2, v̂∗0⟩L2

− 1

2α

∫

Ω

(v̂∗0)
2 dx − β

∫

Ω

v̂∗0 dx

+
1

2(α + ε)

∫

Ω

(v̂∗0 − α(u2 − β))2 dx − ⟨u, f ⟩L2

≤ sup
v∗0∈Y∗

{

γ

2

∫

Ω

∇u · ∇u dx + ⟨u2, v∗0⟩

− 1

2α

∫

Ω

(v∗0)
2 dx − β

∫

Ω

v∗0 dx

+
1

2(α + ε)

∫

Ω

(v∗0 − α(u2 − β))2 dx − ⟨u, f ⟩L2

}

=
γ

2

∫

Ω

∇u · ∇u dx +
α

2

∫

Ω

(u2 − β)2 dx

−⟨u, f ⟩L2 , ∀u ∈ V1. (57)
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Summarizing, we have got

J(u0) = J∗1 (u0, v̂∗0) ≤ inf
u∈V1

J(u).

From such results, we may infer that

J(u0) = inf
u∈V1

J(u)

= J∗1 (u0, v̂∗0)

= inf
u∈V1

{

sup
v∗0∈B∗

J∗1 (u, v∗0)

}

= sup
v∗0∈B∗

{

inf
u∈V1

J∗1 (u, v∗0)
}

. (58)

The proof is complete.

12. One more primal dual formulation for a related model

Let Ω ⊂ R
3 be an open, bounded and connected set with a regular boundary denoted by ∂Ω.

Consider the functional J : V → R where

J(u) =
γ

2

∫

Ω

∇u · ∇u dx +
α

2

∫

Ω

(u2 − β)2 dx

−⟨u, f ⟩L2 , (59)

α > 0, β > 0, γ > 0, V = W1,2
0 (Ω) and f ∈ L2(Ω).

Denoting Y = Y∗ = L2(Ω), define now J∗1 : V × Y∗ × Y∗ → R by

J∗1 (u, v∗1 , v∗0) =
γ

2

∫

Ω

∇u · ∇u dx +
K

2

∫

Ω

u2 dx − ⟨u, v∗1⟩L2

+
1

2

∫

Ω

(v∗1)
2

−2v∗0 + K
dx − ⟨u, f ⟩L2

+
K2

2

∫

Ω

(

v∗1 + f

−γ∇2 + K
− v∗1

−2v∗0 + K

)2

dx

− 1

2α

∫

Ω

(v∗0)
2 dx − β

∫

Ω

v∗0 dx, (60)

Define also

A+ = {u ∈ V : u f ≥ 0, a.e. in Ω},

V2 = {u ∈ V : ∥u∥∞ ≤ K3},

and

V1 = V2 ∩ A+

specifically for a constant K3 =
√

1
5α .

Moreover define

B∗ = {v∗0 ∈ Y∗ : ∥v∗0∥∞ ≤ K4}

and

D∗ = {v∗1 ∈ Y∗ : ∥v∗1∥∞ ≤ K5}

for some appropriate real constants K4 > 0 and K5 > 0.
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Observe that
∂2 J∗1 (u, v∗1 , v∗0)

∂u2
= −γ∇2 + K,

∂2 J∗1 (u, v∗1 , v∗0)
∂(v∗1)

2
=

1

−2v∗0 + K
+

K2(−γ∇2 + 2v∗0)
2

[(−γ∇2 + K)(−2v∗0 + K)]2
,

∂2 J∗1 (u, v∗1 , v∗0)
∂u ∂v∗1

= −1,

so that

det

(

∂2 J∗1 (u, v∗1 , v∗0)
∂u ∂v∗1

)

=
∂2 J∗1 (u, v∗1 , v∗0)

∂(v∗1)
2

∂2 J∗1 (u, v∗1 , v∗0)
∂u2

−
(

∂2 J∗1 (u, v∗1 , v∗0)
∂u ∂v∗1

)2

= O
(

K2(2(−γ∇2 + 2v∗0) + 2(−γ∇2 + 2v∗0)
2)

(−γ∇2 + K)(−2v∗0 + K)2

)

≡ H(v∗0). (61)

With such results in mind, we may easily prove the following theorem.

Theorem 12.1. Assume K ≫ max{K3, K4, K5, 1} and suppose (u0, v̂∗1 , v̂∗0) ∈ V1 × D∗ × B∗ is such that

δJ∗1 (u0, v̂∗1 , v̂∗0) = 0.

Suppose also H(v̂∗0) > 0.

Under such hypotheses, we have that

δJ(u0) = 0

and

J(u0) = inf
u∈V1







J(u) +
K2

2

∫

Ω

(

(−γ∇2u + 2v̂∗0u − f )

−γ∇2 + K

)2

dx







= J∗1 (u0, v̂∗1 , v̂∗0)

= inf
(u,v∗1)∈V1×D∗

{

sup
v∗0∈B∗

J∗1 (u, , v∗1 , v∗0)

}

= sup
v∗0∈B∗

{

inf
(u,v∗1)∈V1×D∗

J∗1 (u, v∗1 , v∗0)

}

. (62)

Proof. The proof that

δJ(u0) = −γ∇2u0 + 2α(u2 − β)u0 − f = 0,

v̂∗0 = α(u2
0 − β)

and

J(u0) = J(u0) +
K2

2

∫

Ω

(

(−γ∇2u0 + 2v̂∗0u0 − f )

−γ∇2 + K

)2

dx = J∗1 (u0, v̂∗1 , v̂∗0)

may be easily made similarly as in the previous sections.

Moreover, from the hypotheses, we have

J∗1 (u0, v̂∗1 , v̂∗0) = inf
(u,v∗1)∈V1×D∗

J∗1 (u, v∗1 , v̂∗0)
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and

J∗1 (u0, v̂∗1 , v̂∗0) = sup
v∗0∈B∗

J∗1 (u0, v̂∗1 , v∗0).

From this, from a standard saddle point theorem and the remaining hypotheses, we may infer

that

J(u0) = J∗1 (u0, v̂∗1 , v̂∗0)

= inf
(u,v∗1)∈V1×D∗

{

sup
v∗0∈B∗

J∗1 (u, v∗1 , v∗0)

}

= sup
v∗0∈B∗

{

inf
(u,v∗1)∈V1×D∗

J∗1 (u, v∗1 , v∗0)

}

. (63)

Moreover, observe that

J∗1 (u0, v̂∗1 , v̂∗0) = inf
(u,v∗1)∈V1×D∗

J∗1 (u, v∗1 , v̂∗0)

≤ γ

2

∫

Ω

∇u · ∇u dx + ⟨u2, v̂∗0⟩L2

− 1

2α

∫

Ω

(v̂∗0)
2 dx − β

∫

Ω

v̂∗0 dx − ⟨u, f ⟩L2

+
K2

2

∫

Ω

(

(−γ∇2u + 2v̂∗0u − f )

−γ∇2 + K

)2

dx

≤ sup
v∗0∈Y∗

{

γ

2

∫

Ω

∇u · ∇u dx + ⟨u2, v∗0⟩

− 1

2α

∫

Ω

(v∗0)
2 dx − β

∫

Ω

v∗0 dx − ⟨u, f ⟩L2

+
K2

2

∫

Ω

(

(−γ∇2u + 2v̂∗0u − f )

−γ∇2 + K

)2

dx







=
γ

2

∫

Ω

∇u · ∇u dx +
α

2

∫

Ω

(u2 − β)2 dx

−⟨u, f ⟩L2

+
K2

2

∫

Ω

(

(−γ∇2u + 2v̂∗0u − f )

−γ∇2 + K

)2

dx, ∀u ∈ V1. (64)

From this we have got

J∗1 (u0, v̂∗1 , v̂∗0) ≤ γ

2

∫

Ω

∇u · ∇u dx +
α

2

∫

Ω

(u2 − β)2 dx − ⟨u, f ⟩L2

+
K2

2

∫

Ω

(

(−γ∇2u + 2v̂∗0u − f )

−γ∇2 + K

)2

dx, ∀u ∈ V1. (65)
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Therefore, from such results we may obtain

J(u0) = inf
u∈V1







J(u) +
K2

2

∫

Ω

(

(−γ∇2u + 2v̂∗0u − f )

−γ∇2 + K

)2

dx







= J∗1 (u0, v̂∗1 , v̂∗0)

= inf
(u,v∗1)∈V1×D∗

{

sup
v∗0∈B∗

J∗1 (u, , v∗1 , v∗0)

}

= sup
v∗0∈B∗

{

inf
(u,v∗1)∈V1×D∗

J∗1 (u, v∗1 , v∗0)

}

. (66)

The proof is complete.

13. Another primal dual formulation for a related model

In this section we present another primal dual formulation.

Let Ω ⊂ R
3 be an open, bounded and connected set with a regular boundary denoted by ∂Ω.

Consider the functional J : V → R where

J(u) =
γ

2

∫

Ω

∇u · ∇u dx +
α

2

∫

Ω

(u2 − β)2 dx

−⟨u, f ⟩L2 , (67)

α > 0, β > 0, γ > 0, V = W1,2
0 (Ω) and f ∈ L2(Ω).

Denoting Y = Y∗ = L2(Ω), define now J∗1 : V × Y∗ → R by

J∗1 (u, v∗0) =
γ

2

∫

Ω

∇u · ∇u dx + ⟨u2, v∗0⟩L2

+
α − ε

2

∫

Ω

u4 dx − ⟨u, f ⟩L2

− 1

2ε

∫

Ω

(v∗0 + αβ)2 dx, (68)

and J∗2 : V × Y∗ → R, by

J∗2 (u, v∗0) =
γ

2

∫

Ω

∇u · ∇u dx + ⟨u2, v∗0⟩L2

+
K1

2

∫

Ω

(−γ∇2u + 2v∗0u − 2(α − ε)u3 − f )2 dx

+
α − ε

2

∫

Ω

u4 dx − ⟨u, f ⟩L2

− 1

2ε

∫

Ω

(v∗0 + αβ)2 dx, (69)

Define also

A+ = {u ∈ V : u f ≥ 0, a.e. in Ω},

V2 = {u ∈ V : ∥u∥∞ ≤ K3},

and

V1 = V2 ∩ A+.

Moreover define

B∗ = {v∗0 ∈ Y∗ : ∥v∗0∥∞ ≤ K4}

for some appropriate constants K3 > 0 and K4 > 0.
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Observe that, for K1 = 1/
√

ε, we have

∂2 J∗2 (u, v∗0)
∂u2

= (−γ∇2 + 2v∗0 + 6(α − ε)u2) + K1(−γ∇2 + 2v∗0 + 6(α − ε)u2)2

+K1(−γ∇2u + 2v∗0u + 2(α − ε)u3 − f )12(α − ε)u dx, (70)

∂2 J∗2 (u, v∗0)
∂(v∗0)

2
= K14u2 − 1

ε

< 0, ∀u ∈ V1, v∗0 ∈ B∗. (71)

Define now

A2(u, v∗0) = (−γ∇2u + 2v∗0u + 2(α − ε)u3 − f )12(α − ε)u,

C∗ = {(u, v∗0) ∈ V × B∗ : ∥A2(u, v∗0)∥∞ ≤ ε1

for a small real parameter ε1 > 0.

Finally, define

Ev∗0
=

{

u ∈ V :
∂2 A2(u, v∗0)

∂u2
> 0

}

.

Remark 13.1. Similarly as it was developed in remark 10.1 we may prove that such a Ev∗0
is a convex set.

Thus,

Ev∗0
∩ V1

is a convex set, ∀v∗0 ∈ B∗ (for the proof of a similar result please see Theorem 8.7.1 at pages 297, 298

and 299 in [5]).)

With such results in mind, we may easily prove the following theorem.

Theorem 13.2. Assume K1 ≫ 1 ≫ ε1 and suppose (u0, v̂∗0) ∈ V1 × B∗ is such that

δJ∗2 (u0, v̂∗0) = 0

and u0 ∈ Ev̂∗0
.

Under such hypotheses, we have that

δJ(u0) = 0

and

J(u0) = inf
u∈V1

{

J(u) +
K1

2

∫

Ω

(−γ∇2u + 2v̂∗0u + 2(α − ε)u3 − f )2 dx

}

= J∗2 (u0, v̂∗0)

= sup
v∗0∈B∗

{

inf
u∈V1

J∗2 (u, v∗0)
}

. (72)

Proof. The proof that

δJ(u0) = −γ∇2u0 + 2α(u2 − β)u0 − f = 0,

and

J(u0) = J(u0) +
K1

2

∫

Ω

(−γ∇2u0 + 2v̂∗0u0 + 2(α − ε)u3
0 − f )2 dx = J∗2 (u0, v̂∗0)

may be easily made similarly as in the previous sections.
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Moreover, from the hypotheses and from the above lines, since J∗2 is concave in v∗0 on V1 × B∗ and

u0 ∈ Ev̂∗0
, we have that

J∗2 (u0, v̂∗0) = inf
u∈V1

J∗2 (u, v̂∗0)

and

J∗2 (u0, v̂∗0) = sup
v∗0∈B∗

J∗2 (u0, v∗0).

From this, from the standard Saddle Point Theorem and the remaining hypotheses, we may infer

that

J(u0) = J∗2 (u0, v̂∗0)

= inf
u∈V1

{

sup
v∗0∈B∗

J∗2 (u, v∗1 , v∗0)

}

= sup
v∗0∈B∗

{

inf
u∈V1

J∗2 (u, v∗0)
}

. (73)

Moreover, observe that

J∗2 (u0, v̂∗0) = inf
u∈V1

J∗2 (u, v̂∗0)

≤ γ

2

∫

Ω

∇u · ∇u dx + ⟨u2, v̂∗0⟩L2 +
α − ε

2

∫

Ω

u4 dx

− 1

2ε

∫

Ω

(v̂∗0 + αβ)2 dx − ⟨u, f ⟩L2

+
K1

2

∫

Ω

(−γ∇2u + 2v̂∗0u + 2(α − ε)u3 − f )2 dx

≤ sup
v∗0∈Y∗

{

γ

2

∫

Ω

∇u · ∇u dx + ⟨u2, v∗0⟩L2 +
α − ε

2

∫

Ω

u4 dx

− 1

2ε

∫

Ω

(v∗0 + αβ)2 dx − ⟨u, f ⟩L2

+
K1

2

∫

Ω

(−γ∇2u + 2v̂∗0u + 2(α − ε)u3 − f )2 dx

}

= J(u) +
K1

2

∫

Ω

(−γ∇2u + 2v̂∗0u + 2(α − ε)u3 − f )2 dx, ∀u ∈ V1. (74)

From this we have got

J∗2 (u0, v̂∗0) ≤ J(u) +
K1

2

∫

Ω

(−γ∇2u + 2v̂∗0u + 2(α − ε)u3 − f )2 dx, ∀u ∈ V1. (75)

Therefore, from such results we may obtain

J(u0) = inf
u∈V1

{

J(u) +
K1

2

∫

Ω

(−γ∇2u + 2v̂∗0u + 2(α − ε)u3 − f )2 dx

}

= J∗2 (u0, v̂∗0)

= sup
v∗0∈B∗

{

inf
u∈V1

J∗2 (u, v∗0)
}

. (76)

The proof is complete.
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14. A convex (in fact concave) dual formulation for a related model

In this section we present a convex dual formulation for the model in question.

Let Ω ⊂ R
3 be an open, bounded and connected set with a regular boundary denoted by ∂Ω.

Consider the functional J : V → R where

J(u) =
γ

2

∫

Ω

∇u · ∇u dx +
α

2

∫

Ω

(u2 − β)2 dx

−⟨u, f ⟩L2 , (77)

α > 0, β > 0, γ > 0, V = W1,2
0 (Ω) and f ∈ L2(Ω).

Denoting Y = Y∗ = L2(Ω), define now J∗1 : [Y∗]6 → R (with exact penalization) by

J∗1 (v
∗
1 , v∗2 , v∗3 , v∗0 , z∗1 , z∗2) = −

∫

Ω

(v∗1 + v∗3 − f )2

−γ∇2
dx −

∫

Ω

(v∗2 − v∗3)
2

−γ∇2
dx

−1

2

∫

Ω

(−v∗1 + z∗1)
2

2v∗0 + K(A)
dx − 1

2

∫

Ω

(−v∗2 + z∗2)
2

K(1 − A)
dx

+
∫

Ω

(z∗1)
2

K
dx +

∫

Ω

(z∗2)
2

K
dx

− 1

2α

∫

Ω

(v∗0)
2 dx − β

∫

Ω

v∗0 dx.

(78)

Define also

B+ = {u ∈ V : u f ≥ 0, a.e. in Ω},

V2 = {u ∈ V : ∥u∥∞ ≤ K3},

and

V1 = V2 ∩ B+.

Moreover define

B∗ = {v∗0 ∈ Y∗ : ∥v∗0∥∞ ≤ K4}

for some appropriate constants K3 > 0 and K4 > 0.

Define also

D∗ = {(v∗1 , v∗2 , v∗3) = w∗ ∈ [Y∗]2 : ∥w∗∥∞ ≤ K5},

for an appropriate K5 > 0 to be specified.

Observe that, for appropriate 0 < A < 1, J∗1 is concave in v∗ = (v∗1 , v∗2 , v∗3 , v∗0) and convex in

z∗ = (z∗1 , z∗2) on D∗ × B∗ × [Y∗]2. With such results in mind, we may easily prove the following

theorem.

Theorem 14.1. Assume an appropriate 0 < A < 1 and K ≫ max{1, K3, K4, K5} and suppose (v̂∗, ẑ∗) ∈
D∗ × B∗ × [Y∗]2 is such that

δJ∗2 (v̂
∗, ẑ∗) = 0.

Suppose also

u0 = 2

(

v̂∗2 − v̂∗3
−γ∇2

)

∈ V1.

Under such hypotheses, we have that

δJ(u0) = 0

and
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J(u0) = J∗1 (v̂
∗, ẑ∗)

= sup
v∗∈D∗×B∗

{

inf
z∗∈[Y∗ ]2

J∗1 (v
∗, z∗)

}

. (79)

Proof. The proof that

δJ(u0) = −γ∇2u0 + 2α(u2 − β)u0 − f = 0,

and

J(u0) = J∗1 (v̂
∗, ẑ∗)

may be easily made similarly as in the previous sections.

Moreover, from the hypotheses and from the above lines, since J∗1 is concave in v∗ and convex in

z∗ on D∗ × B∗ × [Y∗]2, we have

J∗1 (v̂
∗, ẑ∗) = sup

v∗∈D∗×B∗
J∗2 (v

∗, ẑ)

and

J∗1 (v̂
∗, ẑ∗) = inf

z∗∈[Y∗ ]2
J∗1 (v̂

∗, z∗).

From this, from the standard Min-Max Theorem and the remaining hypotheses, we may infer that

J(u0) = J∗1 (v̂
∗, ẑ∗)

= sup
v∗∈D∗×B∗

{

inf
z∗∈[Y∗ ]2

J∗1 (v
∗, z∗)

}

. (80)

The proof is complete.

Remark 14.2. The functional

J∗3 (v
∗) = inf

z∗∈[Y∗ ]2
J∗1 (v

∗, z∗)

is indeed a concave dual variational formulation for a critical point of the primal model in question.

15. An algorithm for a related model in shape optimization

The next two subsections have been previously published by Fabio Silva Botelho and Alexandre

Molter in [5], Chapter 21.

15.1. Introduction

Consider an elastic solid which the volume corresponds to an open, bounded, connected set,

denoted by Ω ⊂ R
3 with a regular (Lipschitzian) boundary denoted by ∂Ω = Γ0 ∪Γt where Γ0 ∩Γt = ∅.

Consider also the problem of minimizing the functional Ĵ : U × B → R where

Ĵ(u, t) =
1

2
⟨ui, fi⟩L2(Ω) +

1

2
⟨ui, f̂i⟩L2(Γt)

,

subject to










(Hijkl(t)ekl(u)),j + fi = 0 in Ω,

Hijkl(t)ekl(u)nj − f̂i = 0, on Γt, ∀i ∈ {1, 2, 3}.

(81)
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Here n = (n1, n2, n3) denotes the outward normal to ∂Ω and

U = {u = (u1, u2, u3) ∈ W1,2(Ω;R3) : u = (0, 0, 0) = 0 on Γ0},

B =

{

t : Ω → [0, 1] measurable :
∫

Ω

t(x) dx = t1|Ω|
}

,

where

0 < t1 < 1

and |Ω| denotes the Lebesgue measure of Ω.

Moreover u = (u1, u2, u3) ∈ W1,2(Ω;R3) is the field of displacements relating the cartesian system

(0, x1, x2, x3), resulting from the action of the external loads f ∈ L2(Ω;R3) and f̂ ∈ L2(Γt;R
3).

We also define the stress tensor {σij} ∈ Y∗ = Y = L2(Ω;R3×3), by

σij(u) = Hijkl(t)ekl(u),

and the strain tensor e : U → L2(Ω;R3×3) by

eij(u) =
1

2
(ui,j + uj,i), ∀i, j ∈ {1, 2, 3}.

Finally,

{Hijkl(t)} = {tH0
ijkl + (1 − t)H1

ijkl},

where H0 corresponds to a strong material and H1 to a very soft material, intending to simulate voids

along the solid structure.

The variable t is the design one, which the optimal distribution values along the structure are

intended to minimize its inner work with a volume restriction indicated through the set B.

The duality principle obtained is developed inspired by the works in [2,3]. Similar theoretical

results have been developed in [9], however we believe the proof here presented, which is based on

the min-max theorem is easier to follow (indeed we thank an anonymous referee for his suggestion

about applying the min-max theorem to complete the proof). We highlight throughout this text we

have used the standard Einstein sum convention of repeated indices.

Moreover, details on the Sobolev spaces addressed may be found in [1]. In addition, the primal

variational development of the topology optimization problem has been described in [9].

The main contributions of this work are to present the detailed development, through duality

theory, for such a kind of optimization problems. We emphasize that to avoid the check-board standard

and obtain appropriate robust optimized structures without the use of filters, it is necessary to discretize

more in the load direction, in which the displacements are much larger.

15.2. Mathematical formulation of the topology optimization problem

Our mathematical topology optimization problem is summarized by the following theorem.

Theorem 15.1. Consider the statements and assumptions indicated in the last section, in particular those

refereing to Ω and the functional Ĵ : U × B → R.

Define J1 : U × B → R by

J1(u, t) = −G(e(u), t) + ⟨ui, fi⟩L2(Ω) + ⟨ui, f̂i⟩L2(Γt)
,

where

G(e(u), t) =
1

2

∫

Ω

Hijkl(t)eij(u)ekl(u) dx,
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and where

dx = dx1dx2dx3.

Define also J∗ : U → R by

J∗(u) = inf
t∈B

{J1(u, t)}

= inf
t∈B

{−G(e(u), t) + ⟨ui, fi⟩L2(Ω) + ⟨ui, f̂i⟩L2(Γt)
}. (82)

Assume there exists c0, c1 > 0 such that

H0
ijklzijzkl > c0zijzij

and

H1
ijklzijzkl > c1zijzij, ∀z = {zij} ∈ R

3×3, such that z ̸= 0.

Finally, define J : U × B → R∪ {+∞} by

J(u, t) = Ĵ(u, t) + Ind(u, t),

where

Ind(u, t) =

{

0, if (u, t) ∈ A∗,

+∞, otherwise ,
(83)

where A∗ = A1 ∩ A2,

A1 = {(u, t) ∈ U × B : (σij(u)),j + fi = 0, in Ω, ∀i ∈ {1, 2, 3}}

and

A2 = {(u, t) ∈ U × B : σij(u)nj − f̂i = 0, on Γt, ∀i ∈ {1, 2, 3}}.

Under such hypotheses, there exists (u0, t0) ∈ U × B such that

J(u0, t0) = inf
(u,t)∈U×B

J(u, t)

= sup
û∈U

J∗(û)

= J∗(u0)

= Ĵ(u0, t0)

= inf
(t,σ)∈B×C∗

G∗(σ, t)

= G∗(σ(u0), t0), (84)

where

G∗(σ, t) = sup
v∈Y

{⟨vij, σij⟩L2(Ω) − G(v, t)}

=
1

2

∫

Ω

Hijkl(t)σijσkl dx, (85)

{Hijkl(t)} = {Hijkl(t)}−1

and C∗ = C1 ∩ C2, where

C1 = {σ ∈ Y∗ : σij,j + fi = 0, in Ω, ∀i ∈ {1, 2, 3}}
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and

C2 = {σ ∈ Y∗ : σijnj − f̂i = 0, on Γt, ∀i ∈ {1, 2, 3}}.

Proof. Observe that

inf
(u,t)∈U×B

J(u, t) = inf
t∈B

{

inf
u∈U

J(u, t)

}

= inf
t∈B

{

sup
û∈U

{

inf
u∈U

{

1

2

∫

Ω

Hijkl(t)eij(u)ekl(u) dx

+⟨ûi, (Hijkl(t)ekl(u)),j + fi⟩L2(Ω)

−⟨ûi, Hijkl(t)ekl(u)nj − f̂i⟩L2(Γt)

}}}

= inf
t∈B

{

sup
û∈U

{

inf
u∈U

{

1

2

∫

Ω

Hijkl(t)eij(u)ekl(u) dx

−
∫

Ω

Hijkl(t)eij(û)ekl(u) dx

+⟨ûi, fi⟩L2(Ω) + ⟨ûi, f̂i⟩L2(Γt)

}}}

= inf
t∈B

{

sup
û∈U

{

−
∫

Ω

Hijkl(t)eij(û)ekl(û) dx

⟨ûi, fi⟩L2(Ω) + ⟨ûi, f̂i⟩L2(Γt)

}}

= inf
t∈B

{

inf
σ∈C∗

G∗(σ, t)

}

. (86)

Also, from this and the min-max theorem, there exist (u0, t0) ∈ U × B such that

inf
(u,t)∈U×B

J(u, t) = inf
t∈B

{

sup
û∈U

J1(u, t)

}

= sup
u∈U

{

inf
t∈B

J1(u, t)

}

= J1(u0, t0)

= inf
t∈B

J1(u0, t)

= J∗(u0). (87)

Finally, from the extremal necessary condition

∂J1(u0, t0)

∂u
= 0

we obtain

(Hijkl(t0)ekl(u0)),j + fi = 0 in Ω,

and

Hijkl(t0)ekl(u0)nj − f̂i = 0 on Γt, ∀i ∈ {1, 2, 3},

so that

G(e(u0)) =
1

2
⟨(u0)i, fi⟩L2(Ω) +

1

2
⟨(u0)i, f̂i⟩L2(Γt)

.

Hence (u0, t0) ∈ A∗ so that Ind(u0, t0) = 0 and σ(u0) ∈ C∗.
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Moreover

J∗(u0) = −G(e(u0)) + ⟨(u0)i, fi⟩L2(Ω) + ⟨(u0)i, f̂i⟩L2(Γt)

= G(e(u0))

= G(e(u0)) + Ind(u0, t0)

= J(u0, t0)

= G∗(σ(u0), t0). (88)

This completes the proof.

15.3. About a concerning algorithm and related numerical method

For numerically solve this optimization problem in question, we present the following algorithm

1. Set t1 = 0.5 in Ω and n = 1.
2. Calculate un ∈ U such that

J1(un, tn) = sup
u∈U

J1(u, tn).

3. Calculate tn+1 ∈ B such that

J1(un, tn+1) = inf
t∈B

J1(un, t).

4. If ∥tn+1 − tn∥∞ < 10−4 or n > 100 then stop, else set n := n + 1 and go to item 2.

We have developed a software in finite differences for solving such a problem.

For a two dimensional beam of dimensions 1m × 0.5m and t1 = 0.63 we have obtained the

following results:

1. Case A: For the optimal shape for a clamped beam at left (cantilever) and load P = −4 · 106Nj at

(x, y) = (1, 0.25), please Figure 5.

In this case the mesh was 28 × 24.

Figure 5. Density t(x, y) for the Case A.
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