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Large Class of Non-Convex Models in the Calculus of
Variations
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Abstract: This article develops duality principles and numerical results for a large class of non-convex
variational models. The main results are based on fundamental tools of convex analysis, duality theory
and calculus of variations. More specifically the approach is established for a class of non-convex
functionals similar as those found in some models in phase transition. Finally, in the last section we
present a concerning numerical example and the respective software.
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1. Introduction

In this section we establish a dual formulation for a large class of models in non-convex
optimization.

The main duality principle is applied to double well models similar as those found in the phase
transition theory.

Such results are based on the works of ].J. Telega and W.R. Bielski [2,3,15,16] and on a D.C.
optimization approach developed in Toland [17].

About the other references, details on the Sobolev spaces involved are found in [1]. Related results
on convex analysis and duality theory are addressed in [5,7,8,10,14].

Finally, in this text we adopt the standard Einstein convention of summing up repeated indices,
unless otherwise indicated.

In order to clarify the notation, here we introduce the definition of topological dual space.

Definition 1.1 (Topological dual spaces). Let U be a Banach space. We shall define its dual topological
space, as the set of all linear continuous functionals defined on U. We suppose such a dual space of U, may be
represented by another Banach space U*, through a bilinear form (-,-)i; : U x U* — R (here we are referring
to standard representations of dual spaces of Sobolev and Lebesgue spaces). Thus, given f : U — R linear and
continuous, we assume the existence of a unique u* € U* such that

Fu) = (0, € UL M
The norm of f, denoted by || f ||+, is defined as

I fllus = sup{[{w, u*)ul « fullu <1} = [Ju*[|u-- 2
uel

At this point we start to describe the primal and dual variational formulations.

2. A general duality principle non-convex optimization

In this section we present a duality principle applicable to a model in phase transition.
This case corresponds to the vectorial one in the calculus of variations.

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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Let Q) C R" be an open, bounded, connected set with a regular (Lipschitzian) boundary denoted
by 0Q.
Consider a functional | : V — R where

I(”) = F(vulr' o /V”N) +G(”1/' o /uN) - <Mj,fj>L2,

and where
V=Au=(uy, - ,un) € WPQRY) : u=uyonaQ},

feL?(RN),and 1 < p < +oo.

We assume there exists « € R such that

=i

Moreover, suppose F and G are Fréchet differentiable but not necessarily convex. A global
optimum point may not be attained for | so that the problem of finding a global minimum for | may
not be a solution.

Anyway, one question remains, how the minimizing sequences behave close the infimum of J.

We intend to use duality theory to approximately solve such a global optimization problem.

Denoting Vy = WP (RN), Y1 = Y; = [2(Q;RN*"), Y, = Y§ = L2(Q;RN*"), Y3 = Y§ =
L2(Q;RN), at this point we define, F; : VxVy - R, G : V - R, G :V - R,G3: Vy — Rand
Gy:V =R, by

K
F(Vu,V9) = F(Vin+ Yy, -, Vuy+Vn) + 5 /Q Vi, - Vi dx

K
+7 /Q V(P]‘ . V47]' dx 3)
and K
Gl(ul/ . ,Mn) — G(ul/ c /MN) + 71 /Qu]' Uj dx — <ui,fl‘>L2,
_K d
Gz(Vul,- o ,qu) = 7/()Vu] . Vu] X,
K>
Gi(Ver, -, Vy) = Tfﬂwj-wj dx,
and K
1
G4(M1,- . ,MN) = 7 Qu]- Mj dx.

Definenow [ : V x Vj — R,

T, ¢) = F(Vu+ V) + G(u) — (ui, fi) 2.
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Observe that

F(Vu,V¢)+ Gy(u) — Go(Vu) — G3(Vp) — Gy (u)
F(Vu, V) + Gi(u) = (Vu,z1) 12 = (V§,23) 12 — (4, 23) 12

+ sup {(v1,27) 12 — Ga(v1)}
11€Yq

J1(u, ¢)

IN

+ sup {(v2,23)12 — G3(v2)}

€Y,

+ sgg{(u, z3)2 — Ga(u)}

= FR(Vu,V¢)+Gi(u) = (Vu,z1) 12 = (V§,23) 12 — (u,23) 2
+G;(21) + G3(23) + G4 (23)
= Jiwez"), @
YueV, eV, z8 = (z,25,23) € Y =Y x Y5 x Y5,
Here we assume K, Ky, K, are large enough so that F; and G; are convex.
Hence, from the general results in [17], we may infer that

inf _ nf . -
(”"/’)IQVXVO (u.9) (u,¢,z*)g\1/xvoxy* Ji(u, ¢,27) 5)

On the other hand

inf > inf ,¢) > inf = inf ,
ARG 2 ing 0 9) 2 Il Q) = fnf J)
where Qj(u) refers to a standard quasi-convex regularization of J.

From these last two results we may obtain

inf = inf (u, ¢, 2%).
JgV](u) (u,(p,z*)ér‘}'xVoxY* Ji (u 9.2 )

Moreover, from standards results on convex analysis, we may have

inf Jy (u,¢,2") inf {F, (Vi V) + G (u)
—(Vu,21) 2 = (V, 23) 12 — (u,23) 12
+G;(21) + G3(23) + Gi(z3)}

= sup {—F (01 +21, V) = Gi(v3 +23) = (V§,23) 12

(vy,05)eC*
+G;(21) + G3(23) + Gy (z3)}, (6)
where
C'={v" = (v,v3) € Y7 X Y3 : —div(v]);i + (v3); =0,Vi € {1,--- ,N}},
F (01 + 21, V¢) = sup {(o1,2] +v7)12 — Fi(v1, V) },
Z]1€Y1
and
Gi(v3 +23) = sup{(u,v3 +23)12 — G1(u) }.
ueVv
Thus, defining

J2(¢,2%,0%) = F (v1 +21, Vo) = G{ (v2 +23) = (V§,23)12 + G3(21) + G3(22) + Gy (23),
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we have got

inf J(u) = inf  Ji(u,¢)

uev (,$)EV x Vo

- inf S,

(1,,2*) VXV x Y*

= 232&{4}350{;21& J3(¢,2" 0 )}} )

Finally, observe that

inf /(1)

ueV

— . f . f * 3 *’ *
o {;QVO {;‘;g hige >}}

> sup { inf  J5(¢,2%, v*)} . 8)
veecr L(Z59)eY* x V),
This last variational formulation corresponds to a concave relaxed formulation in v* concerning
the original primal formulation.

3. Another duality principle for a simpler related model in phase transition with a respective
numerical example

In this section we present another duality principle for a related model in phase transition.
Let ) = [0,1] C R and consider a functional | : V — R where

2/ 2 1)?dx+Z /u dx — (u, f)2,

and where
V={uecW"4Q) : u(0) =0and u(1) = 1/2}

and f € L?(Q).
A global optimum point is not attained for | so that the problem of finding a global minimum for
J has no solution.
Anyway, one question remains, how the minimizing sequences behave close the infimum of J.
We intend to use duality theory to approximately solve such a global optimization problem.
Denoting Vy = Wy*(Q), at this point we define, F: V — Rand F; : V x Vy — Rby

_ %/Q((u’)z—l)z dx,

Filug) =5 [ (0 +¢ 7 =17 dx.

and

Observe
F(u) > inf Fy(u,¢) > Qr(u), Vu eV,
PV

where Qr (1) refers to a quasi-convex regularization of F.
We define also
F:VxVy—R,

F3:VXVO—>R
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and
G:VxVy—=R

E(u,¢) = %/Q((u’—&—cp')z —1)2 dx—l—%/nuz dx — (u, )2,

F(u,¢) = F2(”r¢)+§/0(u/)2dx
Ky N2
+ | (97 dx )
and

Glug) = 5 [P dx
1

2
+K7 | (9) dx (10)

Observe that if K > 0, K; > 0 is large enough, both F3 and G are convex.
Denoting Y = Y* = L2(Q)) we also define the polar functional G* : Y* x Y* — R by

G*(v% o) = sup  {(u,0%)p2 + (9, 05)12 = G(u,9)}-

(u,(P)GVXVO
Observe that
. > . * * * _ * _ * .
l}glfl](”) z ((u,q)),(v*,vgglerxVOx[Y*]Z{G (v*,00) = (u,v") 2 = (P, vp) 12 + F3(u, ) }

With such results in mind, we define a relaxed primal dual variational formulation for the primal
problem, represented by J; : V x Vp x [Y*]2 — R, where
Ji(u, ¢, 0%, 05) = G* (0", 05) = (u,0") 12 = (§,05) 12 + F5(u, )-

Having defined such a functional, we may obtain numerical results by solving a sequence of
convex auxiliary sub-problems, through the following algorithm.

1. Set K~ 0.1 and K1 =120.0and 0 < e < 1.
2. Choose (u1,¢1) € V x Vp, such that ||u1][1,0 < 1and [|¢;]1,00 < 1.
3. Setn =1.
4. Calculate (v;;, (v)n) solution of the system of equations:
a]ik (ui’li 4)1’1/ ’U:fl/ (’08)1’!) — 0
dv*
and
a]f(unr()bn/v;;/ (US)H) _ 0
9v;
that is e
aG (vn/ (Uo)}’l) o un —_ 0
ov*
and 3G (v* (o
(v3, (08)n) =0

*
9v;)


https://doi.org/10.20944/preprints202302.0051.v21

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 July 2023 doi:10.20944/preprints202302.0051.v21

6 of 42

so that
«_ 9G(un, Pn)
On = ou
and 2G( )
%\ k u 4
(6§); = gy

5. Calculate (u,11, ¢n+1) by solving the system of equations:

a]ik (un+1, ¢n+1r U;;, (US)")

ou =0
and . .
a]l (un+1/ Pnt1,On, (UO)TI) -0
o
that is
ot 8F3(ung;, Pui1) _
and SF
(%) + 3(“n§;)r¢n+1) —0

6. If max{||un — tty+1)lco, [|Pn+1 — Pnllo} < ¢, then stop, else set n := n+ 1 and go to item 4.

At this point, we present the corresponding software in MAT-LAB, in finite differences and based
on the one-dimensional version of the generalized method of lines.
Here the software.

1. clear all
m8=300;
d=1/mS§;
K=0.1;
K1=120;
for i=1:m8
uo(i,1) =i %d/2;
vo(i,1)=i*d/10;
yo(i,1)=sin(i*d*pi)/2;
end;
k=1;
b12=1.0;
while (b12 > 10~43) and (k < 230000)
k=k+1;
for i=1:m8-1
duo(i,1)=(uo(i+1,1)-uo(i,1))/d;
dvo(i,1)=(vo(i+1,1)-vo(i,1))/d;
end;
m9=zeros(2,2);

m9(1,1)=1;
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i=1;

f1=6x (duo(i,1) +dovo(i,1))> - 2;

m80(1,1,i)=-f1-K;

m80(1,2,i)=-1;

m80(2,1,i)=-f1;

m80(2,2,i)=-f1-K1;

y11(1,i) = K* (uo(i +1,1) — 2% uo(i, 1)) /d*> — yo(i, 1);
y11(2,i) = K1 (vo(i +1,1) — 2% vo(i, 1)) /d?;

m12 = 2% m80(:,:,i) — m9 x d?;
mb0(:,;,1)=m80(:,:,i)*inv(m12);

2(:i)=inv(m12)*y11(;,i)*d?;

for i=2:m8-1

f1=6x(duo(i,1) +dovo(i,1))> — 2;

m80(1,1,i)=-f1-K;

m80(1,2,i)=-f1;

m80(2,1,i)=-f1;

m80(2,2,i)=-f1-K1;

y11(1,i) = K* (uo(i +1,1) — 2% uo(i,1) + uo(i — 1,1))/d*> — yo(i, 1);
y11(2,i) = K1 (vo(i +1,1) — 2% vo(i,1) + vo(i — 1,1)) /d?;
ml12 =2+ m80(:,:,i) — m9 x d> — m80(:,:,i) * m50(:,:,i — 1);
mb50(:,:,1)=inv(m12)*m80(:,:,i);

z(:,1) = ino(m12) * (y11(:,i) * d*> + m80(:,:,1) x z(:,i — 1));
end;

U(1,m8)=1/2;

U(2,m8)=0.0;

for i=1:m8-1

U(:,m8-1)=mb50(:,:,;m8-i)*U(:, m8-i+1)+z(:,;m8-i);

end;

for i=1:m8

u(i,1)=U(L,i);

v(i,1)=U(2,i);

end;

b12=max(abs(u-uo))

uo=u;

vo=v;

u(m8/2,1)

end;

for i=1:m8

y(i)=i*d;
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end;

plot(y,uo)

For the case in which f(x) = 0, we have obtained numerical results for K = 0.1 and K; = 120. For
such a concerning solution u( obtained, please see Figure 1. For the case in which f(x) = sin(7x)/2,
we have obtained numerical results also for K = 0.1 and K; = 120. For such a concerning solution u
obtained, please see Figure 2.

0.5

04r b

0.2 ]

0.1 . . . . . . . . .

Figure 1. solution uy(x) for the case f(x) = 0.

0.5

0.45 b

04r b

0.35 b

031 ]

0.25 b

0.05 b

Figure 2. solution u((x) for the case f(x) = sin(mx) /2.

Remark 3.1. Observe that the solutions obtained are approximate critical points. They are not, in a classical
sense, the global solutions for the related optimization problems. Indeed, such solutions reflect the average
behavior of weak cluster points for concerning minimizing sequences.
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4. A convex dual variational formulation for a third similar model

In this section we present another duality principle for a third related model in phase transition.
Let QO = [0,1] C R and consider a functional | : V — R where

J(u) = %/Qmin{(u’ —1)%, (' +1)%} dx+%/0u2 dx — (u, )12,

and where
V={uecW2Q) : u(0) =0and u(1) = 1/2}

and f € L?(Q).
A global optimum point is not attained for | so that the problem of finding a global minimum for
J has no solution.
Anyway, one question remains, how the minimizing sequences behave close to the infimum of J.
We intend to use the duality theory to solve such a global optimization problem in an appropriate

sense to be specified.
At this point we define, F: V. — Rand G: V — Rby

F(u) — %/Qmin{(u'—l)z,(u’—i—l)z}dx

_ 1 N2 . '
_ 5/0@1) dx /Q|u|dx+1/2
Fl(u’), (11)

and

G(u) = %/QMZ dx — (u, f) 2.

Denoting Y = Y* = L2(Q)) we also define the polar functional Fj : Y* — Rand G* : Y* — Rby

F(v*) = s:g{(v,v*hz—ﬂ(v)}

_ %/Q(v*)z dx+/0|v*\ dx, (12)
and

G ((v")) = sup{—(,v")2 — G(u)}

ueV
= %/Q((v*)' +f)?dx — %v*(l). (13)

Observe this is the scalar case of the calculus of variations, so that from the standard results on
convex analysis, we have

inf J(u) = max {—F;(v*) — G*(—(v*))}.
ueV vreY*
Indeed, from the direct method of the calculus of variations, the maximum for the dual formulation
is attained at some 9* € Y*.
Moreover, the corresponding solution uy € V is obtained from the equation
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Finally, the Euler-Lagrange equations for the dual problem stands for
(@) + f/—v" = Slgn( ) =0 inQ, (14)
(0)'(0) +£(0) =0, ()'(1) +f(1) =1/2,

where sign(v*(x)) = 1if v*(x) > 0, sign(v*(x)) = —1,if v*(x) < 0 and

—1 < sign(v*(x)) <1,

if v*(x) = 0.

We have computed the solutions v* and corresponding solutions u#y € V for the cases in which
f(x) =0and f(x) = sin(mx)/2.

For the solution u((x) for the case in which f(x) = 0, please see Figure 3.

For the solution ug(x) for the case in which f(x) = sin(7tx) /2, please see Figure 4.

0.6

051

031

0.1

Figure 3. solution u(x) for the case f(x) = 0.

0.6

04r b

031 b

0.2 ]

041 F 1

Figure 4. solution u((x) for the case f(x) = sin(7mx)/2.
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Remark 4.1. Observe that such solutions ug obtained are not the global solutions for the related primal
optimization problems. Indeed, such solutions reflect the average behavior of weak cluster points for concerning
minimizing sequences.

4.1. The algorithm through which we have obtained the numerical results

In this subsection we present the software in MATLAB through which we have obtained the last

numerical results.
This algorithm is for solving the concerning Euler-Lagrange equations for the dual problem, that
is, for solving the equation

{ (v*)" + f' —v* — sign(v*) =0,

(0%)'(0) =0, (v*)'(1) =1/2.

(15)

Here the concerning software in MATLAB. We emphasize to have used the smooth approximation

0% &/ (v*)* + ey,

where a small value for ¢; is specified in the next lines.

TR W N e

B e R

. clear all
. mg = 800; (number of nodes)

le/i’ﬂg,’

. e; = 0.00001;
. fori=1:mg

yo(i,1) = 0.01;
y1(i,1) = sin(7 i/ mg) /2

end;

. fori=1:mg—1

dy1(i,1) = (y1(i+1,1) —y1(i, 1)) /d;

end;

. for k =1:3000 (we have fixed the number of iterations)

i=1;

hy =1/\/v0(i,1)? + e1;

myy =1+ d?*hsy +d?;

mso (i) = 1/map;

z(i) = mso(i) * (dy1(i, 1) * d?);

. fori=2:mg—1

hs =1/+/v0(i,1)% + ey;

mip = 2+ h3 xd? +d*> — m50(i — 1);
m50(i) = 1/myy;

z(i) = mso(i) * (z(i = 1) +dy1 (i, 1) * d*);

end;

. v(mg,1) = (d/2+z(m8 — 1))/(1 — misg(mg — 1))}
. fori=1:mg—1

v(mg —1,1) = mso(mg — i) x v(mg — i+ 1) + z(mg — i);

end;
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11. v(mg/2,1)
12. vo = v;

end;
13. fori=1:mg—1

u(i,1) = (v(i+1,1) —o0(i,1))/d + y1(i, 1);

end;

14. fori=1:mg—1
x(i) =ix*d;
end;

plot(x,u(:,1))

E R R R S R R S S

5. An improvement of the convexity conditions for a non-convex related model through an
approximate primal formulation

In this section we develop an approximate primal dual formulation suitable for a large class of
variational models.

Here, the applications are for the Kirchhoff-Love plate model, which may be found in Ciarlet,
[11].

At this point we start to describe the primal variational formulation.

Let O C R? be an open, bounded, connected set which represents the middle surface of a plate
of thickness h. The boundary of (3, which is assumed to be regular (Lipschitzian), is denoted by 9().
The vectorial basis related to the cartesian system {x1, xp, x3} is denoted by (a,, a3), where « = 1,2 (in
general Greek indices stand for 1 or 2), and where a3 is the vector normal to (), whereas a; and a; are
orthogonal vectors parallel to (). Also, n is the outward normal to the plate surface.

The displacements will be denoted by

a= {ﬁ“, 123} = flga, + 1izas.
The Kirchhoff-Love relations are

g (X1, X2, %3) = g (X1, X2) — X3W (X1, X2) 4

and #13(xq, x2, x3) = w(x1, x7). (16)

Here —h/2 < x3 < h/2 so that we have u = (u,, w) € U where

u {u = (1, w) € WI2((;R?) x W22(Q)),

ow
ua:w:a—nzo on o)}
= WP (O R?) x WP (Q).
It is worth emphasizing that the boundary conditions here specified refer to a clamped plate.
We also define the operator A : U — Y x Y, where Y = Y* = LZ(Q,' szz)’ by

Au) = {y(u),x(w)},

Uy g+ U, Waw,
Yoplu) = —EP4 4 28,

Kap(U) = —W gp.
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The constitutive relations are given by
Nap (1) = Huprpyan (), (17)
Ma/i(u) = hupru®ay (u), (18)

where: {Hg,, } and {h,x pAn = %H,X,; A }, are symmetric positive definite fourth order tensors. From

now on, we denote {Hupry} = {Haprn} " and {aprn} = {Hapru}
Furthermore {N,z} denote the membrane force tensor and {M,g} the moment one. The plate
stored energy, represented by (Go A) : U — R is expressed by

(GoA)w) = 5 [ Nupl0)vap) dx+ 5 [ Map(u)eg(u) d 19)
and the external work, represented by F : U — R, is given by
F(u) = (w, P)2 + (ua, Pu) 2, (20)

where P, Py, P, € L?(Q) are external loads in the directions a3, a; and a; respectively. The potential
energy, denoted by | : U — R is expressed by:

J(u) = (GoA)(u) = F(u)
Define now J3 : U — R by
Ja(u) = J(u) + J5(w).

where
Kbw K(bw—1/100)

a

In such a case fora = 2.71, K = 185,b = P/|P| in Q) and

U={uecl : ||w|es <0.0land Pw > 0a.e. in O},

we get
s(w) _ 9J(u)  9Js(u)
Jw ow ow
~ a]( ) £ 0(+30), 1)
and
Pla(u) _ *J(w) +3215(u)
w2  ouw? ow?
2
I a] W | o(850). 22)

This new functional J3 has a relevant improvement in the convexity conditions concerning the
previous functional J.

Indeed, we have obtained a gain in positiveness for the second variation a; (2), which has
increased of order O (700 — 1000).
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Moreover the difference between the approximate and exact equation

9J (u)

Jw =0

is of order O(+£3.0) which corresponds to a small perturbation in the original equation for a load of
P = 1500 N /m?, for example. Summarizing, the exact equation may be approximately solved in an
appropriate sense.

6. An exact convex dual variational formulation for a non-convex primal one

In this section we develop a convex dual variational formulation suitable to compute a critical
point for the corresponding primal one.

Let O C R? be an open, bounded, connected set with a regular (Lipschitzian) boundary denoted
by Q).

Consider a functional | : V — R where

J(u) = F(ux, ”y) —{u, )2,

V =W,%(Q) and f € L2(Q).
Here we denote Y = Y* = L2(Q)) and Y; = Y{ = L[*(Q) x L?(Q)).
Defining

Vi={ueV:|u

100 < Kp}

for some appropriate K; > 0, suppose also F is twice Fréchet differentiable and

det {azF(ux, ty) } #0,

001007

Yu € V.
Definenow F; : V — Rand F, : V — R by

— € 2 € 2
Fy(uy,uy) = F(uy, uy) + 5 /Q uy dx + 5 /Quy dx,

and . .
Fy (it 1ty) = E/Qui dx+§/0u§ dx,

where here we denote dx = dxdx,.
Moreover, we define the respective Legendre transform functionals F; and F; as

Ff (v") = (v1,07) 12 + (02,03) 2 — F1(v1,02),

where v1,v, € Y are such that
« _ OFi(v1,02)

1= avl
of — aFl('U],Z)z)
2 avz !

and

Fy(v") = (1,01 + fi)12 + (v2,03) 12 — Fa(v1,02),
where v1,v, € Y are such that
0F(v1,v2)

UT +f1 - 801
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« OB (v, 1)
vy = —————=.
8‘02
Here f; is any function such that
(fl)x = f, in Q).
Furthermore, we define
@) = —F@)+EkK{@©)
= —F(")+5 /Q(v1 R+ o /Q(vz)z dx. 23)

Observe that through the target conditions
’U'T + f 1= EUy,

v5 = ey,

we may obtain the compatibility condition
(01 + fi)y = (02)x = 0.
Define now
A" = {v" = (v],v3) € B;(0,0) C Y] : (v] + f1)y — (v3)x =0, inQ},

for some appropriate ¥ > 0 such that J* is convex in B,(0,0).

Consider the problem of minimizing J* subject to v* € A*.

Assuming r > 0 is large enough so that the restriction in r is not active, at this point we define the
associated Lagrangian

Ji(@% @) =T (0) + (¢, (01 + f)y = (02)x) 12/

where ¢ is an appropriate Lagrange multiplier.
Therefore

* (% I Al l * 2 l *\2
) = —F @)+ [0+ APt [ () dx
(@, (01 + fly = (02)x)12- (24)
The optimal point in question will be a solution of the corresponding Euler-Lagrange equations

for J;.
From the variation of ] in v] we obtain

_OR(@) vitf 9¢ _

5o Ty (25)

From the variation of J{ in v; we obtain

aF* * *
_ 9F(v") @+aj —0
Jv; € ox

(26)
From the variation of J{ in ¢ we have

(01 + fly = (v3)x =0.
From this last equation, we may obtain 1 € V such that

vl + f = €uy,

doi:10.20944/preprints202302.0051.v21
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and
vy = elly.
From this and the previous extremal equations indicated we have
OF; (v") 99
- aUT + Uy — @ - O/
and oF (v") 0
_oh\w 99 _
303 +uy + o 0.
so that aE, )
% o Uy — @y, Uy + Px
U1 +f - 87)1 ’
and
. O (ux — @y, uy + 9x)
Uz - .
avz
From this and equation (25) and (26) we have
(5D ()
—¢ —¢
a7 /. Jv; y
+(v1 + fi)x + (02)y
= —elyy — ey + (07 )x + (v3)y + f = 0. (27)
Replacing the expressions of v} and v3 into this last equation, we have
oF — @y, oF — @y,
—E€Uyy — EUyy + < 1 aq)y My+(px)> + ( 1 (;Py uer(Px)) +f=0,
01 x 02 y
so that
(aF(”" —fulty T 4’")) + (aF(“" — Pty ¥ (P")> +£=0,in0. (28)
avl ¥ avz v
Observe that if

Vg =

then there exists # such that u and ¢ are also such that

ux_Qy:ﬁx

and
uy + ng = uAy.
The boundary conditions for ¢ must be such that I € W(}’Z.
From this and equation (28) we obtain
oJ(i) = 0.

Summarizing, we may obtain a solution 7 € W&’Z of equation 6] (1) = 0 by minimizing J* on A*.

Finally, observe that clearly J* is convex in an appropriate large ball B, (0,0) for some appropriate
r>0

7. Another primal dual formulation for a related model

Let O C R® be an open, bounded and connected set with a regular boundary denoted by 9Q).
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Consider the functional | : V — R where
_ . & 2 2
J(u) = 2/0Vu Vudx—kz/ﬂ(u B)- dx
—(u, f)12 (29)
«>0,B>0,7>0,V=W>2Q)and f € L*(Q).
Denoting Y = Y* = L?(Q), definenow J; : V x Y* — Rby
* * _ Y 2 %
Ji(u,v) = —E/QVqu dx — (u”,vg) 2
K
+50 [(—rVPu s 205u— )2 dx o+ (u, £
1 *\2 *
toa /Q(Uo) dx+ﬁ/000 dx, (30)
Define also
AT={uecV :uf>0 ae inQ},
Vo={ueV : |ullo <Kz},
and
Vi=V,NA"
for some appropriate K3 > 0 to be specified.
Moreover define
B ={vg € Y* : [Jogllee < K}
for some appropriate K > 0 to be specified.
Observe that, denoting
¢ = —yV2u+205u — f
we have 2 )
7] (u, v 1 2
T 0] C 44K
C R
82]* u,v* . i
% = yV? — 208 + K (—yV? + 204)?
and 2 )
075 (u, v} .
alTvgo = K1 (29 +2(—yV?u 4 20}u)) — 2u
so that
det{6” ]} (u,v5)}
2
_ i (wvp) Ty (wvp) (07 (w,vp)
9(v)? Ju? ouov§
K= VA 2057 4V 4 205 + dau?
N « ®
—4K2¢? — 8K19p(—yV? + 208 )u + 8Ky gu
+4K; (—yV?u + 2vu)u. (31)

Observe now that a critical point ¢ = 0 and (—V?u + 2vju)u = fu > 0in Q.
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Therefore, for an appropriate large K; > 0, also at a critical point, we have
det{s* [} (u,v5)}
2 _ VZ 20 2
= 4K1fu_5]aﬂ+1<lw>o_ (32)

Remark 7.1. From this last equation we may observe that | has a large region of convexity about any critical
point (ug, 0), that is, there exists a large r > 0 such that | is convex on B, (ug, 03).

With such results in mind, we may easily prove the following theorem.
Theorem 7.1. Assume Ky > max{1, K, K3} and suppose (ug, 03) € V4 x B* is such that
01 (ug, 0g) = 0.

Under such hypotheses, there exists r > 0 such that ] is convex in E* = Br(ug, ;) N (V4 x B*),

0] (ug) =0,
and
7](”0) = ]1(1’[0/776) - inf ]ik(urvS)'
(u,05)€E*

8. A third primal dual formulation for a related model

Let Q C R3 be an open, bounded and connected set with a regular boundary denoted by 9Q).
Consider the functional | : V — R where

J(u) = %/QVqudx—i—%/Q(uz—,B)zdx
—(u, f)r2, (33)

«>0,B>0,7>0,V=W>Q)and f € L2(Q).
Denoting Y = Y* = L2(Q)), definenow [} : V x Y* x Y* — Rby

O A : 1/ 2
Ji(u,v5,07) = Z/QVM Vudx—f—z QKu dx
] 1 (07)?
_<u,vl>Lz+§/Q (—206—{—1() dx
1 £ 02 gVy2
F3ae) Jo 8 R = )t (£

—% /Q(US)Z dx—/%/QUS dx, (34)

where ¢ > 0 is a small real constant.
Define also
AT={ueV :uf>0 ae inQ},

Va={ueV : |ullo <Ks},

and
Vi=VW,nN AT

for some appropriate K3 > 0 to be specified.
Moreover define
B = {oj € Y" : |[oflle < Ku}

doi:10.20944/preprints202302.0051.v21
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and
D* = {oi € Y" : |lojll < Ks},

for some appropriate real constants Ky, K5 > 0 to be specified.

Remark 8.1. Define now
Hy(u,v)) = —yV? + 20§ + dau?

For an appropriate function (or, in a more general fashion, an appropriate bounded operator) M, define
E* = {(u,08) € Vi x B* : Vaa|u| > \/|My + V2| and 20§ + My > ¢1}.
Since for (u,v§) € Vi x B* we have u f > 0, in Q, so that for uq,uy € Vi we have
sign (1) = sign (up) in Q,

we may infer that E* is a convex set.
Moreover if (u,v) € E*, then

Vaalu| > \/|My + vV2|

so that
4au® > My +yV?
and
205+ M1 > €
so that

Hy(u,08) = —yV? + 20) + 4au® > e;.

Such a result we will be used many times in the next sections.

Observe that, defining
9 =0}~ a(i ~ )

we may obtain

9%J; (u, v, v5) ’ a5 «
T K+ ——4u? -2
ou? A +1x+s " g00<~|—e
azji‘(u, v§, %) B 1
a(vr)2 205 +K
and
L (0,05,0) _
0udv; o
so that

det { J; (u,05,v7) }

udv;

2
O*J; (u,01,v5) I3 (w01, 05) _ [ J; (w, v, )
o(vy)? ou? oudv;
% 2
—yV2 4205 + 45 -2
—2v5 +K
H(u,vp). (35)
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However, at a critical point, we have ¢ = 0 so that, we define the non-active but convex restriction
C* = {(u,05) € V1 xB : (9)*> <e},

for a small parameter ¢ > 0.
From such results, assuming K > max{K3, K4, K5}, and 0 < ¢ < €1 < 1, we have that

H(u,v5) >0, inC*NE™.
With such results in mind, we may easily prove the following theorem.
Theorem 8.1. Suppose (ug, 05,0;7) € Ef = (E*NC*) x D* x B* is such that
01 (ug, 07,95) = 0.
Under such hypotheses, defining Cg: = {u € V1 : (u,05) € E7}, we have that
6] (ug) =0
and
](u[)) - ME‘%’}WfCﬁS ](u)
= Ji(uo,91,%)

= inf { sup Ji(u, vi‘,vé)}

(u,UT)E(VlﬂCﬁS)XD* v5E€B*

= su inf T (u,0%,05) b . 36)
vge};* {(ulvf)e(vlmcﬁa)xo* 1 1770 }
Proof. The proof that
6] (up) =0

and
J(uo) = Ji (uo, 97, %)
may be easily made similarly as in the previous sections.
Moreover, from the hypotheses, we have

T (ug, 93,05) = inf T (u, 0f, 0
1 (10,91, 95) (1) €(VinCyy ) < D* 1(u,07,9p)

and

J1 (uo,01,0) = sup Ji(uo, 01,p)-
vy €B*


https://doi.org/10.20944/preprints202302.0051.v21

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 July 2023 doi:10.20944/preprints202302.0051.v21

21 of 42

From this, from a standard saddle point theorem and the remaining hypotheses, we may infer
that

J(uo) = Ji(uo,7,9g)

= inf { sup Ji(u, vi‘,vé)}

(u,v{)G(VlﬂCﬁa)xD* o5 EB*
= sup { inf Ji (u, UT,US)} . (37)
vy EB* (u,UT)G(VlﬁC@S)XD*
Moreover, observe that
Ji(uo,01,95) = inf Ji (u, 01, p)

(M,'UI ) S (V1 ﬂcﬁa ) x D*

< I/Vu-VudijE/uzdx
2 Jo 2 Jo
+(u?, 03) 2—5/ u? dx
Y0/ L 2 Q
1 A%\ 2 _ Ak
—5/0(00) dx ﬁ/()vodx
1 Ak
e Jo@ e =) dx— (u
< sup {7/ Vu - Vudx + (u?,0f)
v(’;€Y* 2 Ja
1 *\2 *
—ﬂ/ﬂ(vo) dx—,B/Qvde
1 *
ot Jo o~ 0F = B dx = (u, ) |
_ _ o 2 a2
= Z/QVu Vudx—!—z/ﬂ(u B)- dx
—<u,f>L2, Yu eV, QC%«. (38)

Summarizing, we have got

— * L IS 3 < . f .
J(uo) = J1 (uo,97,05) < uex}lnmcﬁé J(u)

From such results, we may infer that

J(uo) = inf  J(u)

uEVlﬂCﬁS
= Ji(uo, 07,%)

= inf { sup Ji(u, vi‘,va)}

(1) €(VinCy ) xD* | yrep*

= sup inf Jioi,0) p. (39)
(uo7)e(

USEB* Vlﬁcﬁs)XD*

The proof is complete. [
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9. An algorithm for a related model in shape optimization

The next two subsections have been previously published by Fabio Silva Botelho and Alexandre
Molter in [5], Chapter 21.

9.1. Introduction

Consider an elastic solid which the volume corresponds to an open, bounded, connected set,
denoted by Q) C R3 with a regular (Lipschitzian) boundary denoted by 9Q = Ty UT; where [y Ty = @.
Consider also the problem of minimizing the functional | : U x B — R where

. 1 1 A
J(u,t) = 3 (i, fi) 12y + 5 i fid2ry)

subject to
(Hij (e () + fi = 0in Q,
(40)
Hijp(t)ew (u)n; — f; =0, on Ty, Vi € {1,2,3}.

Here n = (11,13, n3) denotes the outward normal to 9Q) and

U = {u = (ug,up,u3) € WA(,R) : u=(0,0,0)=00nTp},

B= {t : Q) — [0,1] measurable : /Qt(x) dx = t1|Q|},

where
0<t <1

and | Q)| denotes the Lebesgue measure of Q).

Moreover u = (uy,up, u3) € WH2(Q; R3) is the field of displacements relating the cartesian system
(0, x1, %2, x3), resulting from the action of the external loads f € L2(();R®) and f € L2(T;; R3).

We also define the stress tensor {c;i} € Y* =Y = L*(O;R3%3), by

0ij(u) = Hyj (t)ex (1),

and the strain tensor e : U — L2(Q; R3*3) by

1 ..
61‘]‘<u) = E(ui,]' —|-u]‘/1‘), Vi, j € {1,2,3}.

Finally,
{Hiju(1)} = {tHjjq + (1 — ) Hjyy},

where H corresponds to a strong material and H' to a very soft material, intending to simulate voids
along the solid structure.

The variable ¢ is the design one, which the optimal distribution values along the structure are
intended to minimize its inner work with a volume restriction indicated through the set B.

The duality principle obtained is developed inspired by the works in [2,3]. Similar theoretical
results have been developed in [10], however we believe the proof here presented, which is based on
the min-max theorem is easier to follow (indeed we thank an anonymous referee for his suggestion
about applying the min-max theorem to complete the proof). We highlight throughout this text we
have used the standard Einstein sum convention of repeated indices.

Moreover, details on the Sobolev spaces addressed may be found in [1]. In addition, the primal
variational development of the topology optimization problem has been described in [10].
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The main contributions of this work are to present the detailed development, through duality
theory, for such a kind of optimization problems. We emphasize that to avoid the check-board standard
and obtain appropriate robust optimized structures without the use of filters, it is necessary to discretize
more in the load direction, in which the displacements are much larger.

9.2. Mathematical formulation of the topology optimization problem

Our mathematical topology optimization problem is summarized by the following theorem.

Theorem 9.1. Consider the statements and assumptions indicated in the last section, in particular those
refereing to Q) and the functional | : U x B — R.
Define J; : U x B — R by
Ji(u,t) = =G(e(u), t) + (ui, fi) 2 () + <uir]?i>L2(rt)r
where

Gle(u), 1) = 5 [ Hy(®eis(wen () dx,

and where
dx = dx1dx,dxs.

Define also J* : U — R by

) = inf{(0)

= tiglg{—G(e(u),t) + <uirfi>L2(Q) + <“i/fi>L2(rt)}- (41)

Assume there exists cy,cq > 0 such that

0
Hijklzijzkl > C()Zi]'Zl']‘

and
Hiljklzijzkl > 012z, Vz = {z;j} € R¥3, such that z # 0.
Finally, define | : U x B — R U {400} by
J(u, t) = f(u,t) + Ind(u,t),
where

0, if (u,t) € A%,
I = 42
nd(u, ) { ~+oo, otherwise, “)

where A* = A1 N Ay,
Al = {(u,t) eUXxB : (0’0’(14)),]' +fi =0,inQ), Vie {1,2,3}}

and
Ay ={(u,t) €U x B : oz(u)n; — f; =0, on T}, Vi € {1,2,3}}.

Under such hypotheses, there exists (1, tg) € U X B such that

doi:10.20944/preprints202302.0051.v21
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J(uo, to) = (u/t)lg{w](%t)

= sup /(i)

el
= J*(uo)
f(uolto)
- e
= G*(o(uo), to), (43)

where

GHot) = Sup{<vz],%>Lz(Q) G(v, 1)}
ve

= 3 /Q Hiji (t)oijop dx, (44)
{Hiju(t)} = {Hijkl(t)}_l
and C* = Cy N Cy, where
C = {0’ cY* . Uij,j+fi =0,inQ), Vie {1,2,3}}

and
Co={ceY" : gynj— f; =0, onTy, Vi € {1,2,3}}.

Proof. Observe that

inf  J(ut) = inf{mf](u t)}

(u,t)eUxB teB (uel

B tlglg {225{ { / Hijg (t)eij(u)ex (u) dx
+ (i, (Hijia (e (1)) + fi) 12
— (0, Hijpa (t) e (u)n; — ﬁ)Lz(m}}}

= Inf {igg {ueu{ /Hljkl Jeij(u)ex (u) dx

_/ H1]kl 51] ekl( )d

+( i, fi) 1200y + <”i'fi>L2(ft)}}}
= if {igg{ / Hijia (t)eij (e (1) dx
<ﬁi,ﬁ>L2(Q) + <ﬁi/ﬁ>L2(Ft) }}
= inf{ inf G*(U,t)}. (45)

teB | oceC*
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Also, from this and the min-max theorem, there exist (1, to) € U x B such that
inf ,H) = inf 1
wintes! ) = Iok {3‘;5 hiu >}
= sup{isphoeon)
= Ji(uo, to)
= inf J1(uo, t)
= J*(uo). (46)
Finally, from the extremal necessary condition
i (uo,t) _
ou
we obtain
(Hijii (to)ex (uo)) j + fi = 0in Q,
and
Hijii (to)exi (uo)nj — fi = 0on Ty, Vi € {1,2,3},
so that , .
Gle(uo)) = 5{(u0)ir fi) 12 + 5 ((0)is fida(ry)-
Hence (ug, ty) € A* so that Ind(ug, tp) = 0 and o (up) € C*.
Moreover
J*(uo) = —Gle(uo)) + ((uo)i, fidr2(y + {(uo)is fi) o(r
= G(e(uo))
G(e(uo)) + Ind(ug, to)
](uOI tO)
= G"(o(uo), to)- (47)

This completes the proof. [

9.3. About a concerning algorithm and related numerical method

For numerically solve this optimization problem in question, we present the following algorithm

1. Sett; =05inQand n = 1.
2. Calculate u, € U such that

J1(tn, tn) = sup J1(u, ty).
uel

3. Calculate t,, 11 € B such that
Ji(n, typ1) = tlglg Ji(un, t).

4. If [|ty1 — tnllo < 107* or n > 100 then stop, else set 7 := n + 1 and go to item 2.
We have developed a software in finite differences for solving such a problem.

Here the software.
334 334 3 3 o 3 o 3 3 34 3 34 3 3 o 3 o 3 e 3 S o 3 o e S e S e S S o

1. clear all
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global Pm8 d w u v Ea Eb Lo d1 z1 m9 dul du2 dvl dv2 c3
m8=27;

m9=24;

c3=0.95;

d=1.0/mS;

d1=0.5/m9;

Ea=210 * 10°; (stronger material)
Eb=1000; (softer material simulating voids)
w=0.30;

P=-42000000;

z1=(m8-1)*(m9-1);
A3=zeros(z1,z1);

fori=1:z1

A3(1,i)=1.0;

end;

b=zeros(z1,1);
1u0=0.000001*ones(z1,1);
ul=ones(z1,1);

b(1,1)=c3%*z1;

for i=1:m9-1

for j=1:m8-1

Lo(i,j)=c3;

end; end;

fori=1:z1

x1(i)=c3*z1;

end;

for i=1:2*m8*m9

x0(i)=0.000;

end;

XW=XO0;

xv=Lo;

for k2=1:24

c3=0.98%c3;

b(1,1)=c3%*z1;

k2

b14=1.0;

k3=0;

while (b14 > 10735) and (k3 < 5)
k3=k3+1;


https://doi.org/10.20944/preprints202302.0051.v21

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 July 2023 doi:10.20944/preprints202302.0051.v21

27 of 42

b12=1.0;

k=0;

while (b12 > 10~40) and (k < 120)
k=k+1;

k2

k3

k

X=fminunc(’funbeam’,xo);

x0=X;

b12=max(abs(xw-x0));

xw=X;

end;

for i=1:m9-1

for j=1:m8-1

El = Lo(i,j)? * (Ea — Eb);
ex=dul(ij);

ey=dv2(ij);
exy=1/2*dv1(ij)+du2(i;));

Sx =Elx*(ex +wxey)/(1—w?);
Sy = Elx (wxex+ey)/(1 —w?);
Sxy=E1/(2*(1+w))*exy;
dc3(i,j)=-(Sx*ex+Sy*ey+2*Sxy*exy);
end;

end;

for i=1:m9-1

for j=1:m8-1
£(j+(i-1)*(m8-1))=dc3 (1)

end;

end;

for k1=1:1

k1

X1=linprog(f,[ ],[ ],A3,b,uo,ul,x1);
x1=X1;

end;

for i=1:m9-1

for j=1:m8-1
Lo(i,j)=X1(j+(m8-1*G-1);

end;

end;
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b14=max(max(abs(Lo-xv)))

xv=Lo;

colormap(gray); imagesc(-Lo); axis equal; axis tight; axis off;pause(le-6)
end;

end;

B e R R R R s

Here the auxiliary Function "funbeam’

function S=funbeam(x)
global Pm8 d w u v Ea Eb Lo d1 m9 dul du2 dv1 dv2
for i=1:m9
for j=1:m8
u(i)=x(+(m8)*(i-1);
v(i,j)=x(M8*m9+(i-1)*m8+j);
end;
end;
for i=1:m9
end;
u(m9-1,1)=0;
v(m9-1,1)=0;
u(m9-1,m8-1)=0;
v(m9-1,m8-1)=0;
for i=1:m9-1
for j=1:m8-1
dul(ij)=(u(ij+1)-u(ij)/d;
du2(ij)=(u(i+1,j)-u(ij)/d1L;
dv1(ij)=(v(ij+1)-v(ij)/d;
dv2(ij)=(v(i+1,)-v(ij))/d1;
end;
end;
S=0;
for i=1:m9-1
for j=1:m8-1
El = Lo(i,j)® * Ea+ (1 — Lo(i,)3) = Eb;
ex=dul(ij);
ey=dv2(i,j);
exy=1/2*(dv1(ij)+du2(ij));
Sx =Elx(ex +wxey)/(1—w?);
Sy =Elx (wxex+ey)/(1—w?);
Sxy=E1/(2*(1+w))*exy;
5=5+1/2*(Sx*ex+Sy*ey+2*Sxy*exy);
end;
end;
S5=5*d*d1-P*v(2,(m8)/3)*d*d1;

S o 34 6 36 36 36 36 3 3 3 S 36 6 36 3 3 3 S A A A A 3K KKK A KN N K K

For a two dimensional beam of dimensions 1m x 0.5m and t; = 0.63 we have obtained the
following results:
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1. Case A: For the optimal shape for a clamped beam at left (cantilever) and load P = —4 10°Nj at
(x,y) = (1,0.25), please Figure 5.

2. Case B :For the optimal shape for a simply supported beam at (0,0) and (1,0) and load P =
—4 10°Nj at (x,y) = (1/3,0.5), please Figure 6.

In the first case the mesh was 28 x 24. In the second one the mesh was 27 x 24

Figure 5. Density t(x,y) for the Case A.

Figure 6. Density #(x,y) for the Case B.

10. A duality principle for a general vectorial case in the calculus of variations

In this section we develop a duality principle for a general vectorial case in variational
optimization.

Let O C R3 be an open, bounded and connected set with a regular (Lipschitzian) boundary
denoted by 0Q). Let | : V — R be a functional where

J(u) = G(Vuq,- - ,Vun) — (u, f) 12,
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where
V =Wy (O;RN)
and
f=f fn) € L2(QRY).
Here we have denoted u = (uq,--- ,uy) € V and
(u, fr2 = (ui, fi)r2,
so that we may also denote
J(u) = G(Vu) = (u, f) 2.
Assume
G(Vu) = /Qg(Vu) dx
where ¢ : R3N — R is a differentiable function such that
8(y) — 4o
as |y| — co. Moreover, suppose there exists « € R such that
=
It is well known that
© =AW
_ . K%
=W
— inf{(Go V)" (w) — (u,f)12}. (48)
ueV
Under some mild hypotheses, from convexity, we have that
inf {(G o V)™ (u) = (u, f)12}
ucV
= sup {—(Go V) (~divv")} = —(GoV)*(f), (49)

v*EA*

where
A*={v* e Y =YY" = 2 (;RN) : divo* + f = 0}.

Now observe that the restriction v = Vu for some u € V is equivalent to the restriction

curl v; =0, in Q)

doi:10.20944/preprints202302.0051.v21
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where v = {v;} = {vij}?zl, Vie {1,---,N}, with appropriate boundary conditions, so that with an
appropriate Lagrange multiplier ¢ = {¢;}, we obtain

(GoV)*(—divv*) = sup{(u, —divv*);» — G(Vu)}

ueV
= sup{(Vu,v*);2 — G(Vu)}
ueV
< inf <sup{(v,v");2 — G(v) + (¢, curl v) 2
PEY" | veY
= inf G*(v* 1). 50
4)1&* (v* + curl ¢) (50)

where we have denoted
curl v = {curl v;}

and

curl ¢ = {curl ¢;}.
Joining the pieces, we have got

inf J(u) = inf(G(Vu) — (u, )12}

uevV
> sup {—G*(v* +curlg)}, (51)
(0% ) EA* X Y*

where we recall that Y = Y* = L2((); R3N).
We emphasize such a dual formulation in (v*, ¢) is convex (in fact concave).

11. A note on the Galerkin Functional

Let O C R3 be an open, bounded and connected set with a regular (Lipschitzian) boundary
denoted by 9Q).
Consider the functional | : V — R where

J(u) = %/QVu-Vudx—F%/Qu‘ldx
fg/ntﬂ dx — (u, f)2 (52)

Here V = W;2(Q), 7y >0, a >0, § > 0.
We denote also
Y =Y* =L%(Q).

At this point we define
At={ueV :uf>0,inQ},

V2 = {M eV : ||u||oo < K3}/
for some appropriate real constant K3 > 0 and

Vi=ATNW.

Observe that
J'(u) = =yVu+a® —p—f,
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so that we define the Galerkin functional J; : V — R by
1 1
R) = SI1@IB = 5 [ (~7V2u+au’ = pu— f)? dx.
0
From this, we get
9] (u) 3
o (—yVu+au” — pu — f)6au
+(—y V% + 3au® — B)2. (53)

Define now
@2 = (—yV?u+au® — pu — f)2

At this point, for an appropriate small real constant €; > 0 and bounded constant operator
M > g1, we set the intended non-active restriction

V3alu| > /My + V2 + B,
By ={u€Vy : V3alu| > /|M; +V2+ B|}.

Observe that since for u € V; we have u f > 0in Q) so that if 1, up € Vj then

and define

sign(uy) = sign(uy),in Q,

we may infer that By is a convex set.

Furthermore, if u € By, then
V3alu| > 4/ |My + V2 + B,

3au? > My + YV + B,

so that

and hence
PJ(u) = =y V24 3au*> — B> M; > ¢ > 0.

For a small parameter ¢ > 0 we define the intended non-active restriction
@2 <¢ in(),

and define
BzZ{u eV §02§€, il‘lQ}.

Observe that for « > 0 and § > 0 sufficiently large ¢, is convex in V; (positive definite Hessian)
so that By is a convex set. Assuming 0 < € < ¢ < 1, define B3 = By N By, which is a convex set.
Summarizing, if u € B, then
8%J1(u) > 0.

With such results in mind, we define the following convex optimization problem for finding a
critical point of J.
Minimize 1 1
R = 31718 =5 [ (=792 + e’ —pu— f)? a,

subject to
u € Bs.
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Observe that a critical point 1y € B3 of |1, from such a concerning convexity of J; on the convex
set By, is also such that

J(ug) = min J; (u).

u€EB;

Finally, we may also define the convex optimization problem of minimizing

J3(u) = KiJi(u)+J(u)

_ Ko 3_ g4, £)2
= 3 Q( YVu+au® — pu— f)° dx
+1/ Vu‘Vudx—i—E/ ut dx
2 Jo 4 /o
—g/nuz dx — (u, f)2, (54)
subject to
u € Bs.

Here K; > 0 is a large real constant.

Such a functional J3 is also convex on Bs so that a critical point ug € B3 of | is also a critical point
of [3, and thus

J3(uo) = min J3(u).

UEB;

12. A note on the Legendre-Galerkin functional

Let O C R3 be an open, bounded and connected set with a regular (Lipschitzian) boundary
denoted by o).

Consider the functional | : V — R where
Y . Gl
J(u) = Z/QVu Vudx+4/0u dx
B
-2 /Q 2 dx — (u, f)2 (55)

Here V = W&'Z(Q), ¥y>0,a>0 8>0.
We denote also

Y =Y*=L12(Q)

and Fi: V=R, FE:V—=RandF:V — Rby

Fi(u) = %/QVu-Vu dx,

F(u) = %/Qu4 dx,

F(u) = g/ﬂuz dx.

Moreover, we define F, F;, F5 : Y* — R by

F(vi) = sup{(u,v7)2 — F(u)}
uev
N GV (56)

2 Ja —yV2
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Fy(v2) = sup{(u,03)12 = Br(u)}
ueV
_ 3 @)~
) s v dx, (57)
F5(v3) = sup{(u,v3);2 — F(u)}
uev
- L / (0%)? dx (58)
= 25 Jn® )
Observe now that these three last suprema are attained through the equations,
* aFl (M) 2
a1 IV
* an(u) 3
=3, au
* dF3 (u)
U3 = du - ‘B
From such results, at a critical point, we obtain the following compatibility conditions
Lo Y (v;)“ _ 9
-Vv: B B
From such relations we have
vl _ U3
—7V2 - B ’
and 3
* U*
i=a(3)
so that .
v} = -V (03)
p
and 3
* v*
‘02 = (;) .
Moreover, we define the functional FI :Y* = R, by
Fy(0%) = sup{{u, v + 03 —v3)12 — (u, f)12}-
ueVv
Therefore
0 ifo] +05 -0 — f=0,inQ
F* *) 7 1 2 3 4 ’ 9
1 (07) { 400, otherwise. (59)

Hence, a critical point of | corresponds to the solution of the following system of equations
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and
v +v;—v3—f=0,inQ.

From this last equation we may obtain
v} =—v; +0v3+f,
so that the final equations to be solved are
2 (3
—vy+ 05+ f+9V (5) =0

and

with the boundary conditions

u:v—3:0, on 0Q).

p

With such results in mind, we define the Legendre-Galerkin functional J* : [Y*]?> — R, where

2
1 VZ*
(") = 2/@(—v§+v§+f+7 ”3> dx

B

(e (3)) w @)

At this point, defining
0\?
=v;—a|—=),
o=vi=e(3)
we obtain
82]*(0*) .
Aoy)?
T (v*) YV2\* | 9a2(05)*
st~ (7)o
PJ*(v7) _ —8a(v3)” <_ _w2>
903003 3 B

From such results we may infer that

der (SLE)) = 82]*(0*)32]*(0*)_(82]*(0*))2

0v}0v; 9(v5)?  9(v3)? 0v}0v}
2 *)2 2
_ <_1— 7;4—30& (233) ) +0(9) (61)

Observe that a critical point ¢ = 0 so that 6>]*(v*) > 0 at a neighborhood of any critical point.
At this point we define

AT = {v* = (v5,0%) € [Y*]? %f >0, mn},

D* = {v" = (v3,05) € V'] : o*[lw <K},
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for an appropriate real constant K > 0.
Define now E* = AT N D*,

Ci={v* = (v},v) €E* : ¢* <e inQ},

for a small real constant ¢ > 0,

2 *\2
c;—{v*—@z,v;)eg* : <_1_W+3a<”3> ) >sl},

p p
and
C*=CinGs.
Similarly as done in the previous section, we may prove that C* is a convex set.
Furthermore, for 0 < ¢ < ¢; < 1, we have that J* is convex on C*.
Summarizing, we may define the following convex optimization problem to obtain a critical point
of the primal functional J,
Minimize [*(v3,v3) subject to v* = (v3,v3) € C*.
We call J* the Legendre-Galerkin functional associated to J.
12.1. Numerical examples
We have obtained numerical solutions for two one-dimensional examples.
1. Fory=1.0,4 =3.0,=230.0, f =10, in Q = [0,1].

For the respective solution please see Figure 7.
2. Fory=0.01, 0 =3.0, 4 =300, f =10, inQ = [0,1].

For the respective solution please see Figure 8.

3.5

251 b

Figure 7. Solution u(x) = v}(x)/p for the example 1.
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3.5

251 b

Figure 8. Solution u(x) = v}(x)/p for the example 2.

13. A general concave dual variational formulation for global optimization

Let O C R3 be an open, bounded and connected set a regular (Lipschitzian) boundary denoted
by Q).
Consider a functional | : V — R where

J(u) = G(u) — (u, f);2, Yu € V.

Here V = W(}’Z(Q),f € L?(Q) and we also denote Y = Y* = L?(Q).
Assume there exists & € R such that

a = inf J(u).

ueV

Furthermore, suppose G is three times Fréchet differentiable and there exists K > 0 such that

092G (u)
ou?

+K>0VYueV.

Define now J; : V x Y — R where,
Ji(u,0) = Gi(u,v) + F(u),

where %
Gi(u,v) = G(v) — g/nvz dx + E/Q(v—u)2 dx,

and

F(u) = ;/QuZ dx — (u, f)2.

Moreover, we define the polar functionals G : Y* x V — Rand F* : Y* — R, where

Gi(v*,u) = sup{(v,v");2 — G1(u,v)}
veY
* * K 2
= —Gg. (v —l—Ku)—l—E/Qu dx, (62)
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Gg. (0" + Ku) = sup ¢ (v,0") —G(v)—E vzderE/ 0% dx
Ke _ve}; o 2 Ja 2 Ja ’
and
F'(=v") = sup{—(u,0");2 —F(u)}
ueVv
_ l * _ \2
= 5 /Q (0" — f)? dx. (63)

At this point we define the functional [; : Y* x V — R by

K
5 (0%, u) = —G, (0" + Ku) + / W2 dx — F*(—o").
Q
With such results in mind we define

Vi={ueV : |ul|os <Kz},

and
D*={v" €Y" : [[v"]l < Ky},

for appropriated real constants K3 > 0 and K4 > 0.
Moreover, we define also the penalized functional J5 : Y* x V — R where

oG(u)
Jou

2
O e A ra) dx

Finally, we remark that for ¢ > 0 sufficiently small and K; > 0 sufficiently large, ] is concave in
D* x Vj around a concerning critical point. We recall that a critical point

. 0G(u)
v Ju

+eu =0, in Q.

14. A related restricted problem in phase transition

In this section we develop a convex (in fact concave) dual variational for a model similar to those
found in phase transition problems.
Let QO = [0,1] C R. Consider the functional | : V. — R where

Jw) = g [ min{( 12, (0 12} dx
+%/Qu2 dx — (u, f) 2
- %/Q(u’)z dr— [ ] dx+172
+% /Q W2 dx — (u, f) 2. (64)

Here
V={ucW?Q) : u(0) =0and u(1) = 1/2}.

We also denote V; = W&’z(ﬂ), and Y = Y* = L2(Q).
Furthermore, we define the relaxed functionals Gand F : V x V; — R by

1
G’,':,/’ ’2d_/’ dx+1/2,
(u',v") 20(u+v) x Q|u~|—v|x+/
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and 1
F(u,v) = E/Qu2 dx — (u, )2

Moreover we define J; : V x V; — Rby
J1(u,0) = G(u',v") + F(u,v),
and consider the problem of minimizing J; on the set
B={(u,0) € VxV : (u)?<Kyand (v')?> < Ky, in Q}.
Already including the Lagrange multipliers (¢1, ¢») concerning such restrictions, we define

Bt,0) = Ji(1,0) + 3 (68, ()2 ~ Koy + 3 (4, (02— Koo

Observe now that

Rlo) = Ji(w,o) + 593, ()2~ Ka) s
EE A GO A
= GO + {0 ()R — K2 + 5 (6B (0 — Ko
+F(u,v

)
= ( )2 — (¢, vz>Lz+G(u V)
(u

<<P1/ N2 —Ki)pe+ (4’2/( "2 —Ka)pa
(u’ r7’1>L2 + (0, 03) 12 + F(”’U)

inf  {—(v1,07)12 — (v2,03) 2 + G1(v1, 02, ¢)
(U],Uz)EYXY

30 (01 = Kz + 503, (022 — Kabya |
+ inf {(u’,v’{)Lz—i-<U,02)L2+F(u,v)}

Y]

(,v)eVxVy
= —Gi(v},v3,¢) — F*(0],03), V(u,0) € V x V1, (v}, 03,9) € [Y*]*, (65)
where ,
G, v, ¢) = G(u',0") + 5(4’%/( w')? = Ki)pa + 5 <4>z,( V') —Ka)p2
Also,
Gi(v1,v3,¢) = sup  {(v1,07)12 + (01,07) 12 — Gi(v1, 02, ¢) }
(v1,02)€Y XY
_ / —¢7 ¢35 + (1+¢3) (v7)* — 20703 + (1 + ¢7) (v3)° dx
H
2|¢27)1 Z’2|
2,
+A¢ﬂhKﬂ2+Aﬁthﬂz (66)
where

H = ¢7 + ¢5 + ¢1¢3,
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and
1 *)/ 2 ok : N s
F*(U*>:{ b (@) + ) dx =0 (Du(1), i (23) =0, in©, )
+oo, otherwise.

From this we may infer that v = ¢, in (), for some c € R.
Summarizing, denoting v* = (v],v3), ¢ = (¢1,¢2) and

(0%, ¢) = =Gi(v",9) — F*(v")
we have got
inf  Ji(u,0) > sup J(v*¢).
(M,U)EVX V1 (U*,¢)€F[)Y*]4 ¢
We have developed numerical results by maximizing the dual functional J* for two examples,
namely.
1. Example A: In this case, we consider f(x) = cos(ntx)/2,K; =1and K; = 1.
For the optimal
uo = (v7)" + £,

please see Figure 9.
2. Example B: In this case, we consider f(x) = cos(7tx)/2, K3 = 50 and K, = 50.

For the optimal
up = (v7)" + £,

please see Figure 10.

0.5

0.45 ]

04 r b

0.35 ]

031 ]

0.25 ]

0.2 ]

0.15 b

041t 1

0.05 ]

Figure 9. Solution u((x) for the example A.
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0.5

04r a

031 ]

0.2 ]

01F 1

021 b

03 . . . . . . . . .

Figure 10. Solution ug(x) for the example B.
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