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Abstract: Symbolic pole/zero analysis is an important step when designing an analog operational 

amplifier. Generally, a simplified symbolic analysis of analog circuits suffers from NP-hardness, i.e., 

an exponential growth of the number of symbolic terms of the transfer function with the circuit size. 

In this study, we present a mathematical model combined with a heuristic-metaheuristic solution 

method for the symbolic pole/zero simplification in operational transconductance amplifiers (OTA). 

At first, the circuit is symbolically solved and an improved root splitting method is applied to extract 

symbolic poles/zeroes from the exact expanded transfer function. Then, a hybrid algorithm based 

on heuristic information and a metaheuristic technique using simulated annealing is performed for 

the simplification of the derived symbolic pole/zero expressions. The developed method has been 

tested on three analog OTAs. The obtained results show the effectiveness of the proposed method 

to achieve accurate simplified symbolic pole/zero expressions with the least complexity. 

Keywords: operational transconductance amplifiers; symbolic circuit analysis; pole/zero extraction; 

root splitting; simplification; simulated annealing 

 

1. Introduction 

Recently, multi-stage cascode operational transconductance amplifiers (OTAs) have 

become widely applied in modern microelectronics, as OTAs can provide large output 

swing and high gain with very low overdrive voltage [1-4]. However, as each stage has 

its own poles and zeroes, the bandwidth may be reduced. In addition to the poles and 

zeros of each additional stage, the compensated capacitors may add some extra poles and 

zeroes. One of the main challenges in the design of multi-stage OTAs is to devise the fre-

quency compensation procedure capable of providing wide bandwidth and high gain 

with appropriate stability margins. In this regard, a simplified extraction of symbolic 

poles and zeros can give better analytical expressions and assist designers to make a 

straight decision when designing an OTA and a frequency compensation circuit [5]. 

Generally, an exact symbolic analysis of OTAs is error-prone and time-consuming if 

it is done by hand, even for circuits with a small number of components [6]. In this regard, 

a computer-aided automatic symbolic resolution can be helpful by solving the circuit 

equations by mathematical solvers such as Cramer’s rule [7]. It can be done by exploiting 

symbolic analysis solvers embedded via software tools such as MATLAB, GNU Octave, 

and MAPLE [8]. The main drawback of a symbolic analysis is that the derived symbolic 

equations are very complex and they cannot be effective to guide the circuit designer [9]. 

Although various symbolic simplification techniques have been introduced, simplified 

expressions are not provided in factorization form, and thus, it is very hard to evaluate 

the effects of roots on the behavior of the circuit. 

Although the existing symbolic pole/zero analysis methods [8-21] incorporate some 

types of approximations during the calculation of transfer function, they suffer from some 
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drawbacks which limit their effectiveness for real-world OTAs: First, these methods are 

inefficient in the case of overall generated error rates in terms of magnitude, phase, poles, 

and zeros. Second, the correlation between eliminated terms in different polynomials is 

not under effective consideration in polynomial-oriented methods. Third, pole/zero dis-

placements due to approximations are not under control. Fourth, those closely spaced 

pole/zero pairs may be disappeared due to a magnitude/phase-oriented approximation, 

which can generate high error rates at the points other than the nominal ones. 

In this study, we present a simplified symbolic pole/zero extraction technique to 

overcome the mentioned drawbacks. The method is based on the root splitting technique 

[11] and a simulated annealing (SA) algorithm [22]. We introduce an enhanced root split-

ting (named ERS) for the symbolic pole/zero extraction from the exact transfer function. 

In this method, pole/zero displacements cannot exceed a pre-specified threshold. Then, 

we apply a combined heuristic-metaheuristic pole/zero simplification based on SA 

(named PZSA) to simplify the derived pole/zero expressions. The key contributions out-

lined in this study can be mentioned as follows: 

• Introducing a combined mathematical-heuristic-metaheuristic technique for the 

extraction and simplification of symbolic poles and zeros in OTAs. 

• Proposing an enhanced root splitting technique, named ERS, to accurately extract 

the exact pole/zero expressions. 

• Presenting a combined heuristic-metaheuristic algorithm for symbolic pole/zero 

simplification (named PZSA) utilizing heuristic knowledge available in the circuit 

model and simulated annealing. 

• Programming of the proposed method in a MATLAB m-file, wherein simplified 

pole/zero equations are automatically generated from the circuit netlist. 

• Successfully driving symbolic pole/zero expressions for three OTAs. 

The rest of this study is organized as follows: In Section 2, the existing literature for 

a symbolic simplification and symbolic pole/zero extraction are reviewed. In Section 3, the 

proposed methodology is presented with details, and then, the developed method in 

MATLAB is evaluated in Section 4. Finally, in Section 5, some concluding remarks as well 

as future directions are addressed. 

2. Literature Review 

Over the recent years, along with the increasing advancement and development in 

analog circuit design, various symbolic simplification techniques and symbolic pole/zero 

extraction methods have been proposed. According to the existing literature, these meth-

ods are described in the following. 

2.1. Symbolic Simplification Techniques  

The symbolic analysis of OTAs suffers from NP-hardness [7]. For instance, the μA741 

amplifier has about 1034 terms within its voltage transfer function [23]. Therefore, symbolic 

analysis tools must rely on the simplification techniques to tackle with the complexities 

and hardnesses of real-world circuits. Based on the step in which a simplification is done, 

simplification algorithms can be categorized into SAG (simplification-after-generation), 

SDG (simplification-during-generation), and SBG (simplification-before-generation) [24]. 

It is worth noting that the PZSA algorithm in this study is a SAG technique. A SAG is 

performed once the symbolic circuit analysis is done and consequently the exact symbolic 

expressions have been obtained so that simplified functions can be constructed from some 

terms of the exact expressions. In the following, we discuss the details of the SAG tech-

nique, which is used in the proposed method.  

The small-signal transfer function of a linear or linearized circuit can be represented 

as a function of the frequency 𝑠 and the circuit parameters 𝐱 as follows: 
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𝐻(𝑠, 𝐱) =
𝑁(𝑠, 𝐱)

𝐷(𝑠, 𝐱)
=

𝑓′0(𝐱) + 𝑓′1(𝐱) 𝑠 + 𝑓′2(𝐱) 𝑠2 + ⋯ + 𝑓′𝑛′(𝐱) 𝑠𝑛′

𝑓0(𝐱) + 𝑓1(𝐱) 𝑠 + 𝑓2(𝐱) 𝑠2 + ⋯ + 𝑓𝑛(𝐱) 𝑠𝑛
 (1) 

Each polynomial 𝑓́𝑖(𝐱) or 𝑓𝑖(𝐱) is a sum-of-product (SOP) of 𝐱 which is expressed as 

ℎ𝑘(𝐱) = ℎ𝑘1(𝐱) + ℎ𝑘2(𝐱) + ⋯ + ℎ𝑘𝑇(𝐱), where ℎ𝑘(𝐱) is 𝑘-th polynomial within the circuit 

transfer function 𝐻(𝑠, 𝐱) comprising 𝑇 terms.  

The simplification method in [25] finds the largest term in terms of the magnitude, 

ℎ𝑘𝑚(𝐱), for the polynomial ℎ𝑘(𝐱). Then, all other terms within the polynomial ℎ𝑘(𝐱) are 

taken one by one. The condition for which the term ℎ𝑘𝑙(𝐱) can be discarded from the pol-

ynomial ℎ𝑘(𝐱), is |ℎ𝑘𝑙(𝐱)| ≤ 𝜀 × |ℎ𝑘𝑚(𝐱)|. Here, 𝜀 (0 <  𝜀 < 1) is a user-specified threshold 

to limit the maximum error. The main drawback is that the error may be accumulated. To 

overcome this drawback, the reported criterion in [26] sorts the terms within ℎ𝑘(𝐱) based 

on their magnitude obtained in the nominal point. Afterwards, 𝑃 terms with the least ac-

cumulated magnitude are discarded from the polynomial, if the error is below 𝜀. The con-

dition on the 𝑃 terms for which they could be discarded, can be expressed as follows: 

|∑ ℎ𝑘𝑙(𝐱)

𝑃

𝑙=1

| < 𝜀 × |∑ ℎ𝑘𝑙(𝐱)

𝑇

𝑙=1

| (2) 

Although this method achieves more accurate expressions at the nominal point, it 

may cause significant errors for other values of the parameters. To avoid an elimination 

of the mutually canceling terms, the method in [27] presented an enhanced condition for 

which the 𝑃 terms with the least magnitude can be discarded if: 

|∑ ℎ𝑘𝑙(𝐱)

𝑃

𝑙=1

| < 𝜀 × |∑ ℎ𝑘𝑛(𝐱)

𝑇

𝑛=1

| (3) 

In the above-mentioned techniques, the maximum error is limited for each polyno-

mial. However, the obtained error in the poles and zeroes is not under consideration. If 

the same error 𝜀𝑀 drives in all polynomials, no pole and/or zero displacement can be ob-

served [28]. To overcome this drawback, an adaptive 𝜀 can be used, in which, erm deletion 

is done step by step while displacements in poles and zeros are monitored at every step, 

so that the term pruning procedure would be finished if the obtained displacements are 

beyond a pre-determined threshold [26]. 

Recently, various swarm and evolutionary metaheuristic algorithms [29-34] have 

been applied for the simplified symbolic analysis of OTAs. In these techniques, different 

criteria such as the magnitude error, phase error, and pole/zero displacements, have been 

used to evaluate feasible solutions generated by the metaheuristic algorithm. Although 

these methods achieve a low mean error rate, the worst cases of the displacements in the 

poles and zeroes are not accurately under consideration. The common drawback of the 

existing techniques is that the simplified function is achieved in either expanded or nested 

form. In other words, the transfer function is not derived in a factorization form which 

makes it hard to evaluate the contribution of roots. 

2.2. Symbolic Pole/Zero Extraction Techniques  

The symbolic pole/zero analysis also suffers from the NP-hardness, even worse, as 

some operations between the polynomials have to be performed. Generally, a direct cal-

culation of the roots from the expanded transfer functions yields very complex results for 

polynomials with degrees larger than two [7]. Since the numerator and denominator of a 

transfer function in practical OTAs have generally degrees much larger than two, it is 

rarely possible to mathematically find the exact symbolic pole/zero expressions [10].  

In the following, the existing pole/zero extraction methods including root spitting, 

time-constant analysis, and eigenvalue analysis are discussed. Root splitting [11] is one of 

the well-known root extraction techniques. It extracts poles assuming them to be 
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reciprocally dominant. By factorization, the denominator of the exact function in Eq. (1) 

can be re-written as a function of the poles 𝑝𝑖  as follows: 

𝐷(𝑠, 𝐱) = 𝑓0 ⋅ (1 −
𝑠

𝑝1

) ⋅ (1 −
𝑠

𝑝2

) ⋯ (1 −
𝑠

𝑝𝑛

) (4) 

It follows from Eq. (1) that 

𝑓1 = 𝑓0 ⋅ ∑ (−
1

𝑝𝑖

)

𝑛

𝑖=1

 (5) 

Therefore, assuming 𝑝1 to be the dominant pole within the denominator, the first pole can 

be approximately expressed as: 

𝑝1 ≈ −
𝑓0

𝑓1

 (6) 

Consequently, with a similar approach, considering 𝑝𝑖  to dominate the other poles, 

𝑝𝑖  can be given by the negative quotient of the two consecutive coefficients 𝑓𝑖−1 and 𝑓𝑖 [8]. 

Similar argumentations can be done to calculate simplified zeroes from the numerator of 

the transfer function. The root splitting method is not appropriate for manual pole/zero 

calculations (hand-and-paper analysis), as some estimations and simplifications should 

be developed to allow the circuit designer in extracting approximate dominant poles and 

zeroes manually. The most popular approach of such techniques is the time-constant 

method [10, 12-14], which is expressed in Eq. (7), where 𝜏𝑘 can be achieved by multiplying 

the resistance 𝑅𝑘 to the capacitance 𝐶𝑘. 

𝑝1 ≈ − (∑ 𝜏𝑘

𝑘

)

−1

 (7) 

This technique is error-prone, as there is no information about the accuracy of the 

obtained symbolic results. Moreover, zeroes and higher-order poles cannot be determined 

by this approach, at all. A more general approach in this context was reported in [13] 

which has also the ability to extract the higher-order poles. This method is based on  open-

circuits and short-circuits analysis to calculate the time constants of the circuit.  

There are also some pole/zero extraction methods on the basis of the solution derived 

by the eigenvalue problem. A positive feature of these methods is that the simplification 

is no longer driven by magnitude and phase errors but by the pole/zero position, allowing 

an improved error control. For example, a modified Signal-Flow Graph (named MSFG) 

has been recently developed to represent the equivalences between the system and SPICE 

outcomes of static nonlinear OTAs [15]. In this method, the circuit is firstly converted into 

an MSFG, and then, the graph would be simplified in particular polynomials by minimiz-

ing the MSFGs. In [19], the implementation of some simplification procedures during the 

eigenvalue computation via a symbolic LR algorithm was addressed, in which the LR 

method is applied to compute the reduced matrix corresponding to the eigenvalue cluster. 

This technique is followed in [20] by an algorithm to reduce the circuit matrix into a row 

echelon format. After the determination of the symbolic state matrix, the approximated 

poles and zeroes are achieved using the LR algorithm. 

The main drawback of the existing symbolic pole/zero analysis methods is that the 

simplified expressions of poles and zeroes are not so compact as no SAG is applied on the 

final expressions. So, in this study, we utilize a combined heuristic-metaheuristic SAG 

algorithm to ensure obtaining the simplified symbolic pole/zero expressions with the least 

achievable complexity. 

3. Proposed Method 

The list of indices, sets, and parameters which are used in the following equations in 

this section are provided in Table 1. The overall flowchart of the proposed symbolic 
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pole/zero analysis can be seen in Fig. 1. As a summary, the main steps of the methodology 

can be summarized as follows: 

1) Input circuit netlist is loaded as a text file (in .txt format). 

2) All transistors are replaced via proper small-signal modeling. 

3) The symbolic circuit is solved via a modified nodal analysis (MNA). 

4) The exact transfer function (TF) is achieved in the expanded symbolic form. 

5) Exact expressions of poles and zeroes are derived using ERS. 

6) Numerical results of the exact symbolic pole/zero expressions are stored. 

7) A heuristic algorithm is performed to generate a near-optimal solution utilizing 

the circuit-based knowledge available in the exact poles and zeroes. 

8) SA is performed to improve further the quality of the heuristic solution, to gener-

ate the final simplified symbolic pole/zero expressions. 

9) Numerical results of the obtained simplified symbolic pole/zero expressions are 

calculated. 

10) Numerical results of the exact and simplified poles/zeros are compared against 

HSPICE and other simplification algorithms. 

 

Table 1. Notations. 

Sets / Parameters Definition 

𝑖 Index of poles, 𝑖 = 1,2, … , 𝑛 
𝑗 Index of zeroes, 𝑗 = 1,2, … , 𝑛́ 
𝑛 Degree of the denominator within the exact expanded TF 

𝑛́ Degree of the numerator within the exact expanded TF 

𝑘 Index of the symbolic terms, 𝑘 = 1,2, … , 𝐿 

𝐿 Number of symbolic terms within all pole/zero expressions 

[𝑓𝑚𝑖𝑛 , 𝑓𝑚𝑎𝑥]    Defined frequency bound range for the pole/zero extraction 

𝑆𝑘 A binary decision parameter defining whether the 𝑘-th symbolic term is used or not 
𝑃𝑜𝑙𝑒𝑆𝑒𝑡 Set of poles in the frequency range of [𝑓𝑚𝑖𝑛 , 𝑓𝑚𝑎𝑥] 

ZeroSet Set of zeroes in the frequency range of [𝑓𝑚𝑖𝑛 , 𝑓𝑚𝑎𝑥] 

𝑝𝐸,𝑖 𝑖-th pole within the exact expanded TF 

𝑝𝐸𝑅𝑆,𝑖 𝑖-th extracted pole via ERS 

𝑝𝑆𝐴,𝑖 𝑖-th simplified pole via SA 

𝐸𝑝                Mean pole displacements (in %) 

𝑧𝐸,𝑗 𝑗-th zero of the exact expanded TF 

𝑧𝐸𝑅𝑆,𝑗 𝑗-th extracted zero via ERS 

𝑧𝑆𝐴,𝑗 𝑗-th simplified zero via SA 

𝐸𝑧               Mean zero displacements (in %) 

𝑇𝐸𝑅𝑆              Maximum allowable pole/zero extraction error via ERS  

𝑇𝑆𝐴               Maximum allowable pole/zero simplification error via SA  
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Figure 1. Overall flowchart of the proposed methodology. 

3.1. Pole/Zero Extraction via ERS 

After the netlist pre-processing, the circuit is solved using MNA [7], and conse-

quently, the exact symbolic TF is achieved in expanded form. Then, the obtained exact 

pole/zero expressions are approximately calculated using the proposed ERS method 

which is an enhanced version of the traditional RA algorithm. Generally, an expanded TF 

could be converted into the factorized form according to Eq. (8), where 𝑍(𝑠, 𝐱) is a function 

of 𝑛́ (real or complex conjugate) zeroes 𝑧1, 𝑧2, …, 𝑧𝑛́, and 𝑃(𝑠, 𝐱) is a function of 𝑛 (real or 

complex conjugate) poles 𝑝1, 𝑝2, …, 𝑝𝑛. 

(𝑠, 𝐱) ≈
𝑓′0 ⋅ 𝑍(𝑠, 𝐱)

𝑓0 ⋅ 𝑃(𝑠, 𝐱)
 (8) 
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In the ERS algorithm, only poles and zeroes located in the interval [𝑓𝑚𝑖𝑛 , 𝑓𝑚𝑎𝑥] would 

be extracted, where 𝑓𝑚𝑖𝑛  and 𝑓𝑚𝑎𝑥  are the minimum and maximum user-specified fre-

quency for the pole/zero extraction, respectively. If the frequency range has not been spec-

ified by the user, it is considered as default range of [0,10𝑓𝑇], where 𝑓𝑇 is the frequency of 

unity-gain of the exact expression in the nominal point. In the following, the pole extrac-

tion procedure for 𝑃(𝑠, 𝐱) is described. By comparing Eqs. (1) and (8), 𝑃(𝑠, 𝐱) can be calcu-

lated as: 

𝑃(𝑠, 𝐱) =
𝐷(𝑠, 𝐱)

𝑓0

= 1 + (
𝑓1

𝑓0

)  𝑠 + (
𝑓2

𝑓0

) 𝑠2 + (
𝑓3

𝑓0

) 𝑠3 + ⋯ + (
𝑓𝑛

𝑓0

) 𝑠𝑛 (9) 

Typically, a single real pole is dominant in OTAs. Assuming 𝑝1 to be dominant and 

all other poles to be located at much higher frequencies, i.e., ‖𝑝1‖ << ‖𝑝2‖, ‖𝑝3‖, … , ‖𝑝𝑛‖, 

the first pole can be splitted, and thus, 𝑃(𝑠, 𝐱) can be approximately written as: 

𝑃(𝑠, 𝐱) = (1 −
𝑠

𝑝1

)  ⋅ (1 + 𝑔1𝑠 + 𝑔2𝑠2 + ⋯ + 𝑔𝑛−1𝑠𝑛−1) 

            = 1 + (−
1

𝑝1

+ 𝑔1) 𝑠 + (−
𝑔1

𝑝1

+ 𝑔2) 𝑠2 + (−
𝑔2

𝑝1

+ 𝑔3) 𝑠3 + ⋯ + (−
𝑔𝑛−2

𝑝1

+ 𝑔𝑛−1) 𝑠𝑛−1 + (−
𝑔𝑛−1

𝑝1

) 𝑠𝑛
 (10) 

By equating the 𝑠 coefficients of 𝑃(𝑠, 𝐱) in Eq. (10) to those in Eq. (9), the dominant 

real pole 𝑝1 can be approximated given as: 

𝑝1 ≈ −
𝑓0

𝑓1

 (11) 

Consequently, by assuming the condition in Eq. (12), we can simplify the rightmost 

expression of Eq. (11) as Eq. (13). By equating the 𝑠 coefficients of Eq. (13) to the same 𝑠 

coefficients in Eq. (9), the parameters 𝑔𝑖 can be calculated as Eq. (14).  

|
1

𝑝1
| >> |𝑔1|   ,      |

𝑔𝑖−1

𝑝1
| >> |𝑔𝑖|  ,        for    𝑖 = 2,3, … , 𝑛 − 1

 

 (12) 

𝑃(𝑠, 𝐱) ≈ 1 + (−
1

𝑝1

) 𝑠 + (−
𝑔1

𝑝1

) 𝑠2 + (−
𝑔2

𝑝1

) 𝑠3 + ⋯ + (−
𝑔𝑛−1

𝑝1

) 𝑠𝑛 (13) 

𝑔𝑖 =
𝑓𝑖+1

𝑓1

  ,        for    𝑖 = 1,2, … , 𝑛 − 1 (14) 

and thus, the leftmost expression in Eq. (10) can be expressed as: 

𝑃(𝑠, 𝐱) ≈ (1 +
𝑓1

𝑓0

𝑠)  ⋅ (1 +
𝑓2

𝑓1

𝑠 +
𝑓3

𝑓1

𝑠2 + ⋯ +
𝑓𝑛

𝑓1

𝑠𝑛−1) (15) 

The circumstances of 𝑠 coefficients in the original denominator 𝐷(𝑠, 𝐱), for which 

Eq. (15) is valid, are: 

|
𝑓1

𝑓0

| >> |
𝑓𝑖

𝑓𝑖−1

|   ,         for    𝑖 = 2,3, … , 𝑛 (16) 

Equation (15) shows that 𝑃(𝑠, 𝐱) can be simplified into a product of a first-order pol-

ynomial (i.e., first dominant pole) and a high-order polynomial corresponding to other 

high-frequency poles. In a more general case, assuming the first 𝑚 poles (1 < 𝑚 < 𝑛) to 

be successively dominant in pairs (i.e., 𝑝1 dominates 𝑝2, 𝑝2 dominates 𝑝3, and so on, 𝑝𝑚−1 

dominates 𝑝𝑚), 𝑃(𝑠, 𝐱) can be approximated as follows: 
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𝑃(𝑠, 𝐱) = (1 −
𝑠

𝑝1

)  ⋅ (1 −
𝑠

𝑝2

) ⋯ (1 −
𝑠

𝑝𝑚

)  ⋅ (1 + 𝑔1𝑠 + 𝑔2𝑠2 + ⋯ + 𝑔𝑛−𝑚𝑠𝑛−𝑚) 

            = 1 + (− ∑
1

𝑝𝑖

𝑚

𝑖=1

+ 𝑔1) 𝑠 + ( ∑ ∑
1

𝑝𝑖𝑝𝑗

𝑚

𝑗=𝑖+1

𝑚−1

𝑖=1

− 𝑔1 ∑
1

𝑝𝑖

𝑚

𝑖=1

+ 𝑔2) 𝑠2

                 + (− ∑ ∑ ∑
1

𝑝𝑖𝑝𝑗𝑝𝑘

𝑚

𝑘=𝑗+1

𝑚−1

𝑗=𝑖+1

𝑚−2

𝑖=1

+ 𝑔1 ∑ ∑
1

𝑝𝑖𝑝𝑗

𝑚

𝑗=𝑖+1

𝑚−1

𝑖=1

− 𝑔2 ∑
1

𝑝𝑖

𝑚

𝑖=1

+ 𝑔3) 𝑠3 + ⋯ +

                 + ((−1)𝑚𝑔𝑛−𝑚−1 ∏
1

𝑝𝑖

𝑚

𝑖=1

+ (−1)𝑚−1𝑔𝑛−𝑚 ∑ ∑ ⋯ ∑
1

𝑝𝑖1
𝑝𝑖2

𝑝𝑖𝑚−1

𝑚

𝑖𝑚−1=𝑖𝑚−2+1

3

𝑖2=𝑖1+1

2

𝑖1=1

) 𝑠𝑛−1 + ((−1)𝑚𝑔𝑛−𝑚 ∏
1

𝑝𝑖

𝑚

𝑖=1

) 𝑠𝑛

 (17) 

By similar approximations as done in the previous case, 𝑃(𝑠, 𝐱) can be simplified ac-

cording to:  

𝑃(𝑠, 𝐱) ≈ 1 + (−
1

𝑝1

) 𝑠 + (
1

𝑝1𝑝2

) 𝑠2 + (−
1

𝑝1𝑝2𝑝3

) 𝑠3 + ⋯ + ((−1)𝑚 ∏
1

𝑝𝑖

𝑚

𝑖=1

) 𝑠𝑚 + ⋯ +

                + ((−1)𝑚𝑔1 ∏
1

𝑝𝑖

𝑚

𝑖=1

) 𝑠𝑚+1 + ⋯ + ((−1)𝑚𝑔𝑛−𝑚−1 ∏
1

𝑝𝑖

𝑚

𝑖=1

) 𝑠𝑛−1 + ((−1)𝑚𝑔𝑛−𝑚 ∏
1

𝑝𝑖

𝑚

𝑖=1

) 𝑠𝑛

 (18) 

By equating the 𝑠 coefficients of Eq. (18) and Eq. (9), the 𝑚 first poles are derived as 

Eq. (19). Also, the parameters 𝑔𝑖 can be expressed as Eq. (20). So, 𝑃(𝑠, 𝐱) can be simplified 

into the multiplication of 𝑚+1 polynomials: 𝑚 first-order polynomials (representing the 

𝑚 first poles) and a high-order polynomial, as Eq. (21). The conditions on 𝑠 coefficients of 

𝐷(𝑠, 𝐱), for which Eq. (21) is valid, can be expressed as Eq. (22). 

𝑝𝑖 = −
𝑓𝑖−1

𝑓𝑖

  ,      𝑓𝑜𝑟    𝑖 = 1,2, … , 𝑚 (19) 

𝑔𝑖 =
𝑓𝑚+𝑖

𝑓𝑚

  ,      𝑓𝑜𝑟    𝑖 = 1,2, … , 𝑛 − 𝑚 (20) 

𝑃(𝑠, 𝐱) = (1 +
𝑓1

𝑓0

𝑠)  ⋅ (1 +
𝑓2

𝑓1

𝑠) ⋯ (1 +
𝑓𝑚

𝑓𝑚−1

𝑠)  ⋅ (1 +
𝑓𝑚+1

𝑓𝑚

𝑠 +
𝑓𝑚+2

𝑓𝑚

𝑠2 + ⋯ +
𝑓𝑛

𝑓𝑚

𝑠𝑛−𝑚) (21) 

|
𝑓𝑖

𝑓𝑖−1

| >> |
𝑓𝑖+1

𝑓𝑖

|   ,    for    𝑖 = 1,2, … , 𝑚 − 1;          |
𝑓𝑖

𝑓𝑖−1

| >> |
𝑓𝑗

𝑓𝑗−1

|   ,    for  {
  𝑖 = 1,2, … , 𝑚
𝑗 = 𝑚 + 1, 𝑚 + 2, … , 𝑛

 (22) 

In the general case, let us extend the above formulations for the case that all the 𝑛 

poles are dominant reciprocally, in which, 𝑃(𝑠, 𝐱) can be approximated as follows: 

𝑃(𝑠, 𝐱) = (1 −
𝑠

𝑝1

)  ⋅ (1 −
𝑠

𝑝2

) ⋅ (1 −
𝑠

𝑝3

) ⋯ (1 −
𝑠

𝑝𝑛

) 

            = 1 + (− ∑
1

𝑝𝑖

𝑛

𝑖=1

) 𝑠 + (∑ ∑
1

𝑝𝑖𝑝𝑗

𝑛

𝑗=𝑖+1

𝑛−1

𝑖=1

) 𝑠2 + (− ∑ ∑ ∑
1

𝑝𝑖𝑝𝑗𝑝𝑘

𝑛

𝑘=𝑗+1

𝑛−1

𝑗=𝑖+1

𝑛−2

𝑖=1

) 𝑠3

                + ⋯ + ((−1)𝑛−1 ∑ ∑ ⋯ ∑
1

𝑝𝑖1
𝑝𝑖2

𝑝𝑖𝑛−1

𝑛

𝑖𝑛−1=𝑖𝑛−2+1

3

𝑖2=𝑖1+1

2

𝑖1=1

) 𝑠𝑛−1 + ((−1)𝑛 ∏
1

𝑝𝑖

𝑛

𝑖=1

) 𝑠𝑛

 (23) 

Under the assumption that all poles are dominant in pairs (i.e., 𝑝1 dominates 𝑝2, 𝑝2 

dominates 𝑝3, and so on), the following conditions are satisfied: 

|
𝑓𝑖

𝑓𝑖−1

| >> |
𝑓𝑖+1

𝑓𝑖

|   ,      𝑓𝑜𝑟    𝑖 = 1,2,3, … , 𝑛 − 1 (24) 
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Therefore, the rightmost expression in Eq. (24) can be approximated as Eq. (25). By 

equating 𝑠 coefficients of Eq. (25) and Eq. (10), 𝑃(𝑠, 𝐱) in Eq. (25) can be approximately 

expressed as Eq. (26), where each pole 𝑝𝑖  can be calculated according to Eq. (27). 

𝑃(𝑠, 𝐱) ≈ 1 + (−
1

𝑝1

) 𝑠 + (
1

𝑝1𝑝2

) 𝑠2 + ⋯ + ((−1)𝑛−1 ∏
1

𝑝𝑖

𝑛−1

𝑖=1

) 𝑠𝑛−1 + ((−1)𝑛 ∏
1

𝑝𝑖

𝑛

𝑖=1

) 𝑠𝑛 (25) 

𝑃(𝑠, 𝐱) ≈ (1 +
𝑓1

𝑓0

𝑠)  ⋅ (1 +
𝑓2

𝑓1

𝑠)  ⋅ (1 +
𝑓3

𝑓2

𝑠) ⋯ (1 +
𝑓𝑛

𝑓𝑛−1

𝑠) (26) 

𝑝𝑖 = −
𝑓𝑖−1

𝑓𝑖

  ,        for    𝑖 = 1,2, … , 𝑛 (27) 

The interesting feature is that all poles are derived from 𝑠 coefficients of the denom-

inator of the transfer function. The above formulations are under the assumption that all 

poles are real. In other words, the approach fails for closely spaced or complex conjugate 

poles. Therefore, the method should be extended for the cases in which two consecutive 

poles are located in a cluster. Assuming that 𝑝𝑖  and 𝑝𝑖+1 are a pair of poles (real or conju-

gate), they are remained split off in the expression 𝑃(𝑠, 𝐱) and can be expressed via a sec-

ond-order polynomial (1 + 𝑎𝑠 + 𝑏𝑠2), where 𝑎 and 𝑏 can be calculated as follows: 

𝑎 =
𝑓𝑖

𝑓𝑖−1
+

𝑓𝑖+1

𝑓𝑖
  ;       𝑏 =

𝑓𝑖+1

𝑓𝑖−1

 

 (28) 

The condition for which the poles 𝑝𝑖  and 𝑝𝑖+1 are real, is 𝑎2 ≥ 4𝑏. If the condition has 

been satisfied, the real poles 𝑝𝑖  and 𝑝𝑖+1 can be expressed as Eq. (29). Otherwise, these 

poles can be represented as complex conjugate poles according to Eq. (30). 

𝑝𝑖 = −𝑎 +
√𝑎2 − 4𝑏

2𝑏
 ;       𝑝𝑖+1 = −𝑎 −

√𝑎2 − 4𝑏

2𝑏
 (29) 

𝑝𝑖,𝑖+1 = −𝑎 ± 𝑗
√4𝑏 − 𝑎2

2𝑏
 (30) 

It should be emphasized that all above formulations could be used for the extraction 

of simplified zeroes 𝑍(𝑠, 𝐱) from the numerator 𝑁(𝑠, 𝐱) of the expanded TF. In ERS, the 

pole 𝑝𝑖  (or zero 𝑧𝑗) can be splitted by means of Eq. (26), if the conditions in Eqs. (31) and 

(32) are met, where 𝑝𝐸𝑅𝑆,𝑖  (𝑧𝐸𝑅𝑆,𝑗) is the absolute of the numerical value of 𝑖-th pole (𝑗-th 

zero) extracted via the ERS method, and 𝑝𝐸,𝑖 (𝑧𝐸,𝑗) is the absolute of the 𝑖-th pole (𝑗-th zero) 

of the exact function of Eq. (1), which are numerically achieved by the calculation of the 

roots of the transfer function. 𝑃𝑜𝑙𝑒𝑆𝑒𝑡 (𝑍𝑒𝑟𝑜𝑆𝑒𝑡) is the set of poles (zeroes) which are in 

the range of the interval [𝑓𝑚𝑖𝑛 , 𝑓𝑚𝑎𝑥]. Also, 𝑇𝐸𝑅𝑆 is a pre-determined constant to specify the 

maximum allowable root displacement (in %) for the each ERS-root, compared with the 

exact one. 

|
𝑝𝐸𝑅𝑆,𝑖 − 𝑝𝐸,𝑖

𝑝𝐸,𝑖

| ≤ 𝑇𝐸𝑅𝑆  ,         ∀  𝑝𝐸,𝑖 ∈ 𝑃𝑜𝑙𝑒𝑆𝑒𝑡 (31) 

|
𝑧𝐸𝑅𝑆,𝑗 − 𝑧𝐸,𝑗

𝑧𝐸,𝑗

| ≤ 𝑇𝐸𝑅𝑆  ,        ∀  𝑧𝐸,𝑗 ∈ 𝑍𝑒𝑟𝑜𝑆𝑒𝑡 (32) 

The ERS pole/zero extraction method comprises evaluation and extraction steps. In 

the evaluation step, all poles and zeros within the interval [𝑓𝑚𝑖𝑛 , 𝑓𝑚𝑎𝑥] are assumed to be 

reciprocally dominant, and thus, their ERS values are numerically obtained according to 

Eq. (26). In the extraction step, the conditions of Eqs. (31) and (32) are checked for all ex-

tracted poles and zeroes. Then, each pole (zero) which has satisfied the mentioned condi-

tion, can be symbolically extracted according to Eq. (26). On the other hand, the pair of 

real or complex conjugate poles (zeros) remained split off and the condition  𝑎2 ≥ 4𝑏  is 
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checked for them. If the condition has been satisfied, the poles (zeros) are a pair of real 

poles (zeroes) and can be calculated by Eq. (29). Otherwise, they are considered as com-

plex conjugate poles (zeroes) which are extracted by means of Eq. (30). 

3.2. Pole/Zero Simplification via PZSA 

The extracted symbolic pole/zero expressions cannot give an analytical information 

about the circuit behavior, due to their high complexity. So, a pole/zero simplification 

based on PZSA is used to simplify the exact pole/zero expressions. SA is a single-solution 

metaheuristic inspired from the metallurgy annealing, which involves heating and then 

slowly cooling of the material to reduce its defects [22]. Generally, SA starts its search from 

a fully random solution, and then, iteratively updates the solution until arriving at the 

stopping criterion [35]. However, to improve the quality and speed of the search process 

in SA, we utilize the knowledge from the exact circuit expressions as heuristic information 

to guide the SA algorithm by starting from a near-optimal solution. After generating the 

initial solution using the heuristic algorithm, SA is performed for improving further the 

quality of the solution using local search operators in an iterative procedure. In the fol-

lowing, the main steps of the PZSA algorithm are described. 

3.2.1. Solution Encoding/Decoding 

A possible solution to the pole/zero simplification problem, as shown in Fig. 2, is a 

binary vector of length 𝐿, where 𝐿 is the number of original terms, which can be calculated 

as follows:  

𝐿 = (𝐿𝑧1
+ 𝐿𝑧2

+ ⋯ + 𝐿𝑧𝑛′
) + (𝐿𝑝1

+ 𝐿𝑝2
+ ⋯ + 𝐿𝑝𝑛

) = ∑ 𝐿𝑧𝑗

𝑛′

𝑗=1

+ ∑ 𝐿𝑝𝑖

𝑛

𝑖=1

 (33) 

where 𝐿𝐾 , 𝐿𝑧𝑗
, and 𝐿𝑝𝑖

 are the number of symbolic terms within the DC-gain 𝐾, the 𝑗-th 

zero, and the 𝑖-th pole, respectively. 

 

Figure 2. Encoding of a solution: If 𝑆𝑖=1, the 𝑖-th symbolic term is present in the solution; otherwise, 

if 𝑆𝑖=0, the 𝑖-th term has been discarded from the solution.  

3.2.2. Generation of the Initial Solution 

To construct the initial solution of SA, we utilize heuristic information available in 

the circuit via a ranking algorithm (RA). It not only improves the convergence speed of 

SA as it utilizes a near-optimal solution, but also can effectively enhance the quality of the 

final solution. The RA comprises an evaluation step and a selection step. In the first step, 

each term is eliminated, and accordingly, the generated error rate is measured and stored. 

After the evaluation of all terms, they are sorted in a list from the best to the worst. In the 

selection phase, an empty solution is considered, and then, the terms within the list are 

added one by one until all constraints have been satisfied. 
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3.2.3. Objective Function Evaluation 

To justify the performance of each solution, an objective function is formulated to 

compare the simplified pole/zero expressions with the exact ones in terms of the number 

of terms and mean pole/zero displacements. Moreover, each pole/zero displacement 

should not exceed the user-specified margin 𝑇𝑆𝐴. The objective function is expressed as a 

weighted average of the minimization of the number of terms and mean pole/zero dis-

placements. These two conflict objectives are merged into a single formula as Eq. (34), 

where pole/zero displacements are calculated according to Eqs. (35) and (36), respectively. 

OF = {𝑤𝑛 (
1

𝐿
∑ 𝑆𝑘

𝐿

𝑘=1

) + 𝑤𝑝𝑧(𝐸𝑝 + 𝐸𝑧)} (34) 

𝐸𝑝 =
1

𝑛
∑ (|

𝑝𝑆𝐴,𝑖 − 𝑝𝐸,𝑖

𝑝𝐸,𝑖

|)

𝑛

𝑖=1

  ,          ∀  𝑝𝐸,𝑖 ∈ 𝑃𝑜𝑙𝑒𝑆𝑒𝑡 (35) 

𝐸𝑧 =
1

𝑛′
∑ (|

𝑧𝑆𝐴,𝑗 − 𝑧𝐸,𝑗

𝑧𝐸,𝑗

|)

𝑛′

𝑗=1

  ,        ∀  𝑧𝐸,𝑗 ∈ 𝑍𝑒𝑟𝑜𝑆𝑒𝑡 (36) 

subject to: 

|
𝑝𝑆𝐴,𝑖 − 𝑝𝐸,𝑖

𝑝𝐸,𝑖

| ≤ 𝑇𝑆𝐴  ,          ∀  𝑝𝐸,𝑖 ∈ 𝑃𝑜𝑙𝑒𝑆𝑒𝑡 (37) 

|
𝑧𝑆𝐴,𝑗 − 𝑧𝐸,𝑗

𝑧𝐸,𝑗

| ≤ 𝑇𝑆𝐴  ,          ∀  𝑧𝐸,𝑗 ∈ 𝑍𝑒𝑟𝑜𝑆𝑒𝑡 (38) 

In Eq. (34), 𝑤𝑛 and 𝑤𝑝𝑧 are constants (𝑤𝑛+𝑤𝑝𝑧=1) which specify the relative impacts of 

the two objectives. As the worst-case pole/zero displacement is limited by Eqs. (37) and 

(38), 𝑤𝑛 should be set much larger than 𝑤𝑝𝑧 to ensure achieving the simplest expressions.  

3.2.4. Generation of a New Solution 

In each iteration, a neighbor solution, 𝑆𝑛𝑒𝑤, is constructed in the vicinity of the cur-

rent solution, 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡. We adopt a swap (Fig. 3) and an exchange (Fig. 4) operators as 

neighborhood search strategies in SA. To generate a new solution, an operator is ran-

domly selected with the probability of 50%, and then, it operates on the solution 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡. 

 

Figure 3. Swap: a symbolic term is randomly selected and complemented.  

 

Figure 4. Exchange: a term “0” and a term “1” are randomly selected and exchanged.  
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3.2.5. Acceptance Rule Checking 

In each iteration, if 𝑂𝐹𝑛𝑒𝑤 < 𝑂𝐹𝑐𝑢𝑟𝑟𝑒𝑛𝑡, the new solution is accepted. Otherwise, if 

𝑂𝐹𝑛𝑒𝑤 > 𝑂𝐹𝑐𝑢𝑟𝑟𝑒𝑛𝑡 , the new solution (worse solution) has a chance to be accepted with the 

probability of 𝑃𝑤, which can be calculated according to the current temperature 𝑇 and the 

differences between the objective values of the two solutions as follows: 

𝑃𝑤 = exp (−
𝐸𝑛𝑒𝑤 − 𝐸𝑐𝑢𝑟𝑟𝑒𝑛𝑡

𝑇
) (39) 

where 𝑇 is considered to be linearly decreased during the execution of SA from 𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙  

(initial temperature) to 𝑇𝑓𝑖𝑛𝑎𝑙  (final temperature), as follows: 

𝑇 = 𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙 +
𝑡

𝑖𝑡𝑒𝑟
(𝑇𝑓𝑖𝑛𝑎𝑙 − 𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙) (40) 

4. Performance Evaluation 

All simulations were carried out on a PC with 2.6 GHz CPU, 6 GB RAM. The pre-

sented tool has been successfully coded in an m-file - MATLAB R2020b running on Win-

dows 10. All MOS transistors are modelled via a small-signal which can be seen in Fig. 5. 

The parameters of the proposed tool have been set as provided in Table 2. As can be seen, 

𝑇𝐸𝑅𝑆 has been set to 10 %, and thus, the poles and zeroes with no more than 10 % displace-

ment can be simplified via first-order polynomials, while the other poles and zeroes are 

expressed via second-order polynomials. To justify the proposed methodology, we com-

pare it against  a time-constant approach [13], an eigenvalue technique [15], and an evo-

lutionary-based algorithm using a genetic algorithm [34]. 

 

Figure 5. Small signal representation of MOS transistors.  

Table 2. Parameter settings. 

Phase Parameter Value/Description 

Pole/Zero 𝑇𝐸𝑅𝑆  in Eqs. (32,33) 10 % 

Extraction 𝑓𝑚𝑖𝑛 1 Hz 

Parameters 𝑓𝑚𝑎𝑥 10 × 𝑓𝑇 

 Maximum iterations 5 × L 

SA  Local search mechanisms Swap & Exchange 

Parameters 𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙   in Eq. (41) 10-5 

 𝑇𝑓𝑖𝑛𝑎𝑙   in Eq. (41) 0 

Objective  𝑤𝑛  in Eq. (35) 0.999 

Function 𝑤𝑝𝑧  in Eq. (35) 0.001 

Parameters 𝑇𝑆𝐴  in Eqs. (38) and (39) 20 % 
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4.1. Results for a Three-Stage Amplifier in the  RCgm Model (Circuit 1) 

The block diagram of a three-stage compensation OTA can be shown in Fig. 6. The 

circuit is described by the equivalent RCgm model. By using MNA, the exact expanded TF 

has been derived as follows: 

𝐻𝐸(𝑠) =
−𝑅𝐿𝑅1𝐺𝑚1((𝐶2𝑅2𝐶𝑚2 + 𝐶𝑚1𝑅2𝐶𝑚2)𝑠2 − (𝐺𝑚2𝑅2𝐶𝑚1 + 𝐶𝑚2)𝑠 − 𝐺𝑚2𝑅2𝐺𝑚𝐿)

(
𝐶𝑚1𝑅2𝐶𝐿𝑅𝐿𝐶1𝑅1 + 𝐶𝑚1𝑅2𝐶𝐿𝑅𝐿𝐶𝑚2𝑅1 + 𝐶2𝑅2𝐶𝑚1𝑅𝐿𝐶𝑚2𝑅1 + 𝐶2𝑅2𝐶𝐿𝑅𝐿𝐶𝑚2𝑅1

+𝐶2𝑅2𝐶𝑚1𝑅𝐿𝐶1𝑅1 + 𝐶2𝑅2𝐶𝑚2𝑅𝐿𝐶1𝑅1 + 𝐶𝑚1𝑅2𝐶𝑚2𝑅𝐿𝐶1𝑅1 + 𝐶2𝑅2𝐶𝐿𝑅𝐿𝐶1𝑅1
) 𝑠3

    + (

𝐶2𝑅2𝐶𝑚1𝑅𝐿 + 𝐶𝑚1𝑅𝐿𝐶𝑚2𝑅1 + 𝐶𝑚1𝑅2𝑅𝐿𝐺𝑚𝐿𝐶1𝑅1 − 𝐶𝑚1𝑅1𝑅𝐿𝐺𝑚2𝐶𝑚2𝑅2

+𝐶𝐿𝑅𝐿𝐶1𝑅1 + 𝐶2𝑅2𝐶𝑚2𝑅1 + 𝐶𝑚1𝑅𝐿𝐶𝑚2𝑅1 + 𝐶2𝑅2𝐶1𝑅1 + 𝐶𝑚2𝑅2𝐶𝑚1𝑅1

+𝐶2𝑅2𝑅𝐿𝐶𝑚2 + 𝐶2𝑅2𝑅𝐿𝐶𝐿 + 𝐶𝑚1𝑅2𝑅𝐿𝐶𝑚2 + 𝐶𝑚1𝑅2𝑅𝐿𝐶𝐿 + 𝐶𝑚2𝑅𝐿𝐶1𝑅1

+𝐶𝑚1𝑅2𝐶1𝑅1 + 𝐶𝑚1𝑅2𝑅𝐿𝐺𝑚𝐿𝐶𝑚2𝑅1 + 𝐶𝐿𝑅𝐿𝐶𝑚2𝑅1 + 𝐶𝑚1𝑅𝐿𝐶1𝑅1

) 𝑠2

                + (
𝑅𝐿𝐶𝐿 + 𝑅𝐿𝐶𝑚2 + 𝑅𝐿𝐶𝑚1 + 𝑅2𝐶𝑚1 + 𝑅2𝐶2 + 𝑅1𝐶1

+𝑅1𝐶𝑚2 + 𝑅1𝐶𝑚2𝑅𝐿𝐺𝑚2𝑅2𝐺𝑚𝐿 + 𝐶𝑚2𝑅𝐿𝑅2𝐺𝑚𝐿
) 𝑠 + 1

 

(41) 

The exact TF comprises 40 terms. By performing the simplification algorithm in [34], 

the simplified expanded TF with 10 terms has been obtained according to Eq. (42). The 

expanded TF even in the simplified form, cannot give effective insights for the designer 

to evaluate the positions of poles and zeroes. However, by performing PZSA, three poles 

and two zeroes can be achieved as Eqs. (43)-(47). 

𝐻𝑆,𝐸(𝑠) =
−(𝐶2𝑅1𝑅2𝑅𝐿𝐶𝑚1𝐶𝑚2 + 𝐺𝑚1𝑅1𝑅2𝑅𝐿𝐶𝑚1𝐶𝑚2)𝑠2 + (𝐺𝑚1𝐺𝑚2𝑅1𝑅2𝑅𝐿𝐶𝑚1)𝑠 + 𝐺𝑚1𝐺𝑚2𝐺𝑚𝐿𝑅1𝑅2𝑅𝐿

(𝐶𝑚1𝑅2𝐶𝐿𝑅𝐿𝐶𝑚2𝑅1)𝑠3 + (𝐶𝑚1𝑅2𝑅𝐿𝐺𝑚𝐿𝐶1𝑅1 + 𝐶𝑚1𝑅1𝑅2𝑅𝐿𝐺𝑚𝐿𝐶𝑚2 − 𝐶𝑚1𝐶𝑚2𝑅1𝑅2𝑅𝐿𝐺𝑚2)𝑠2

                                                +(𝑅1𝐶𝑚2𝑅𝐿𝐺𝑚2𝑅2𝐺𝑚𝐿)𝑠 + 1

 
(42) 

𝑃1 = −
1

𝑅1𝐺𝑚2𝑅2𝐺𝑚𝐿𝑅𝐿𝐶𝑚2

 (43) 

𝑃2 = −
𝐺𝑚2𝐺𝑚𝐿

𝐶𝑚1(𝐺𝑚𝐿 − 𝐺𝑚2)
 (44) 

𝑃3 = −
(𝐺𝑚𝐿 − 𝐺𝑚2)

𝐶𝐿

 (45) 

𝑍1 =
𝐺𝑚𝐿

𝐶𝑚1

 (46) 

𝑍2 = −
𝐺𝑚2

𝐶𝑚2

 (47) 

The comparison of the different methods according to the number of simplified terms 

within the simplified poles/zeroes can be summarized in Table 3. Moreover, the numerical 

results of the different methods are provided in Table 4, wherein the last four rows illus-

trate the error of the simplified equations when compared to the exact expressions. 

 

Figure 6. Three-stage amplifier in the RCgm model.  
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Table 3. Number of terms within simplified symbolic poles/zeros in Circuit 1. 

Expression 
Exact    

Symbolic 
Ref. [34] Ref. [13] Ref. [15] 

Proposed 

(Complete) 

Proposed 

(Simplified) 

P1 N/A N/A 1 10 10 1 

P2 N/A N/A 4 26 26 3 

P3 N/A N/A 5 25 25 3 

Z1 N/A N/A 2 9 3 2 

Z2 N/A N/A 2 9 4 2 

Overall Transfer Function 40 10 N/A N/A N/A N/A 

Table 4. Numerical results for Circuit 1. 

Parameter HSPICE 
Exact    

Symbolic 
Ref. [34] Ref. [13] Ref. [15] 

Proposed 

(Complete) 

Proposed 

(Simplified) 

P1 (Hz) -12.8 -12.8 -13.3 -13.2 -12.8 -12.8 -13.2 

P2 (MHz) -3.19 -3.19 -3.49 -3.19 -2.96 -2.96 -3.18 

P3 (MHz) -40.6 -40.6 -36.3 -43.9 -43.8 -43.8 -39.8 

Z1 (MHz) 2.72 2.72 2.72 3.18 3.36 3.18 3.18 

Z2 (MHz) -18.6 -18.6 -18.6 -15.9 -17.5 -15.9 -15.9 

Mean pole displacement (%) N/A N/A 7.8 3.8 5 5 1.9 

Max pole displacement (%) N/A N/A 10.6 8.36 7.9 7.9 3.5 

Mean zero displacement (%) N/A N/A 0.03 15.9 14.7 15.8 15.9 

Max zero displacement (%) N/A N/A 0.04 17.1 23.6 17.1 17.1 

4.2. Results for a Two-Stage Miller Compensated Amplifier (Circuit 2) 

The second circuit is a folded cascode two-stage OTA with the compensation de-

scribed by MOS transistors, as shown in Fig. 7. The exact expanded TF obtained by MNA 

contains 134 symbolic terms.  

𝐻(𝑠) =
 −𝑔𝑚1(𝑔𝑚1𝑟𝑜1𝑟𝑜3𝑟𝑜6𝑟𝑜7𝐶𝑐 + 𝑔𝑚𝑏1𝑟𝑜1𝑟𝑜3𝑟𝑜6𝑟𝑜7𝐶𝑐)𝑠 + (𝑔𝑚1𝑔𝑚6𝑟𝑜1𝑟𝑜3𝑟𝑜6𝑟𝑜7 + 𝑔𝑚6𝑔𝑚𝑏1𝑟𝑜1𝑟𝑜3𝑟𝑜6𝑟𝑜7)  

𝑟𝑜1(𝑔𝑚1𝑟𝑜3𝑟𝑜6𝑟𝑜7𝐶𝑐𝐶𝐿 + 𝑔𝑚𝑏1𝑟𝑜3𝑟𝑜6𝑟𝑜7𝐶𝑐𝐶𝐿)𝑠2 + (𝑔𝑚1𝑔𝑚6𝑟𝑜3𝑟𝑜6𝑟𝑜7𝐶𝑐 + 𝑔𝑚𝑏1𝑔𝑚6𝑟𝑜3𝑟𝑜6𝑟𝑜7𝐶𝑐)𝑠    

                                                                                   +(𝑔𝑚1𝑟𝑜6 + 𝑔𝑚1𝑟𝑜7 + 𝑔𝑚1𝑟𝑜3𝑟𝑜7/𝑟𝑜1)    

 
(48) 

By performing the simplification method in [34], the simplified TF has been obtained 

according to Eq. (48). By utilizing PZSA on Eq. (48), two simplified poles and one zero 

have been obtained as Eqs. (49)-(51), respectively. Similar to Circuit 1, the comparison of 

the number of simplified terms and the numerical results are summarized in Tables 5 and 

6, respectively. 

𝑃1 = −
(𝑟𝑜1𝑟𝑜6 + 𝑟𝑜1𝑟𝑜7 + 𝑟𝑜3𝑟𝑜6 + 𝑟𝑜3𝑟𝑜7)

𝑔𝑚6𝑟𝑜1𝑟𝑜3𝑟𝑜6𝑟𝑜7𝐶𝑐

= −
1

𝑔𝑚6(𝑟𝑜1‖ 𝑟𝑜3)(𝑟𝑜6‖ 𝑟𝑜7)𝐶𝑐

 (49) 

𝑃2 = −
𝑔𝑚6

𝐶𝐿

 (50) 

𝑍 =
𝑔𝑚6

𝐶𝑐

 (51) 
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Figure 7. Two-stage compensation amplifier.  

Table 5. Number of terms within the simplified symbolic poles/zeroes in Circuit 2. 

Expression 
Exact    

Symbolic 
Ref. [34] Ref. [13] Ref. [15] 

Proposed 

(Complete) 

Proposed 

(Simplified) 

P1 N/A N/A 5 104 104 5 

P2 N/A N/A 7 82 82 2 

Z N/A N/A 4 18 18 2 

Overall Transfer Function 134 11 N/A N/A N/A N/A 

Table 6. Numerical results for Circuit 2. 

Parameter HSPICE 
Exact    

Symbolic 
Ref. [34] Ref. [13] Ref. [15] 

Proposed 

(Complete) 

Proposed 

(Simplified) 

P1 (KHz) -177.1 -178.5 -192 -152.8 -178.4 -178.4 -152.8 

P2 (MHz) -377.4 -435.4 -409.1 -341 -435.6 -435.6 -409.3 

Z (MHz) 407.2 409.3 409.3 409.3 409.3 409.3 409.3 

Mean pole displacement (%) N/A N/A 6.8 18 0.04 0.04 10.2 

Max pole displacement (%) N/A N/A 7.5 21.7 0.04 0.04 14.4 

Zero displacement (%) N/A N/A 0.01 0.01 0 0 0.01 

4.3. Results for a Three-Stage Amplifier in Transistor Model (Circuit 3) 

The last circuit is a transistor-level three-stage amplifier with miller compensation, 

as shown in Fig. 8. The exact expanded TF of this circuit contains 1320 symbolic terms. 

Considering the approximation algorithm in [34], the simplified expanded TF with 18 

symbolic terms has been obtained as Eq. (52). By applying PZSA, three simplified poles 

and two zeroes have been obtained according to Eqs. (53)-(57). The number of simplified 

terms and numerical results of the different algorithms are summarized in Tables 7 and 8, 

respectively.  
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𝐻(𝑠) =

     −(𝑔𝑚1𝑔𝑚8𝑟𝑜1𝑟𝑜3𝑟𝑜6𝑟𝑜7𝑟𝑜8𝑟𝑜9𝑟𝑜10𝑟𝑜11𝐶𝑚1𝐶𝑚2)𝑠2 − (𝑔𝑚1𝑔𝑚6𝑔𝑚9𝑟𝑜1𝑟𝑜3𝑟𝑜6𝑟𝑜7𝑟𝑜8𝑟𝑜9𝑟𝑜10𝑟𝑜11𝐶𝑚2)𝑠  
                                                             +𝑔𝑚1𝑔𝑚6𝑔𝑚9𝑔𝑚11𝑟𝑜1𝑟𝑜3𝑟𝑜6𝑟𝑜7𝑟𝑜8𝑟𝑜9𝑟𝑜10𝑟𝑜11

  (
𝑔𝑚8𝑟𝑜1𝑟𝑜6𝑟𝑜7𝑟𝑜8𝑟𝑜10 + 𝑔𝑚8𝑟𝑜3𝑟𝑜6𝑟𝑜8𝑟𝑜9𝑟𝑜10 + 𝑔𝑚8𝑟𝑜1𝑟𝑜6𝑟𝑜8𝑟𝑜9𝑟𝑜10 + 𝑔𝑚8𝑟𝑜3𝑟𝑜6𝑟𝑜8𝑟𝑜9𝑟𝑜11

+𝑔𝑚8𝑟𝑜3𝑟𝑜6𝑟𝑜7𝑟𝑜8𝑟𝑜10 + 𝑔𝑚8𝑟𝑜1𝑟𝑜6𝑟𝑜7𝑟𝑜8𝑟𝑜11 + 𝑔𝑚8𝑟𝑜3𝑟𝑜6𝑟𝑜7𝑟𝑜8𝑟𝑜11 + 𝑔𝑚8𝑟𝑜1𝑟𝑜6𝑟𝑜8𝑟𝑜9𝑟𝑜11
)

+(𝑔𝑚8𝑟𝑜1𝑟𝑜3𝑟𝑜6𝑟𝑜7𝑟𝑜8𝑟𝑜9𝑟𝑜10𝑟𝑜11𝐶𝑚1𝐶𝑚2𝐶𝐿)𝑠3 + (𝑔𝑚6𝑔𝑚9𝑔𝑚11𝑟𝑜1𝑟𝑜3𝑟𝑜6𝑟𝑜7𝑟𝑜8𝑟𝑜9𝑟𝑜10𝑟𝑜11𝐶𝑚1)𝑠

            + (

𝑔𝑚8𝑟𝑜1𝑟𝑜3𝑟𝑜6𝑟𝑜7𝑟𝑜8𝑟𝑜9𝑟𝑜10𝐶𝑚1𝐶𝑚2 − 𝑔𝑚6𝑔𝑚9𝑟𝑜1𝑟𝑜3𝑟𝑜6𝑟𝑜7𝑟𝑜8𝑟𝑜9𝑟𝑜10𝑟𝑜11𝐶𝑚1𝐶𝑚2

+𝑔𝑚11𝑟𝑜1𝑟𝑜3𝑟𝑜7𝑟𝑜8𝑟𝑜9𝑟𝑜10𝑟𝑜11𝐶𝑚1𝐶𝑚2 + 𝑔𝑚11𝑟𝑜1𝑟𝑜3𝑟𝑜6𝑟𝑜7𝑟𝑜9𝑟𝑜10𝑟𝑜11𝐶𝑚1𝐶𝑚2

+𝑔𝑚8𝑔𝑚11𝑟𝑜1𝑟𝑜3𝑟𝑜6𝑟𝑜7𝑟𝑜8𝑟𝑜9𝑟𝑜10𝑟𝑜11𝐶𝑚1𝐶𝑚2

) 𝑠2

 

(52) 

𝑃1 = −
𝑔𝑚8(𝑟𝑜1 + 𝑟𝑜3)(𝑟𝑜7 + 𝑟𝑜9)(𝑟𝑜10 + 𝑟𝑜11)

𝑔𝑚6𝑔𝑚9𝑔𝑚11𝑟𝑜1𝑟𝑜3𝑟𝑜7𝑟𝑜9𝑟𝑜10𝑟𝑜11𝐶𝑚1

= −
𝑔𝑚8

𝑔𝑚6𝑔𝑚9𝑔𝑚11𝐶𝑚1(𝑟𝑜1‖ 𝑟𝑜3)(𝑟𝑜7‖ 𝑟𝑜9)(𝑟𝑜10‖ 𝑟𝑜11)
 (53) 

𝑃2 = −
𝑔𝑚6𝑔𝑚9𝑔𝑚11

(𝑔𝑚8𝑔𝑚11 − 𝑔𝑚6𝑔𝑚9)𝐶𝑚2

 (54) 

𝑃3 = −
(𝑔𝑚8𝑔𝑚11 − 𝑔𝑚6𝑔𝑚9)

𝑔𝑚8𝐶𝐿

 (55) 

𝑍1 =
𝑔𝑚11

𝐶𝑚2

 (56) 

𝑍2 = −
𝑔𝑚6𝑔𝑚9

𝑔𝑚8𝐶𝑚1

 (57) 

 

Figure 8. Three-stage amplifier in the transistor model.  

Table 7. Number of terms within the simplified symbolic poles/zeroes in Circuit 3. 

Expression 
Exact    

Symbolic 
Ref. [34] Ref. [13] Ref. [15] 

Proposed 

(Complete) 

Proposed 

(Simplified) 

P1 N/A N/A 29 714 714 9 

P2 N/A N/A 21 837 837 3 

P3 N/A N/A 23 330 330 3 

Z1 N/A N/A 15 75 75 2 

Z2 N/A N/A 13 105 105 2 

Overall Transfer Function 1320 18 N/A N/A N/A N/A 
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Table 8. Numerical results for Circuit 3. 

Parameter HSPICE 
Exact    

Symbolic 
Ref. [34] Ref. [13] Ref. [15] 

Proposed 

(Complete) 

Proposed 

(Simplified) 

P1 (Hz) -27.7 -27.9 -20.6 -20.5 -27.9 -27.9 -22.8 

P2 (MHz) -1.84 -1.84 -2.03 -2.16 -1.76 -1.76 -2.07 

P3 (MHz) -36.6 -40.2 -36.3 -36.1 -42.1 -42.1 -35.7 

Z1 (MHz) 1.4 1.4 1.4 2.23 1.62 1.62 1.62 

Z2 (MHz) -10.3 -10.2 -10.5 -7.37 -8.81 -8.81 -9.1 

Mean pole displacement (%) N/A N/A 15.6 18 3 3 14.2 

Max pole displacement (%) N/A N/A 26.4 26.5 4.6 4.6 18.4 

Mean zero displacement (%) N/A N/A 1.7 43.5 14.8 14.8 13.5 

Max zero displacement (%) N/A N/A 2.9 59.3 15.9 15.9 16.1 

4.4. Discussion 

Generally, in the reported simplified symbolic pole/zero expressions, three types of 

errors can be observed: 

• Error-1: the first type of error may occur by comparing HSPICE with the exact 

expanded TF achieved by MNA. This error may be observed for OTAs described 

in the transistor level, as HSPICE considers more accurate small-signal modeling 

for transistors than the simple model in our program (see Fig. 5). 

• Error-2: the second type of error may be observed when comparing the exact TF 

with the exact extracted poles/zeroes, because of the simplifications done by the 

root extraction process via the ERS method.  

• Error-3: the third error may occur between exact pole/zero expressions and the 

simplified ones, due to the simplifications done by PZSA. 

As mentioned above, Error-1 is inevitable in symbolic analysis which is observed in 

all symbolic tools. However, Error-2 and Error-3 may occur because of our method in the 

pole/zero extraction and simplification, respectively. For this purpose, in the results of 

Tables 4, 6, and 8, we have reported these errors for each algorithm by comparing them 

with the exact expanded TF. So, the numerical results of the poles and zeroes in the exact 

TF were considered as reference to justify the performance of the different techniques.  

5. Conclusion 

In this paper, we have presented a mathematical modeling following by a combined 

heuristic-metaheuristic solution for the symbolic pole/zero simplification in OTAs. In the 

proposed method, at first, a mathematical model is presented for the extraction of exact 

poles and zeroes from the original expanded expression of OTA. Then, an ensemble heu-

ristic-metaheuristic approach is proposed to obtain the simplest symbolic pole/zero equa-

tions from the exact ones. In the proposed ensemble method, a near-optimal solution is 

firstly constructed by means of the knowledge-based heuristic information available in 

the circuit model, and then, a metaheuristic algorithm based on simulated annealing is 

performed to obtain the simplest pole/zero expressions with the best achievable quality. 

The proposed tool has been coded in an m-file of MATLAB to extract simplified pole/zero 

equations directly from the circuit netlist. Simulations on three OTAs have demonstrated 

the effectiveness and superiority of the proposed technique against the existing algo-

rithms in the literature. Beside the advantages of the proposed technique, it relies on a 

nominal point for the circuit parameters. As a future work, it can be extended to deal with 

the uncertainties of the parameters by the help of Data Mining, Monte Carlo simulation, 

fuzzy logic, etc. Moreover, the proposed SAG technique can be hybridized with SBG and 

SDG methods to deal with larger OTAs.  
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