Pre prints.org

Article Not peer-reviewed version

Duality Principles and Numerical
Procedures for a Large Class of Non-
convex Models in the Calculus of
Variations

Fabio Botelho *
Posted Date: 17 May 2023
doi: 10.20944/preprints202302.0051v13

Keywords: Duality theory; non-convex analysis; numerical method for a non-smooth model

Preprints.org is a free multidiscipline platform providing preprint service that
is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons
Attribution License which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.



https://sciprofiles.com/profile/2321302

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 May 2023 doi:10.20944/preprints202302.0051.v13

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article

Duality Principles and Numerical Procedures for a
Large Class of Non-Convex Models in the Calculus
of Variations

Fabio Silva Botelho

Department of Mathematics, Federal University of Santa Catarina, Floriané6polis - SC, Brazil;
fabio.botelho@ufsc.br

Abstract: This article develops duality principles and numerical results for a large class of non-convex
variational models. The main results are based on fundamental tools of convex analysis, duality theory
and calculus of variations. More specifically the approach is established for a class of non-convex
functionals similar as those found in some models in phase transition. Finally, in the last section we
present a concerning numerical example and the respective software.
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1. Introduction

In this section we establish a dual formulation for a large class of models in non-convex
optimization.

The main duality principle is applied to double well models similar as those found in the phase
transition theory.

Such results are based on the works of ].J. Telega and W.R. Bielski [2,3,14,15] and on a D.C.
optimization approach developed in Toland [16].

About the other references, details on the Sobolev spaces involved are found in [1]. Related results
on convex analysis and duality theory are addressed in [5-7,9,13].

Finally, in this text we adopt the standard Einstein convention of summing up repeated indices,
unless otherwise indicated.

In order to clarify the notation, here we introduce the definition of topological dual space.

Definition 1.1 (Topological dual spaces). Let U be a Banach space. We shall define its dual topological
space, as the set of all linear continuous functionals defined on U. We suppose such a dual space of U, may be
represented by another Banach space U*, through a bilinear form (-,-)yy : U x U* — R (here we are referring
to standard representations of dual spaces of Sobolev and Lebesgue spaces). Thus, given f : U — R linear and
continuous, we assume the existence of a unique u* € U* such that

F(u) = (0", Vu € U. (1)
The norm of f, denoted by || f ||+, is defined as

[ fllus = sup{|{u, u*)ul : [lullu <1} = [Ju"|u-. (2)
uel

At this point we start to describe the primal and dual variational formulations.

2. A general duality principle non-convex optimization

In this section we present a duality principle applicable to a model in phase transition.
This case corresponds to the vectorial one in the calculus of variations.

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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Let Q) C R" be an open, bounded, connected set with a regular (Lipschitzian) boundary denoted
by 0Q.
Consider a functional | : V — R where

I(”) = F(vulr' o /V”N) +G(”1/' o /uN) - <Mj,fj>L2,

and where
V=Au=(uy, - ,un) € WPQRY) : u=uyonaQ},

feL?(RN),and 1 < p < +oo.
We assume there exists « € R such that

=i

Moreover, suppose F and G are Fréchet differentiable but not necessarily convex. A global
optimum point may not be attained for | so that the problem of finding a global minimum for | may
not be a solution.

Anyway, one question remains, how the minimizing sequences behave close the infimum of J.

We intend to use duality theory to approximately solve such a global optimization problem.

Denoting Vy = WP (RN), Y1 = Y; = [2(Q;RN*"), Y, = Y§ = L2(Q;RN*"), Y3 = Y§ =
L2(Q;RN), at this point we define, F; : VxVy - R, G : V - R, G :V - R,G3: Vy — Rand
Gy:V =R, by

K
F(Vu,V9) = F(Vin+ Yy, -, Vuy+Vn) + 5 /Q Vi, - Vi dx

K
+7 /Q V(P]‘ . V47]' dx (3)
and K
Gl(ul/ . ,Mn) — G(ul/ C. /MN) + 71 /Qu]' Uj dx — <ui,fl‘>L2,
_K d
Gz(Vul,- o ,qu) = 7/()Vu] . Vu] X,
K>
Gi(Ver, -, Vy) = Tfﬂwj-wj dx,
and K
1
G4(M1,- . ,MN) = 7 Qu]- Mj dx.

Definenow [ : V x Vj — R,

T, ¢) = F(Vu+ V) + G(u) — (ui, fi) 2.


https://doi.org/10.20944/preprints202302.0051.v13

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 May 2023 doi:10.20944/preprints202302.0051.v13

3 0f 40

Observe that

F(Vu,V¢)+ Gy(u) — Go(Vu) — G3(Vp) — Gy (u)
F(Vu, V) + Gi(u) = (Vu,z1) 12 = (V§,23) 12 — (4, 23) 12

+ sup {(v1,27) 12 — Ga(v1)}
11€Yq

J1(u, ¢)

IN

+ sup {(v2,23)12 — G3(v2)}

€Y,

+ sgg{(u, z3)2 — Ga(u)}

= FR(Vu,V¢)+Gi(u) = (Vu,z1) 12 = (V§,23) 12 — (u,23) 2
+G;(21) + G3(23) + G4 (23)
= Jiwez"), @)
YueV, eV, z8 = (z,25,23) € Y =Y x Y5 x Y5,
Here we assume K, Ky, K, are large enough so that F; and G; are convex.
Hence, from the general results in [16], we may infer that

inf _ nf . -
(”"/’)IQVXVO (u.9) (u,¢,z*)g\1/xvoxy* Ji(u, ¢,27) )

On the other hand

inf > inf ,¢) > inf = inf ,
ARG 2 ing 0 9) 2 Il Q) = fnf J)
where Qj(u) refers to a standard quasi-convex regularization of J.

From these last two results we may obtain

inf = inf (u, ¢, 2%).
JgV](u) (u,(p,z*)ér‘}'xVoxY* Ji (u 9.2 )

Moreover, from standards results on convex analysis, we may have

inf Jy (u,¢,2") inf {F, (Vi V) + G (u)
—(Vu,21) 2 = (V, 23) 12 — (u,23) 12
+G;(21) + G3(23) + Gi(z3)}

= sup {—F (01 +21, V) = Gi(v3 +23) = (V§,23) 12

(vy,05)eC*
+G;(21) + G3(23) + Gy (z3)}, (6)
where
C'={v" = (v,v3) € Y7 X Y3 : —div(v]);i + (v3); =0,Vi € {1,--- ,N}},
F (01 + 21, V¢) = sup {(o1,2] +v7)12 — Fi(v1, V) },
Z]1€Y1
and
Gi(v3 +23) = sup{(u,v3 +23)12 — G1(u) }.
ueVv
Thus, defining

J2(¢,2%,0%) = F (v1 +21, Vo) = G{ (v2 +23) = (V§,23)12 + G3(21) + G3(22) + Gy (23),
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we have got

inf J(u) = inf  Ji(u,¢)

uev (,$)EV x Vo

- inf S,

(1,,2*) VXV x Y*

= 232&{4}350{;21& J3(¢,2" 0 )}} (7)

Finally, observe that

inf /(1)

ueV

— . f . f * 3 *’ *
o {;QVO {;‘;g hige >}}

> sup { inf  J5(¢,2%, v*)} . (8)
veecr L(Z59)eY* x V),
This last variational formulation corresponds to a concave relaxed formulation in v* concerning
the original primal formulation.

3. Another duality principle for a simpler related model in phase transition with a respective
numerical example

In this section we present another duality principle for a related model in phase transition.
Let ) = [0,1] C R and consider a functional | : V — R where

2/ 2 1)?dx+Z /u dx — (u, f)2,

and where
V={uecW"4Q) : u(0) =0and u(1) = 1/2}

and f € L?(Q).
A global optimum point is not attained for | so that the problem of finding a global minimum for
J has no solution.
Anyway, one question remains, how the minimizing sequences behave close the infimum of J.
We intend to use duality theory to approximately solve such a global optimization problem.
Denoting Vy = Wy*(Q), at this point we define, F: V — Rand F; : V x Vy — Rby

_ %/Q((u’)z—l)z dx,

Filug) =5 [ (0 +¢ 7 =17 dx.

and

Observe
F(u) > inf Fy(u,¢) > Qr(u), Vu eV,
PV

where Qr (1) refers to a quasi-convex regularization of F.
We define also
F:VxVy—R,

F3:VXVO—>R
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and
G:VxVy—=R

E(u,¢) = %/Q((u’—&—cp')z —1)2 dx—l—%/nuz dx — (u, )2,

F(u,¢) = F2(”r¢)+§/0(u/)2dx
Ky N2
+ | (97 dx 9)
and

Glug) = 5 [P dx
1

2
+K7 | (9) dx (10)

Observe that if K > 0, K; > 0 is large enough, both F3 and G are convex.
Denoting Y = Y* = L2(Q)) we also define the polar functional G* : Y* x Y* — R by

G*(v% o) = sup  {(u,0%)p2 + (9, 05)12 = G(u,9)}-

(u,(P)GVXVO
Observe that
. > . * * * _ * _ * .
l}glfl](”) z ((u,q)),(v*,vgglerxVOx[Y*]Z{G (v*,00) = (u,v") 2 = (P, vp) 12 + F3(u, ) }

With such results in mind, we define a relaxed primal dual variational formulation for the primal
problem, represented by J; : V x Vp x [Y*]2 — R, where
Ji(u, ¢, 0%, 05) = G* (0", 05) = (u,0") 12 = (§,05) 12 + F5(u, )-

Having defined such a functional, we may obtain numerical results by solving a sequence of
convex auxiliary sub-problems, through the following algorithm.

1. Set K~ 150 and K; = K/20and 0 < ¢ < 1.
2. Choose (u1,¢1) € V x V, such that [|lu1 |10 < K/4 and 1|10 < K/4.
3. Setn = 1.
4. Calculate (v;;, (v)n) solution of the system of equations:
a]ik (ui’li 4)1’1/ ’U:fl/ (’08)1’!) — 0
dv*
and
a]f(unr()bn/v;;/ (US)H) _ 0
9v;
that is e
aG (vn/ (Uo)}’l) o un —_ 0
ov*
and 3G (v* (o
(v3, (08)n) =0

*
9v;)
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so that
. _ 9G (un, Pn)
On = ou
and 3G( )
%\ k u 4
(6§); = gy

5. Calculate (u,11, ¢n+1) by solving the system of equations:

a]ik (un+1, ¢n+1r U;;, (US)")

ou =0
and . .
a]l (un+1/ Pnt1,On, (UO)TI) -0
o
that is
ot 8F3(ung;, Pui1) _
and SF
(%) + 3(“n§;)r¢n+1) —0

6. If max{||un — tty+1)lco, [|Pn+1 — Pnllo} < ¢, then stop, else set n := n+ 1 and go to item 4.

For the case in which f(x) = 0, we have obtained numerical results for K = 1500 and K; = K/20.
For such a concerning solution 1 obtained, please see Figure 1. For the case in which f(x) = sin(7x)/2,
we have obtained numerical results for K = 100 and K; = K/20. For such a concerning solution u
obtained, please see Figure 2.

0.5

0.4 r b

0.2 ]

Figure 1. solution ug(x) for the case f(x) = 0.

Remark 3.1. Observe that the solutions obtained are approximate critical points. They are not, in a classical
sense, the global solutions for the related optimization problems. Indeed, such solutions reflect the average
behavior of weak cluster points for concerning minimizing sequences.
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04 f 1
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Figure 2. solution ug(x) for the case f(x) = sin(7x)/2.

4. A convex dual variational formulation for a third similar model

In this section we present another duality principle for a third related model in phase transition.
Let Q = [0,1] C R and consider a functional | : V — R where

) = 5 [min{( =12 ' + 172} dx 5 [ dx= G frn,

and where
V={uecW?Q) : u(0)=0and u(1) = 1/2}

and f € L2(Q).

A global optimum point is not attained for | so that the problem of finding a global minimum for
J has no solution.

Anyway, one question remains, how the minimizing sequences behave close to the infimum of J.

We intend to use the duality theory to solve such a global optimization problem in an appropriate
sense to be specified.

At this point we define, F: V — Rand G : V — R by

F(u) = %/ﬂmin{(u’—l)z,(u’+1)2}dx

— 1 "2 o /
- 2/Q(u) dx /Q|u|dx+1/2
Fi(u')

(11)

and

G(u) = %/Quz dx — (u, f)a.

Denoting Y = Y* = L?(Q)) we also define the polar functional F; : Y* — Rand G* : Y* — Rby

F(0) = ng;{<v'v*>L2_Fl<0)}

_ %/Q(v*y dx+/0 10| dx, (12)
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and
G*((0")) = 51615{—@//0*&2 —G(u)}
_ %/Q((v*)’+f)2 dx—%v*(l). (13)

Observe this is the scalar case of the calculus of variations, so that from the standard results on
convex analysis, we have

inf J(u) = max {—F (v") — G*(—(v")")}.
ueVv vreY*
Indeed, from the direct method of the calculus of variations, the maximum for the dual formulation
is attained at some 9" € Y*.
Moreover, the corresponding solution 1y € V is obtained from the equation

Finally, the Euler-Lagrange equations for the dual problem stands for

(0")" + f' = 0" = sign(v") =0, inQ,
{ (v*)/(0) =0, (v*)'(1) =1/2, (14)

where sign(v*(x)) = 1if v*(x) > 0, sign(v*(x)) = —1,if v*(x) < 0 and

—1 < sign(v*(x)) <1,

if v*(x) = 0.

We have computed the solutions v* and corresponding solutions 1y € V for the cases in which
f(x) =0and f(x) = sin(mx)/2.

For the solution u(x) for the case in which f(x) = 0, please see Figure 3.

For the solution u(x) for the case in which f(x) = sin(7tx) /2, please see Figure 4.

0.6

05

031

02

Figure 3. solution u((x) for the case f(x) = 0.
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0.6

04 r b

02 ]

041t 1

Figure 4. solution ug(x) for the case f(x) = sin(7x)/2.

Remark 4.1. Observe that such solutions ug obtained are not the global solutions for the related primal
optimization problems. Indeed, such solutions reflect the average behavior of weak cluster points for concerning
minimizing sequences.

4.1. The algorithm through which we have obtained the numerical results

In this subsection we present the software in MATLAB through which we have obtained the last
numerical results.

This algorithm is for solving the concerning Euler-Lagrange equations for the dual problem, that
is, for solving the equation

(v")'(0) =0, (v*)'(1) =1/2.

Here the concerning software in MATLAB. We emphasize to have used the smooth approximation

0"~/ (0%)2 + e,

where a small value for e; is specified in the next lines.
A3 e oA KA A A A A A A KA

{ (0%)" + f' —o* — sign(v”) =0, inQ), (15)

. clear all
. mg = 800; (number of nodes)
.d= 1/1718,‘
. e1 = 0.00001;
. fori=1:mg
yo(i,1) = 0.01;

y1(i,1) = sin(wrxi/mg)/2;

Q= WO IN =

end;
6. fori=1:mg—1

dy1(i,1) = (1 (i+1,1) =11 (i,1))/d;

end;
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7. for k =1:3000 (we have fixed the number of iterations)
i=1;
hy =1/+/v0(i,1)2 +ey;
myy =1+ d? % hy +d%;
mso(i) = 1/m1p;

Z(Z) = m50(i) * (dyl(i,l) * dz);
8 fori=2:mg—1

hs =1//v0(i,1)% + ey;

myp =2+ hy *d? +d*> — m50(i — 1);
m50(i) = 1/myy;

z(i) = mso (i) * (z(i — 1) + dy; (i, 1) x d?);
end;

9. v(mg,1) = (d/2+z(mg — 1))/ (1 — mso(mg —1));
10. fori=1:mg—1

v(mg —1i,1) = mso(mg — i) x v(mg — i + 1) + z(mg — i);

end;
11. v(mg/2,1)
12. vo = v;

end;
13. fori=1:mg—1

u(i,1) = (o(i+1,1) = 0(i,1))/d +y1(i, 1);

end;

14. fori=1:mg—1
x(i) =ix*d;
end;
plot(x,u(:,1))

R R R R R R R R R

5. An improvement of the convexity conditions for a non-convex related model through an
approximate primal formulation

In this section we develop an approximate primal dual formulation suitable for a large class of
variational models.

Here, the applications are for the Kirchhoff-Love plate model, which may be found in Ciarlet,
[10].

At this point we start to describe the primal variational formulation.

Let O C R? be an open, bounded, connected set which represents the middle surface of a plate
of thickness . The boundary of (), which is assumed to be regular (Lipschitzian), is denoted by o).
The vectorial basis related to the cartesian system {x1, x5, x3} is denoted by (a,, a3), where « = 1,2 (in
general Greek indices stand for 1 or 2), and where a3 is the vector normal to (), whereas a; and a; are
orthogonal vectors parallel to (). Also, n is the outward normal to the plate surface.

The displacements will be denoted by

= {ﬁa, 123} = fiqa, + fizaz.
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The Kirchhoff-Love relations are
ﬁﬂ( (xl/ X2, x3) = ul’é(xl/ x2) - x3w(x1/ x2),tx
and 13(x1, X2, x3) = w(x1, X2). (16)
Here —h/2 < x3 < h/2 so that we have u = (u,, w) € U where
u = {u = (1, w) € W2(QR?) x W22(Q)),
Jw
ua:w:gzo on o0}
= Wy (O R?) x W2 (Q).
It is worth emphasizing that the boundary conditions here specified refer to a clamped plate.
We also define the operator A : U — Y x Y, where Y = Y* = L?(Q);R?>*?), by
A(u) = {y(u),x(u)},
_ utx,ﬁ + M‘B,,x w,aw,ﬁ
’YDélB(u) - 2 + 2 4
Kalg(u) = —Wap-
The constitutive relations are given by
Nyg (u) = HupruYau (u), (17)
Maﬁ(u) = hocﬁ/\yKAy(u)r (18)

where: {H, B )\Il} and {ha B = %Hal; A }, are symmetric positive definite fourth order tensors. From

now on, we denote {Hygau} = {Hapry} ' and {apry} = {haprn} -
Furthermore {N,g} denote the membrane force tensor and {M,4} the moment one. The plate
stored energy, represented by (G o A) : U — R is expressed by

1 1
(Gon)(u) =5 [ Nup()vap(u) dx+ 5 | Mup(u)ap(u) dx (19)
and the external work, represented by F : U — R, is given by
F(u) = <w,P>L2+<ua,Pa>L2, (20)

where P, P;, P, € L?(Q) are external loads in the directions a3, a; and a, respectively. The potential
energy, denoted by | : U — R is expressed by:

J(u) = (GoA)(u) = F(u)

Define now J3 : U — R by
J3(u) = J(u) + Js(w).

where
Kbw —K(b w—1/100)

(
a a
Js(w) = 10 /Q (o) g7z 4+ 10 /Q RO o

In such a case fora = 2.71, K = 185,b = P/|P| in Q and

U={uecl : ||w|es<00land Pw > 0a.e. in O},
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we get
z(u) 3](”)+3]5(”)
ow  odw ow
. 9J(u)
~ 24 0(£30), @1)
and
?Ju) ?J(u) + 0%J5(u)
ow?  ouw? ow?
%] (u)
=3 + O(850). (22)

This new functional [3 has a relevant improvement in the convexity conditions concerning the
previous functional J.

2
Indeed, we have obtained a gain in positiveness for the second variation aa]ug‘ ), which has
increased of order O (700 — 1000).
Moreover the difference between the approximate and exact equation

9J (u)

Jw =0

is of order O(+£3.0) which corresponds to a small perturbation in the original equation for a load of
P = 1500 N /m?, for example. Summarizing, the exact equation may be approximately solved in an
appropriate sense.

6. An approximate convex variational formulation for another related model

In this section, we obtain an approximate convex variational formulation for a related model,
more specifically, for a Ginzburg-Landau type equation.

Let QO C R3 be an open, bounded and connected set with a regular (Lipschitzian) boundary
denoted by Q).

Consider a functional | : V — R where

J(u) = %/QVqudx—i—%/Q(uz—ﬁ)zdx
—(u, 2 (23)
where ¥ > 0,4 >0, >0,V = Wy*(Q) and f € L*(Q).

We define
AT ={uecV :uf>0 ae inQ},

Vo={ueV: ||uo<1},

and
Vi=Wwn AT,

At this point we define v = 1/10 so that
J(u) = ho)
_10%y ® 5
- T/()Vz;-dex+§/()((10z;) ) dx
—(100, f) 2. (24)


https://doi.org/10.20944/preprints202302.0051.v13

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 May 2023 doi:10.20944/preprints202302.0051.v13

13 of 40
Moreover we define
1
() = *h(v)
10’7 2
- / Vo Vodx+ o [ ((100% — p) ax
—< v, )iz (25)
and J3 : U3 — R where
J3(v) = J2(v) + J5(v)
where
3 (5bw) K3 (5 b w—0.5)
J5(v) = Kq /071n( Tk x+/ @ K dx | .
Here K3 =1/360,a =271, K=2,b= f/|f| in Q and
Uy={veV: fov>0, ae inQ},
Uy={v eV : |v]o<1/10},
and
Uz = Uy N Uy.
Thus, with such numerical values, we may obtain
Is(v) _ 9f(v) 8]5( )
0v v 0v
~ ah( ) +O(£0.3), (26)
and
9*J3(v) _ 9*J2(v) n 9*J5(v)
00?2 00?2 00?2
9*J2(v)
S +0(70). 27)

Remark 6.1. This new functional || has a relevant improvement in the convexity conditions concerning the

previous functional J.

*J(v)

25—, which has increased of

Indeed, we have obtained a gain in positiveness for the second variation
order O(5 — 14).

Moreover the difference between the approximate and exact equation

9)2(v)

v =0

is of order O(=%0.3) which for appropriate parameters v > 0, « > 0 and B > 0, corresponds to a small
perturbation in the original equation. Summarizing, the exact equation may be approximately solved in an
appropriate sense.

Finally, for this last example, we highlight it is relatively easy to improve even more both such an
approximation quality and the convexity conditions concerning the original variational model.

With such statements and results in mind, we may prove the following theorem.
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Theorem 6.2. Suppose v > 0, &« > 0 and B > 0 are such that

&J3(v)
3 0,
in U3
Assume also, vy € Us is such that
6J3(vo) = 0.

Under such hypotheses, |3 is convex on Us so that

J3(vg) = min J3(0).

vels

Moreover,
3] (ug) =0+ O(£ 0.3),

where ug = 10vy € V1

Proof. From the hypotheses
PJ3(v)
902
in Us, so that [3 is convex on the convex set Us.
Consequently, since 6]3(vg) = 0, we obtain

>0

J3(vo) = min J3(0v).

vels

Finally, from the approximation indicated in the last remark and ug € V; we get
3J(ug) =0+ O(£ 0.3).

The proof is complete.
O

7. An exact convex dual variational formulation for a non-convex primal one

In this section we develop a convex dual variational formulation suitable to compute a critical
point for the corresponding primal one.

Let Q C R? be an open, bounded, connected set with a regular (Lipschitzian) boundary denoted
by 0Q).

Consider a functional | : V — R where

J(u) = F(uy, ”y) —(u, )2,

V =W,?(Q) and f € L2(Q).
Here we denote Y = Y* = L2(Q)) and Y; = Y{ = L*(Q) x L2(Q)).
Defining
Vi={ueV : ulie < K}

for some appropriate K; > 0, suppose also F is twice Fréchet differentiable and

Yu € Vi.
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Definenow F; : V — Rand F, : V — Rby
_ € 2 € 2
Fi(ux, uy) = F(uy, uy) + 5 /Q us dx + 5 /Quy dx,
and . .
Fa(ity, ) = 2 /Q 2 dx+ 2 /Q 2 dx,
where here we denote dx = dxdx,.
Moreover, we define the respective Legendre transform functionals Fj and F; as
Fi (v%) = (v1,07) 12 + (02, 02) 12 — F1 (01, 02),
where v1,v, € Y are such that
of = aFl(vl,'Uz)
1 801 !
of = aFl(Ul,Uz)
2 avz !
and
F; (v%) = (01,01 + fi) 2 + (02,03) 12 — Fa(01,02),
where v1,vy € Y are such that
an (’01,02)
* —
vt fl N 8'01 ’
'U* _ aFZ(UIIUZ)
2 8’02 ’
Here f; is any function such that
(fl)x = f, in Q).
Furthermore, we define
J'(0") = —F@©)+F(@)
1 1
= —F(")+5 /Q(zf{ )R dx+ o /Q(v;)z dx. 28)

Observe that through the target conditions
’UT + f 1= EUy,

vy = elly,

we may obtain the compatibility condition
(01 + fi)y = () = 0.
Define now
A" = {v" = (v],v3) € B;(0,0) C Y] : (v] + f1)y — (v3)x =0, inQ},

for some appropriate ¥ > 0 such that J* is convex in B,(0,0).
Consider the problem of minimizing J* subject to v* € A*.
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Assuming r > 0 is large enough so that the restriction in r is not active, at this point we define the
associated Lagrangian

Ji (@ @) =T (0°) + (¢, (01 + f)y = (02)x) 12/

where ¢ is an appropriate Lagrange multiplier.
Therefore

Ji(@*) = —F(v 5% / (v} + f1)? dx+2 / v3)? dx
<(Pr(v1+f) — (02)x)12- (29)

The optimal point in question will be a solution of the corresponding Euler-Lagrange equations
for J;.
From the variation of J{ in v] we obtain

LR (v') [ Ui+ f  dp

90} . 3y =0. (30)
From the variation of J{ in v; we obtain
oH () 75, %
— . 1
a0 + =+ 3 =0 (31)

From the variation of J{ in ¢ we have

(01 + f)y — (03)x = 0.

From this last equation, we may obtain u € V such that

vl + f = €uy,
and
vy = elly.
From this and the previous extremal equations indicated we have
IF; (v) 99
- x 0/
dv] ay
and 9E (") 5
_on (v a9
a0 +uy + py =0.
so that OF, (s )
x _dfy(Uy — @y, Uy + Px
(4] + f = aUl
and

N aFl( (Py/uy+([7x)
- 8'02

From this and equation (36) and (37) we have

__(OF(v)\  [9F(vY)
( v} )x s( Jv; >y
+(v] + fi)x + (03)y
= —glyy — ety + (0] )x + (v3)y + f =0. (32)
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Replacing the expressions of v} and v3 into this last equation, we have
oF — @y, oF — @y,
—E€Uyy — EUyy + < 1 g)y uy—pr)) + ( 1t a(Py uy-i—(Px)) +f=0,
01 x 02 y
so that
(aF(”" “dvly t m) + (aF(”" “fvly T (’)")) +f=0,inQ. (33)
avl x 802 y
Observe that if

Vip=0

then there exists #i such that u and ¢ are also such that

ux_(Py:ﬁx

and
Uy + ¢x = 1y.
The boundary conditions for ¢ must be such that &I € WS 2,
From this and equation (39) we obtain
oJ(i) = 0.

Summarizing, we may obtain a solution & € W(}'z of equation 6] (i) = 0 by minimizing J* on A*.

Finally, observe that clearly J* is convex in an appropriate large ball B, (0,0) for some appropriate
r>0

8. An exact convex dual variational formulation for a non-convex primal one

In this section we develop a convex dual variational formulation suitable to compute a critical
point for the corresponding primal one.

Let QO C R? be an open, bounded, connected set with a regular (Lipschitzian) boundary denoted
by 0Q.

Consider a functional | : V — R where

J(u) = F(uy, ”y) —{u, )2,

V = W,%(Q) and f € L2(Q).
Here we denote Y = Y* = L2(Q)) and Y; = Y; = L[}(Q) x L2(Q).
Defining
Vi={ueV : [ulie <Ki}

for some appropriate K; > 0, suppose also F is twice Fréchet differentiable and

Yu € Vj.
Definenow F; : V — Rand F, : V= R by

_ € 2 € 2
Fi(ux, uy) = F(uy, uy) + 3 /Q us dx + 3 /Quy dx,

and
e

S
F(tty, 1) = §/Ou§ dx+§/0u§ dx,
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where here we denote dx = dxdx,.
Moreover, we define the respective Legendre transform functionals Fj and F; as
Fy (0") = (01,07) 2 + (v2,03) 2 — F1(v1,02),
where v1,v, € Y are such that
o — 9fi(01,02)
1 avl !
x aPl('U],Uz)
27 T ’
2
and
F;(0%) = (01,01 + fi)2 + (v2,03) 2 — F2(v1,02),
where v1,v, € Y are such that
05 (01, v2)
* —
Ul +f1 - 801 s
of = aPz(le,”Uz)
2 802 ’
Here f; is any function such that
(fl)x = f, in Q.
Furthermore, we define
J'(0") = —F{@©")+F(@")
1 2 1 2
= —H@©)+5 @+ AP+ o [ (03 (34)

Observe that through the target conditions
vl + f1 = ey,

vy = ey,

we may obtain the compatibility condition

(01 + fi)y — (v2)x = 0.

Define now
A* ={v* = (v],v3) € B,(0,0) C Y] : (v} +f1)y —(v3)x =0, in Q},

for some appropriate r > 0 such that [* is convex in B, (0, 0).

Consider the problem of minimizing J* subject to v* € A*.

Assuming r > 0 is large enough so that the restriction in r is not active, at this point we define the
associated Lagrangian

Ji(@% @) =T (") + (¢, (01 + fly — (02)x)12,

where ¢ is an appropriate Lagrange multiplier.
Therefore

@) = ~FE)+ o [ @+ AP dxs o [ (02 ax
e (05 + 1)y — @) @)
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The optimal point in question will be a solution of the corresponding Euler-Lagrange equations
for J;.
From the variation of J{ in v] we obtain

LR vitf dg

36
v} € ay (36)
From the variation of ] in v; we obtain
L LG S (37)
vy e Ox
From the variation of ] in ¢ we have
(01 + f)y — (v2)x = 0.
From this last equation, we may obtain u € V such that
vl + f = euy,
and
vy = Elly.
From this and the previous extremal equations indicated we have
oF (v*
_ 1 (U ) Uy — 874) — O,
v} ay
and oF (v) 5
_9n 9% _
303 Uy + o 0.
so that oF, )
% o Uy — @y, Uy + Px
(4] + f = a'Ul s
and
. OB (ux — @y uy + ¢x)
Uy = .
avz
From this and equation (36) and (37) we have
(aa*@*)) (aa*(v*))
—€ * —¢€ *
e N vy y
+(UT +f1)x + (Uﬁ)y
= —€lUyy — €Uy + (0] )x + (v3)y + f = 0. (38)
Replacing the expressions of v} and v into this last equation, we have
aFl(ux - Goy,uy‘f‘(/)x) aFl(”x _(I’y/uy+(Px)
_suxx_su]/]/+ < avl >x+ ( avZ )y+f_0’
so that
(aF(”" ~ Pyl ¥ (P")> + (aF(”" ~ Pyt ¥ m) =0, inQ. (39)
001 X 00, y

Observe that if
Vip=0
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then there exists # such that u and ¢ are also such that

ux_(l)y:ﬁx

and
uy + ng = uAy.
The boundary conditions for ¢ must be such that 7 € W&’z.
From this and equation (39) we obtain
o] (i) = 0.

Summarizing, we may obtain a solution 7 € W&’z of equation 6] (1) = 0 by minimizing J* on A*.

Finally, observe that clearly J* is convex in an appropriate large ball B, (0,0) for some appropriate
r>0

9. Another primal dual formulation for a related model

Let O C R® be an open, bounded and connected set with a regular boundary denoted by 9Q).
Consider the functional | : V — R where

J(u) = %/QVu-Vudx+%/Q(u2—,B)2dx
—(u, )12, (40)

€>0,8>0 v9>0,V=Wy>*Q)and f € L*(Q).
Denoting Y = Y* = L2(Q)), definenow J; : V x Y* — Rby

Ji(u,05) = —%/QVLL-VL[ dx — (u?,04) 2
K
+50 [(=rVPu205u— )2 dx o+ (u, £
1 *\2 *
tor /Q(vo) dx+,B/Qvo dx, (41)

Define also
At={ueV :uf>0 ae inQ},

Vo={ueV : |ul|o <Kz},

and
Vi=V,NA"

for some appropriate K3 > 0 to be specified.
Moreover define
B*={o €Y : |55l < K}

for some appropriate K > 0 to be specified.
Observe that, denoting
¢ = —yV2u+205u — f
we have 2 )
9”1 (u, v 1 2
— - = —+4K
a2 a

52 = V2 — 208 + K (—yV? + 204)?
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and
I (u,v5)

_ _~\72 * _
230, =Ki1(2¢ +2(—yV u +2v5u)) —2u

so that

det{6%J} (u,v5)}
i op) 2 (u,05) <32]{(u,vg)>z

9(v5)? ou? U}

Ki(=yV2+2035)% V24 205 + dau?
o B ®
—4K2p? — 8Ky p(—yV? + 20%)u + 8Ky gu
+4Ky (—yV?u + 204u)u. (42)

Observe now that a critical point ¢ = 0 and (—yV?u + 205u)u = fu > 0in Q.
Therefore, for an appropriate large K; > 0, also at a critical point, we have

det{ézﬁ‘ (u,v5)}

2 _ 2 2 *\2
— 4K1fu_5]T(u)+Klw > 0. (43)

Remark 9.1. From this last equation we may observe that | has a large region of convexity about any critical
point (ug, 0), that is, there exists a large r > 0 such that | is convex on B, (ug, 03).

With such results in mind, we may easily prove the following theorem.
Theorem 9.2. Assume Ky > max{1, K, K3} and suppose (ug, 03) € Vi x B* is such that
01 (uo,9y) = 0.

Under such hypotheses, there exists r > 0 such that ] is convex in E* = B(uo,9;) N (V4 x B¥),

0] (up) =0,
and
—J(uo) = J1(uo, 95) = inf Ji(u,vp).
(u,05)€E*

10. A third primal dual formulation for a related model

Let QO C R3 be an open, bounded and connected set with a regular boundary denoted by 9.
Consider the functional | : V — R where

J(u) = %/QVu-Vudx+%/Q(u2—,B)2dx
—(u, f)2, (44)

€>0,8>0v9>0,V=Wy*Q) and f € L*(Q).
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Denoting Y = Y* = L?(Q), definenow J; : V x Y* x Y* — Rby
Ji(u,v5,07) = z/Vu-Vualx—l—lfKu2dx
1\, 09, Uy 2 Jo 2 /o
—_— (01)?
_<M,Ul>L2+§/(‘2(7dx

—20v§ + K)
+2(ocl+€) /0(03 —a(u? = B))? dx + (u, f)

—% /0(06)2 dx—ﬁ/ﬂvé dx, (45)

where ¢ > 0 is a small real constant.
Define also
AT={ueV :uf>0 ae inQ},

Vo={ueV : ||ulle <Kz},

and
Vi=WmnNnAT

for some appropriate K3 > 0 to be specified.
Moreover define
B' = {05 € Y" ¢ [0l < Ku}

and
D* ={v] € Y" : [jo]| < K5},

for some appropriate real constants K4, K5 > 0 to be specified.

Remark 10.1. Define now
Hy(u,05) = —yV? + 20} + 4au?

and
Evé = {u eV Hl(u,vé) > 0}.

For a fixed vy € B*, we are going to prove that C* = EUS N Vj is a convex set.
Assume, for a finite dimensional problem version, in a finite differences or finite element context, that

—yV? —2ap <0,
so that for K1 > 0 be sufficiently large, we have
— V2 4205 — Kju? < 0.

Observe now that
Hi(u,08) = —yV? 4 205 — Kqu? + 4au® + Kyu?.

Let uq,up € C*and A € [0,1].
Thus
sign (u1) = sign (up) in Q)

so that

Mui| 4+ (1= M) |uz| = [Aug 4+ (1 — AN)ug| in Q.

Observe now that
H1 (T/ll, Z)S) >0
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and
Hl(uz, US) Z 0
so that
daud + Kyuf > yV? — 205 + Kyui >0,
and
Ao + Kyu? > yV2 — 20k 2
2 1“1 - ’)/V 200 +K1UZ Z 0,
so that
Vi + Ky|ug| > \/’yvz — 20} + Kqu?
and
Vaa + Ky|up| > \/'yVZ — 20} + Kqu3.
From such results we obtain
\4x + K1|/\u1 + (1 - A)u2| = /4 +K1<)\|M1| + (1 - )\|u2|)
> A/YV2 =205 + K + (1 - A)y/7V2 — 205 + Kuiid
> \/'yVZ —20% + Ky (Auy + (1= A)up)2. (46)

From this we obtain
(4o + K1) (Aug + (1= M)up)? > yV* = 205 + Ky (Aug + (1 = A)ua)?,

so that
Hi(Auq + (1 —A)up,v5) > 0.

Hence Evg is convex. Since V1 is also clearly convex, we have obtained that C* = Evg N Vq is convex.
Such a result we will be used many times in the next sections.

Observe that, defining
¢ = vp —a(u” - B)

we may obtain

9%J; (u, v, v5) ’ a5 «
AR v U4 VAES K+ -5 a? —
ou? VI K o " L +¢
azji‘(u,vg,vi‘) B 1
9(v])? - 205 +K
and
Phi(wop00)
0udv; o
so that

o | P00 25, 00)
auavi‘

2
_ PJi(wog,0p) Py (woj,op) (92 (w0, 05)
9(v})? ou? oudv;
% 2
—yV2 205 + 45 -2
—2v5 +K
H(u,vp). (47)
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However, at a critical point, we have ¢ = 0 so that, we define
C%:{MEV : ¢ <0}
From such results, assuming K >> max{K3, K4, K5}, define now
Eyy ={u €V : H(u,vy) > 0}.

Observe that similarly as it was develop in remark 10.1, we may prove that E,; is a convex set.
With such results in mind, we may easily prove the following theorem.

Theorem 10.2. Suppose (1o, 93,05) € E* = (V1 N Cys N Egs) x D* x B* is such that
01 (uo, 5, 07) = 0.
Under such hypotheses, we have that
6](uo) =0

and

](M(]) = inf ](u)

uevy
= Ji(uo,97,0p)
= inf { sup ]f(u,v{,vé)}

(u,v7)€Vy xD* v;E€B*

- sup{ in mu,vf,v@}. (49)

v E€B* (u,v{)eleD*

Proof. The proof that
6] (ug) =0
and
J(uo) = Jx (uo, 01, %)

may be easily made similarly as in the previous sections.
Moreover, from the hypotheses, we have

* A% A% . * * %
ug, 07,05) = inf u,v5,0
Ji (o, 07, 0p) (u,v}‘)eleD*h( ,01,0p)

and

Ji (uo, 0y, 95) = sup Ji (uo,97,0p).
vy EB*

From this, from a standard saddle point theorem and the remaining hypotheses, we may infer
that

J(uo) = Ji(uo,97,9)

_ inf {sup ]i“(u,vivé)}

(u,v7)€Vy xD* v;E€B*

sup { . vf,v;f)}. (49)

v eB u,vy)€Vy xD*
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Moreover, observe that
]ik (uOI ’(’)\T/ ’ﬁé) B (M,UT)ig‘ﬁl X D* ]ik (u, UT’ ﬁé)
i 2
< -
< Z/Vu Vudx+2/u dx
Ak . 5 2
+(u”,05) 2 Z/Qu dx
—%/0(53)2 dx—/s/ﬂzag dx
1 A% 2 2 _
+m /Q(Uo a(u”—B))"dx —(u, f)2
< sup {7/ Vu - Vudx + (u?,05)
vpEY* 2 Ja
1 *\2 *
—5/0(00) dx ﬁ/ﬂvodx
1 £ 02 a2 e
g Ja# = ol = B uf)s |
- . &® 2 m\2
= Z/QVu Vudx—i—z/ﬂ(u B)- dx
—(u, f) 2, Yu € Vy. (50)
Summarizing, we have got
J(uo) = J{ (uo, 937, 05) < inf J(u).
uevy
From such results, we may infer that
J(ug) = inf J(u)
uevy
= Ji(uo, 91, %)
= inf sup J1 (1,07, 0}
(u,v{)EleD* {Uéeg* 1( 1 O)}
= su inf F(u,07,05) 7. (51)
vgelg"{(”/UT)EVlXD*h( 1 O)}

The proof is complete. [

11. A fourth primal dual formulation for a related model

Let O C R? be an open, bounded and connected set with a regular boundary denoted by 9Q).
Consider the functional | : V — R where

J(u) = %/QVu-Vudx—i—%/Q(uz—ﬁ)zdx
—(u, f) 12, (52)

«>0,B>0,7>0,V=W>2Q)and f € [3(Q).
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Denoting Y = Y* = L?(Q), definenow J; : V x Y* — Rby

Ji(u,v5) = %/QVqudx—(uz,vé)Lz

+2(¢x1+8) /Q<v6 —a(u? = B))? dx — (u, f) 12

—% /0(03)2 dx—ﬁ/nvg dx, (53)

where ¢ > 0 is a small real constant.
Define also
AT ={uecV :uf>0 ae inQ},

Vo={ueV : |ul|lo <Kz},

and
Vi=WVN AT

for some appropriate real constant K3 > 0.
Moreover define
B = {oj € Y" ¢ [lojlle < K}

for some appropriate real constant Ky > 0.

Observe that, denoting ¢ = vj — a(u? — B), we may obtain

PJ; (1,9)

2 = —'YVZ + 20,

2
NIRRT S
o+ € ®+ &

= H(u,vp), (54)

and
Pliwop) 1, 1
(v a a+e

However, at a critical point, we have ¢ = 0 so that, we define

<0

C;ja:{uEV:(pSO}.

Define also,
Eyy ={u €V : H(uuvy) > 0}.

Remark 11.1. Similarly as it was developed in remark 10.1 we may prove that such a Ey; is a convex set.
With such results in mind, we may easily prove the following theorem.

Theorem 11.2. Suppose (1o, 95) € E* = (V1 N Cyz N Egy) x B* is such that
31 (uo,03) = 0.

Under such hypotheses, we have that
6] (ug) =0

and
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J(ug) = inf J(u)

ueVy
= Ji(uo,%)

= inf {sup Ii‘(u,v’6>}

uev; U(*)GB*

= sup {inf ]i‘(u,vg)}. (55)

v4E€B* ueVy

Proof. The proof that
6](ug) =0
and

J(uo) = Ji (uo, 0p)

may be easily made similarly as in the previous sections.
Moreover, from the hypotheses, we have

Ji (o, 95) = inf J}(u,03)
ueVy

and
Ji (1o, 9) = sup Ji (uo, v5)-
vy €B*
From this, from a standard saddle point theorem and the remaining hypotheses, we may infer
that

J(uo) = Ji(uo, %)
= inf {sup ]f(u,vg)}

uevy US cB*

= sup {inf ]f(u,vé)}. (56)

v4E€B* ueVy
Moreover, observe that

Ji(uo, %) = inf Ji(u,0p)
ueVy

IN

Y .
5 /QVu -V dx + (u?,05) 1>

17, B
T o /0(00)2 dx_'B/QUO dx
+2(0¢17+€) /Q(ﬁs_“(”z—ﬁ))z dx — (u, f)p2

IN

sup {%/QVM'VM dx + (u?,0%)

vpEY*

1 *\2 *
_ﬂ/ﬂ(v(’) dx ﬁ/Qvde

R ol = a0 = B = ()

- . o 2 o\2
= Z/QVu Vudx—i—z/o(u B)- dx
7<u,f>L2, Yu € V. (57)
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Summarizing, we have got

J(uo) = Ji (uo,35) < inf J(u).

ueVy
From such results, we may infer that
= 1 f
Jw) = inf J(u)
= Ji(uo, %)

= inf {sup ]i‘(u,vg)}

ueVy USEB*

= sup {inf ]f(u,vé)}. (58)

vé €B* uevy
The proof is complete. [

12. One more primal dual formulation for a related model

Let O C R? be an open, bounded and connected set with a regular boundary denoted by 9Q).
Consider the functional | : V — R where

J(u) = %/QVL:-Vudx—i—%/ﬂ(uz—/ﬂ)de
—(u, f)r2, (59)

«>0,B>0,7>0,V=W>Q)and f € L*(Q).
Denoting Y = Y* = [?(Q), definenow J; : V x Y* x Y* — Rby

Ji(u,vi,05) = %/QVu-Vudx—kg/Quzdx—(u,v}“)Lz
+% Q%dx—(u,fﬁz
2 * * 2
+K7 0 (rzy)lviik —2vvgl+1<> ax
—% /0(06)2 dx—[%/nvs dx, (60)

Define also
AT={ueV :uf>0 ae inQ},

Vo= {ueV : |ule < Ks},

and
Vi=Wn AT
specifically for a constant K3 = i
Moreover define
B* ={uy € Y" : [|oglleo < Ky}
and

D" = {vf € Y" : ||o]l|o < K5}

for some appropriate real constants K4 > 0 and K5 > 0.
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Observe that ” )
P} ]* M,Z)*,’U*
W ~ V24K,
azjik(u/vT/US) _ 1 + Kz(—’)’vz +27JS)2
()2 —205+K  [(—yV2+K) (=205 + K)?’
szi‘(u,vi‘,vg) _
ou 0} v
so that
2
det [T o106)\ L of,08) P (wvf,05) (9 (w03, 5)
ou v} o(v;)? ou? ou v}
_ 0 K2(2(—yV? +203) + 2(—y V2 +205)?)
(—yV? +K)(—20v} + K)?
= H(Ua) (61)

With such results in mind, we may easily prove the following theorem.

Theorem 12.1. Assume K > max{K3, Ky, K5, 1} and suppose (ug, 05,0;) € Vi x D* x B* is such that
01 (uo, 93, 95) = 0.

Suppose also H (%) > 0.
Under such hypotheses, we have that

6] (o) =0

and

- K2 ((—yV2u+205u— )\
J(uo) = ulg‘gl {](”) T /Q ( V2K dx

= Ji(uo, 97, %)

= inf { sup ]f(u,,vf,vé)}

(ll,’UT)GV]XD* USEB*

= sup{ inf *H(u,vi‘,vé)}. ©)

vieB* (u,v3)€VixD

Proof. The proof that
8] (o) = —yV?ug + 2a(u* — B)ug — f = 0,

05 = a(ug — p)

and

B K2 (—yV2ug +205ug — f)
J(u0) = J(uo) + —- Q( “AVITK

2
) dx = J{ (uo, 07,95)

may be easily made similarly as in the previous sections.
Moreover, from the hypotheses, we have

* A% A% . * * %
ug, 07,05) = inf u,v5,90
J1 (uo, 97, 9p) (u,v;)eleD*h( ,01,0p)
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and

Ji (uo, 93, 95) = sup Ji (uo,97,70p).
vy EB*

From this, from a standard saddle point theorem and the remaining hypotheses, we may infer
that

J(uo) = Ji(uo,07,9p)

_ inf { sup Ji(u, UT/US)}

(u,v7)€Vy xD* vy EB*
= sup { inf J1 (u, 0} ,US)} . (63)
vieB* (u,0])€Vy xD*
Moreover, observe that
Ji (uo,93,95) = inf ~J7(u,01,7)

(u,07)€Vy xD*

v A
< E/QVu-Vu dx + (u?,0%) 2
1 X X
T /Q(Uo)z dx — /3/000 dx —(u, f) 2
2
+I£ (—yV2u +205u — f) i
2 Ja —yV2+K
<

sup {g/QVu-Vu dx + (u?, %)

*
vpEY*

oo G dx—p [ ot e
+K2 ((—7V2u+2ﬁ3u—f)>2 dx}

2 Ja —yV2+K

- 7 : a 2_ g2
= Z/QVu Vudx+2/0(u B)- dx

—(u, f)12
2
K? (—yV2u +205u — f)
+7 0 < V2K dx, Yu € Vj. (64)

From this we have got

* A% Ak Y ®
Ji(uo, 07,05) < E/QVu-VudJH—E/Q(uz—ﬁ)zalx—<u,f>Lz

RS ((—qu + 205U — f)

2
~ d V.
5 |, . ) x, VueV (65)
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Therefore, from such results we may obtain

- K ((—yV2u+205u— )\
J(uo) = ulé\‘gl {](“) T o ( V2 +K dx

= Ji(uo, 97, %)

= inf { sup HF(MHUT/Z%)}

(ll,’UT)GV]XD* USEB*

- wp{ inf HMﬁ%ﬁ. (66)
(u,03 *

v} €B* )eEVIXD
The proof is complete. [

13. Another primal dual formulation for a related model

In this section we present another primal dual formulation.
Let Q C R3 be an open, bounded and connected set with a regular boundary denoted by 9Q).
Consider the functional | : V — R where

J(u) = %/QVqudx—i—%/Q(uz—ﬁ)zdx
—(u, f)r2, (67)

«>0,B>0,7>0,V=W>Q)and f € L2(Q).
Denoting Y = Y* = L2(Q)), definenow J; : V x Y* — Rby

Jined) = g fy VeV )
+“;f/0u4 dx — (u, )12
- % /Q(vé +ap)” dx, )
and J; : VX Y* = R, by
i) = g f, VeV )
—i—% Q(—7V2u+21)6u—2(“—8)”3_f)2 dx
+a;£ /Qu4 dx — (u, f)}2

1 * 2
— 5 /0(004—0cﬁ) dx, (69)
Define also
AT={ueV :uf>0 ae inQ},
Vo={ueV : |u[o <Kz},

and
Vi=WmNnAT.

Moreover define
B = {oj € Y" ¢ [loj e < K}

for some appropriate constants K3 > 0 and Ky > 0.
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Observe that, for K; = 1//¢, we have
82]* M,’U* . i
% = (—yV2+205 +6(a —e)u?) + Ky (—yV? + 205 + 6(a — e)u?)?
+ Ky (—yV2u + 205u 4+ 2(a — e)u® — £)12(a — e)u dx, (70)
PR a1
()2 €
< 0, VueVy, vy € B". (71)

Define now
Ax(u,v3) = (—yV2u + 205u 4 2(a — e)u® — £)12(a — €)u,

C*={(u,v5) € VxB" 1 ||A2(1,v7) |0 < &1
for a small real parameter ¢; > 0.
Finally, define
a2A2(u vo)
Remark 13.1. Similarly as it was developed in remark 10.1 we may prove that such a Eyy is a convex set.

Thus,
EUS N

is a convex set, Vv € B* (for the proof of a similar result please see Theorem 8.7.1 at pages 297, 298
and 299 in [5]).)
With such results in mind, we may easily prove the following theorem.

Theorem 13.2. Assume Ky > 1> &1 and suppose (ug, 0;) € Vi x B* is such that
63 (1o, 0) =0

and uy € EZ’S'
Under such hypotheses, we have that

6] (ug) =0
and
J(ug) = uiggl {]( / (—yV2u +205u + 2(a — e)u® — f)? dx}
= Bk(uO/ UAO)
= ;6:};* {;gélj (u, 08)} . (72)

Proof. The proof that
8] (uo) = —yV2ug + 2a(u* — )ug — f =0,

and
J(uo) = J(uo) +—/ —YV2uq + 205ug + 2(a — e)ui — £)* dx = J3 (uo, 93)

may be easily made similarly as in the previous sections.
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Moreover, from the hypotheses and from the above lines, since J; is concave in v on V; x B* and
ug € Egs, we have that
J2(uo, %) = inf J5(u,3p)
ueVy
and
J2(u0,09) = sup J;(uo,vp)-
vy €B*
From this, from the standard Saddle Point Theorem and the remaining hypotheses, we may infer
that

J (uo) J5 (uo, 05)

= inf {sup ]ﬁk(u/UT/US)}

uevy USEB*

sup { inf J5(u, vé)}. (73)

v;E€B* ueVvy
Moreover, observe that

Ja(uo,95) = inf J5(u,?p)
ueVy

IN

24 "
E/QVLqu dx + (u?,0%)

—op |05+ a)? dx — {u, )2

+% (VR 20u +2(a —e)u’ — f)2d

sup {7/ Vu - Vudx + (u?,vf)
va‘eY* 2 Ja

1

28/ (05 +ap)? dx — (u, f);2

—|—& Q(—’yvzu—i—ZvOu—i—Z(oc—e)u —f)? dx}

_8/ ut dx
Q

IN

X
x—¢
ut dx
2 Jo

2
= J(u)+ % /Q(—’yvzu 4 205u +2(a — e)u® — f)? dx, Yu € V;. (74)

From this we have got

J5 (1o, 95) < J(u) / (—yV2u +205u +2(a — e)u® — )? dx, Yu € V. (75)

Therefore, from such results we may obtain

J(ug) = inf {]( / (—yV2u +205u + 2(a — e)u® — f)? dx}

ueVy
= Bk(uO/ UAO)

= sup {mf] (u,vg)}. (76)

USEB* ueVy

The proof is complete. [
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14. A convex (in fact concave) dual formulation for a related model

In this section we present a convex dual formulation for the model in question.
Let O C R® be an open, bounded and connected set with a regular boundary denoted by 9Q).
Consider the functional | : V — R where

Ju) = %/QVL{.Vudx—f—%/ﬂ(uz—,B)zdx
—(u, f)2 (77)

«>0,B>0,7>0,V=W>Q)and f € [2(Q).
Denoting Y = Y* = L?(Q), define now J; : [Y*]® — R (with exact penalization) by

2 * *\2
Kok %k Lk %k % % _ (UT+U§_f) d _/ (02_03) d
Ji (01,903,030, 21, 2) /04—7V2 = —7V2 x
1
1 (= 014—21 (/ ?b‘+zz iy
2 200+K 2

Za/(vo dx—ﬁ/ v dx.
(78)

Define also
Bt ={ueV :uf>0 aeinQ},
Vo={ueV : ||ulle <Kz},
and
Vi=Wn BT.
Moreover define
B*={v5 €Y" : [[95ll < Ka}

for some appropriate constants K3 > 0 and K4 > 0.
Define also
D* = {(v},03,03) =w* € V'] + 0] < K5},

for an appropriate K5 > 0 to be specified.

Observe that, for appropriate 0 < A < 1, J{ is concave in v* = (v}, v3,v3,v;) and convex in
z* = (z},z3) on D* x B* x [Y*]2. With such results in mind, we may easily prove the following
theorem.

Theorem 14.1. Assume an appropriate 0 < A < 1 and K > max{1,Ks, Ky, K5} and suppose (¢*,2*) €
D* x B* x [Y*]? is such that
SJ5(0%,2%) = 0.

sk ok
o = 2 (02 U3> V.
—

Under such hypotheses, we have that

Suppose also

and
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J(wo) = Ji(0%,2%)
= su inf Jf(v%,z%) ;. (79)
v*eD*pr*{Z*E[Y*]zl( )}

Proof. The proof that
8] (o) = —yV?ug + 2a(u* — B)ug — f = 0,
and
J(uo) = J1 (0%,2)

may be easily made similarly as in the previous sections.
Moreover, from the hypotheses and from the above lines, since J{ is concave in v* and convex in
z* on D* x B* x [Y*]2, we have

Ji(0%,2%) = sup J;(v",2)
v*€D* x B*
and
KAk sk s KAk K
62 = inf Ji(0",2)

From this, from the standard Min-Max Theorem and the remaining hypotheses, we may infer that

J(wo) = Ji(0%,2%)
= su inf Jf(o%,z%) ;. 80
v*eD*P;B*{Z*G[Y*]Zh( )} 0

The proof is complete. [

Remark 14.2. The functional

* * — : f k *, k
J5(0%) b (v*,2%)

is indeed a concave dual variational formulation for a critical point of the primal model in question.

15. An algorithm for a related model in shape optimization

The next two subsections have been previously published by Fabio Silva Botelho and Alexandre
Molter in [5], Chapter 21.

15.1. Introduction

Consider an elastic solid which the volume corresponds to an open, bounded, connected set,
denoted by (2 C R3 with a regular (Lipschitzian) boundary denoted by 0Q2 = I'¢UT'; where Iy NI’y = @.
Consider also the problem of minimizing the functional | : U x B — R where

. 1 1 A
Ju,t) = 5w, fi) 12y + 5 i fid ey

subject to
(Hiju (t)ew (u));j+ fi =0in Q,
(81)
Hl-jkl(t)ekl(u)nj —fi=0,only Vie {1,2,3}.


https://doi.org/10.20944/preprints202302.0051.v13

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 May 2023 doi:10.20944/preprints202302.0051.v13

36 of 40

Here n = (19,12, n3) denotes the outward normal to 0Q) and

U = {u=(uy,upuz) € W*,R?) : u=(0,0,0)=00nTy},

B= {t : ) — [0,1] measurable : / tH(x) dx = t1|Q|},
o)

where
0<th <1

and |Q)| denotes the Lebesgue measure of Q.

Moreover u = (uy,up, u3) € W 2(Q; R3) is the field of displacements relating the cartesian system
(0, x1, x2, x3), resulting from the action of the external loads f € L?((; R3) and f € L*(T;R3).

We also define the stress tensor {0j;} € Y* =Y = L?((; R¥*3), by

0jj(u) = Hij (t)e (1),

and the strain tensor e : U — L2(Q; R3*3) by

1 .
eij(u) = 5 (wij +uji), Vi, j € {1,2,3}.

Finally,
{Hiju(D)} = {tHjjq + (1 — )Hjyy},

where H corresponds to a strong material and H' to a very soft material, intending to simulate voids
along the solid structure.

The variable ¢ is the design one, which the optimal distribution values along the structure are
intended to minimize its inner work with a volume restriction indicated through the set B.

The duality principle obtained is developed inspired by the works in [2,3]. Similar theoretical
results have been developed in [9], however we believe the proof here presented, which is based on
the min-max theorem is easier to follow (indeed we thank an anonymous referee for his suggestion
about applying the min-max theorem to complete the proof). We highlight throughout this text we
have used the standard Einstein sum convention of repeated indices.

Moreover, details on the Sobolev spaces addressed may be found in [1]. In addition, the primal
variational development of the topology optimization problem has been described in [9].

The main contributions of this work are to present the detailed development, through duality
theory, for such a kind of optimization problems. We emphasize that to avoid the check-board standard
and obtain appropriate robust optimized structures without the use of filters, it is necessary to discretize
more in the load direction, in which the displacements are much larger.

15.2. Mathematical formulation of the topology optimization problem
Our mathematical topology optimization problem is summarized by the following theorem.

Theorem 15.1. Consider the statements and assumptions indicated in the last section, in particular those
refereing to Q) and the functional | : U x B — R.
Define ] : U x B — Rby

Ji(u, t) = —G(e(u),t) + <“i;fi>L2(Q) + <ui,ﬁ>L2(1—t),

where
Gle(u), 1) = 5 [ Ha(tewen(w) dx,
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and where
dx = dxydxpdxs.
Define also J* : U — R by
* — ¢
T (u) inf{/1(u, 1)}
= Inf{—~Gle(u), t) + (ui fid2(q) + (uir fid 2y - (82)
Assume there exists ¢y, c1 > 0 such that
H?jklzi]-zkl > C0ZjjZjj
and
Hl-ljk,zijzkl > c1zijzij, Vz = {zjj} € R3*3, such that z # 0.
Finally, define ] : U x B — R U {+oo} by
J(u, t) = J(u,t) + Ind(u,t),
where
_J o if (u,t) € A%,
Ind(u,t) = { +o00, otherwise, (83)
where A* = A1 N Ay,
Al = {(u,t) ecUXxXB : (O'ij(u))’]' +fi =0,inQ), Vie {1,2,3}}
and
Ay = {(u, i’) eUXB : (Tl‘]‘(u)nj —ﬁ‘ =0,0nTy Vie {1,2,3}}.
Under such hypotheses, there exists (1, tg) € U x B such that
,t = inf ,t
J (1o, to) (u,t)lguXBI(u )
= sup /(1)
aeu
= J"(uo)
f(u()/ tO)
= inf G*(o,t)
(t,r)eBxC*
= G" (U'(Mo),to), (84)
where
G*(c,t) = sup{(vij, 0ij) 120 — G(v, 1)}
veY
1 —
= 3 /Q Hijp (t)0ijo dx, (85)

{Hi(t)} = {Hiju(t)} !

and C* = Cy N Cy, where

C = {0’ cY* : Uij,j+fi =0,inQ), Vi e {1,2,3}}
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and
Co={ceY": oijn; —ﬁ- =0,onTy, Vie{1,2,3}}.

Proof. Observe that

inf  J(u,t) = mf{mf](u t)}

(u,t)eUxB teB

- tigzg{ueu{ { /Hz]kz(t)el] u)eg (1) dx

+ (i, (Hija (e (1)) + fi) 12
—(di, Hijra () ex (u)n; — fz’>L2(r,)}}}

= inf {sup { inf { / Hijpg (t)ejj(u)eg (u) dx
teB neu
/Hz;kl Jeij(1)ex (u) dx

+ (i, fi)12(q) + <ui/fi>L2(l"t)}}}
_ inf{sup{ /Q Hija (£) e () e () dx

teB aelu
(@i, fid () + (i fid 2y }}
= inf{ inf G* (O',t)}. (86)

teB | oeC*

Also, from this and the min-max theorem, there exist (1, fg) € U x B such that

inf  J(ut) = inf{sup]l(u,t)}

(u,t)eUxB t€B | peu

(e}

uel teB
= Ji(uo, to)

1.}23 ]1(“0/ t)

= J"(uo). (87)
Finally, from the extremal necessary condition

9J1(uo to) _
ou
we obtain

(Hijw (to)ew (0)) j + fi = 0in Q,

and
Hij(to)ew (uo)nj — fi = 0onTy, Vi € {1,2,3},

so that 1 1
G(e(uo)) = 5 {(u0)i, fidr2(q) + 2<(”O)1/f>L2(Ft)

Hence (ug, ty) € A* so that Ind(ug, tp) = 0 and o (ug) € C*.
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Moreover
J*(uo) = —Gle(uo)) + ((40)i fi) 1210y + ((40)is fi) 2(r,)
= G(e(uo))
G(e(ug)) + Ind(ug, to)
](Mo,to)
= G*(o(uo), to). (88)

This completes the proof. [

15.3. About a concerning algorithm and related numerical method

For numerically solve this optimization problem in question, we present the following algorithm

1. Sett; =05inQandn = 1.
2. Calculate u,, € U such that

J1(tn, tn) = sup J1(u, ty).
ueld

3. Calculate t,,11 € B such that
]1(”71/ tn+1) = tlglg N1 (un/ t)-

4. If [|ty11 — tnllo < 107% or n > 100 then stop, else set n := 1 + 1 and go to item 2.

We have developed a software in finite differences for solving such a problem.
For a two dimensional beam of dimensions 1m x 0.5m and t; = 0.63 we have obtained the
following results:

1. Case A: For the optimal shape for a clamped beam at left (cantilever) and load P = —4 - 10°Nj at
(x,y) = (1,0.25), please Figure 5.

In this case the mesh was 28 x 24.

Figure 5. Density t(x,y) for the Case A.
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