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Abstract: Symbolic pole/zero analysis is an important step when designing an analog operational
amplifier. Generally, a simplified symbolic analysis of analog circuits suffers from NP-hardness, i.e.,
an exponential growth of the number of symbolic terms of the transfer function with the circuit size.
In this study, we present a mathematical model combined with a heuristic-metaheuristic solution
method for the symbolic pole/zero simplification in operational transconductance amplifiers (OTA).
At first, the circuit is symbolically solved and an improved root splitting method is applied to extract
symbolic poles/zeroes from the exact expanded transfer function. Then, a hybrid algorithm based
on heuristic information and a metaheuristic technique using simulated annealing is performed for
the simplification of the derived symbolic pole/zero expressions. The developed method has been
tested on three analog OTAs. The obtained results show the effectiveness of the proposed method
to achieve accurate simplified symbolic pole/zero expressions with the least complexity.

Keywords: operational transconductance amplifiers; symbolic circuit analysis; pole/zero extraction;
root splitting; simplification; simulated annealing

1. Introduction

Recently, multi-stage cascode operational transconductance amplifiers (OTAs) have
become widely applied in modern microelectronics, as OTAs can provide large output
swing and high gain with very low overdrive voltage [1-4]. However, as each stage has
its own poles and zeroes, the bandwidth may be reduced. In addition to the poles and
zeros of each additional stage, the compensated capacitors may add some extra poles and
zeroes. One of the main challenges in the design of multi-stage OTAs is to devise the fre-
quency compensation procedure capable of providing wide bandwidth and high gain
with appropriate stability margins. In this regard, a simplified extraction of symbolic
poles and zeros can give better analytical expressions and assist designers to make a
straight decision when designing an OTA and a frequency compensation circuit [5].

Generally, an exact symbolic analysis of OTAs is error-prone and time-consuming if
itis done by hand, even for circuits with a small number of components [6]. In this regard,
a computer-aided automatic symbolic resolution can be helpful by solving the circuit
equations by mathematical solvers such as Cramer’s rule [7]. It can be done by exploiting
symbolic analysis solvers embedded via software tools such as MATLAB, GNU Octave,
and MAPLE [8]. The main drawback of a symbolic analysis is that the derived symbolic
equations are very complex and they cannot be effective to guide the circuit designer [9].
Although various symbolic simplification techniques have been introduced, simplified
expressions are not provided in factorization form, and thus, it is very hard to evaluate
the effects of roots on the behavior of the circuit.

Although the existing symbolic pole/zero analysis methods [8-21] incorporate some
types of approximations during the calculation of transfer function, they suffer from some
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drawbacks which limit their effectiveness for real-world OTAs: First, these methods are
inefficient in the case of overall generated error rates in terms of magnitude, phase, poles,
and zeros. Second, the correlation between eliminated terms in different polynomials is
not under effective consideration in polynomial-oriented methods. Third, pole/zero dis-
placements due to approximations are not under control. Fourth, those closely spaced
pole/zero pairs may be disappeared due to a magnitude/phase-oriented approximation,
which can generate high error rates at the points other than the nominal ones.

In this study, we present a simplified symbolic pole/zero extraction technique to
overcome the mentioned drawbacks. The method is based on the root splitting technique
[11] and a simulated annealing (SA) algorithm [22]. We introduce an enhanced root split-
ting (named ERS) for the symbolic pole/zero extraction from the exact transfer function.
In this method, pole/zero displacements cannot exceed a pre-specified threshold. Then,
we apply a combined heuristic-metaheuristic pole/zero simplification based on SA
(named PZSA) to simplify the derived pole/zero expressions. The key contributions out-
lined in this study can be mentioned as follows:

¢ Introducing a combined mathematical-heuristic-metaheuristic technique for the
extraction and simplification of symbolic poles and zeros in OTAs.

¢ Proposing an enhanced root splitting technique, named ERS, to accurately extract
the exact pole/zero expressions.

e DPresenting a combined heuristic-metaheuristic algorithm for symbolic pole/zero
simplification (named PZSA) utilizing heuristic knowledge available in the circuit
model and simulated annealing.

e Programming of the proposed method in a MATLAB m-file, wherein simplified
pole/zero equations are automatically generated from the circuit netlist.

e Successfully driving symbolic pole/zero expressions for three OTAs.

The rest of this study is organized as follows: In Section 2, the existing literature for
a symbolic simplification and symbolic pole/zero extraction are reviewed. In Section 3, the
proposed methodology is presented with details, and then, the developed method in
MATLARB is evaluated in Section 4. Finally, in Section 5, some concluding remarks as well
as future directions are addressed.

2. Literature Review

Over the recent years, along with the increasing advancement and development in
analog circuit design, various symbolic simplification techniques and symbolic pole/zero
extraction methods have been proposed. According to the existing literature, these meth-
ods are described in the following.

2.1. Symbolic Simplification Techniques

The symbolic analysis of OTAs suffers from NP-hardness [7]. For instance, the nA741
amplifier has about 103 terms within its voltage transfer function [23]. Therefore, symbolic
analysis tools must rely on the simplification techniques to tackle with the complexities
and hardnesses of real-world circuits. Based on the step in which a simplification is done,
simplification algorithms can be categorized into SAG (simplification-after-generation),
SDG (simplification-during-generation), and SBG (simplification-before-generation) [24].
It is worth noting that the PZSA algorithm in this study is a SAG technique. A SAG is
performed once the symbolic circuit analysis is done and consequently the exact symbolic
expressions have been obtained so that simplified functions can be constructed from some
terms of the exact expressions. In the following, we discuss the details of the SAG tech-
nique, which is used in the proposed method.

The small-signal transfer function of a linear or linearized circuit can be represented
as a function of the frequency s and the circuit parameters x as follows:
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Each polynomial fi(x) or fi(x) is a sum-of-product (SOP) of x which is expressed as
hy(X) = hp1 (X) + hyp () + -+ + hyr(x), where hy, (x) is k-th polynomial within the circuit
transfer function H (s, x) comprising T terms.

The simplification method in [25] finds the largest term in terms of the magnitude,
hym (x), for the polynomial hy(x). Then, all other terms within the polynomial hy(x) are
taken one by one. The condition for which the term hy;(x) can be discarded from the pol-
ynomial hy (X), is |hy (X)| < € X |hp, (X)]. Here, € (0 < € < 1) is a user-specified threshold
to limit the maximum error. The main drawback is that the error may be accumulated. To
overcome this drawback, the reported criterion in [26] sorts the terms within hy (x) based
on their magnitude obtained in the nominal point. Afterwards, P terms with the least ac-
cumulated magnitude are discarded from the polynomial, if the error is below &. The con-
dition on the P terms for which they could be discarded, can be expressed as follows:

P T
> G| < x> ()
=1 =1

Although this method achieves more accurate expressions at the nominal point, it
may cause significant errors for other values of the parameters. To avoid an elimination
of the mutually canceling terms, the method in [27] presented an enhanced condition for
which the P terms with the least magnitude can be discarded if:

P hy (%) T hiyn (%)
Z Z
=1 n=1

In the above-mentioned techniques, the maximum error is limited for each polyno-
mial. However, the obtained error in the poles and zeroes is not under consideration. If
the same error gy drives in all polynomials, no pole and/or zero displacement can be ob-
served [28]. To overcome this drawback, an adaptive € can be used, in which, erm deletion
is done step by step while displacements in poles and zeros are monitored at every step,
so that the term pruning procedure would be finished if the obtained displacements are
beyond a pre-determined threshold [26].

Recently, various swarm and evolutionary metaheuristic algorithms [29-34] have
been applied for the simplified symbolic analysis of OTAs. In these techniques, different
criteria such as the magnitude error, phase error, and pole/zero displacements, have been
used to evaluate feasible solutions generated by the metaheuristic algorithm. Although
these methods achieve a low mean error rate, the worst cases of the displacements in the
poles and zeroes are not accurately under consideration. The common drawback of the
existing techniques is that the simplified function is achieved in either expanded or nested
form. In other words, the transfer function is not derived in a factorization form which
makes it hard to evaluate the contribution of roots.

H(s,x) = (1)

<eX

)

<eX

®)

2.2. Symbolic Pole/Zero Extraction Techniques

The symbolic pole/zero analysis also suffers from the NP-hardness, even worse, as
some operations between the polynomials have to be performed. Generally, a direct cal-
culation of the roots from the expanded transfer functions yields very complex results for
polynomials with degrees larger than two [7]. Since the numerator and denominator of a
transfer function in practical OTAs have generally degrees much larger than two, it is
rarely possible to mathematically find the exact symbolic pole/zero expressions [10].

In the following, the existing pole/zero extraction methods including root spitting,
time-constant analysis, and eigenvalue analysis are discussed. Root splitting [11] is one of
the well-known root extraction techniques. It extracts poles assuming them to be
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reciprocally dominant. By factorization, the denominator of the exact function in Eq. (1)
can be re-written as a function of the poles p; as follows:

D(s,x)=f0-(1—%)-(1—ps—2>---(1—i) @)

It follows from Eq. (1) that

fi=fo Z(—pi) ©

Therefore, assuming p; to be the dominant pole within the denominator, the first pole can
be approximately expressed as:

b
fi

Consequently, with a similar approach, considering p; to dominate the other poles,
p; can be given by the negative quotient of the two consecutive coefficients f;_; and f; [8].
Similar argumentations can be done to calculate simplified zeroes from the numerator of
the transfer function. The root splitting method is not appropriate for manual pole/zero
calculations (hand-and-paper analysis), as some estimations and simplifications should
be developed to allow the circuit designer in extracting approximate dominant poles and
zeroes manually. The most popular approach of such techniques is the time-constant
method [10, 12-14], which is expressed in Eq. (7), where 7}, can be achieved by multiplying
the resistance R, to the capacitance Cj.

P~ (Z rk>_1 )

k

Q

P1 (6)

This technique is error-prone, as there is no information about the accuracy of the
obtained symbolic results. Moreover, zeroes and higher-order poles cannot be determined
by this approach, at all. A more general approach in this context was reported in [13]
which has also the ability to extract the higher-order poles. This method is based on open-
circuits and short-circuits analysis to calculate the time constants of the circuit.

There are also some pole/zero extraction methods on the basis of the solution derived
by the eigenvalue problem. A positive feature of these methods is that the simplification
is no longer driven by magnitude and phase errors but by the pole/zero position, allowing
an improved error control. For example, a modified Signal-Flow Graph (named MSFG)
has been recently developed to represent the equivalences between the system and SPICE
outcomes of static nonlinear OTAs [15]. In this method, the circuit is firstly converted into
an MSFG, and then, the graph would be simplified in particular polynomials by minimiz-
ing the MSFGs. In [19], the implementation of some simplification procedures during the
eigenvalue computation via a symbolic LR algorithm was addressed, in which the LR
method is applied to compute the reduced matrix corresponding to the eigenvalue cluster.
This technique is followed in [20] by an algorithm to reduce the circuit matrix into a row
echelon format. After the determination of the symbolic state matrix, the approximated
poles and zeroes are achieved using the LR algorithm.

The main drawback of the existing symbolic pole/zero analysis methods is that the
simplified expressions of poles and zeroes are not so compact as no SAG is applied on the
final expressions. So, in this study, we utilize a combined heuristic-metaheuristic SAG
algorithm to ensure obtaining the simplified symbolic pole/zero expressions with the least
achievable complexity.

3. Proposed Method

The list of indices, sets, and parameters which are used in the following equations in
this section are provided in Table 1. The overall flowchart of the proposed symbolic
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pole/zero analysis can be seen in Fig. 1. As a summary, the main steps of the methodology
can be summarized as follows:

1) Input circuit netlist is loaded as a text file (in .txt format).

2) All transistors are replaced via proper small-signal modeling.

3) The symbolic circuit is solved via a modified nodal analysis (MNA).

4) The exact transfer function (TF) is achieved in the expanded symbolic form.

5) Exact expressions of poles and zeroes are derived using ERS.

6) Numerical results of the exact symbolic pole/zero expressions are stored.

7) A heuristic algorithm is performed to generate a near-optimal solution utilizing
the circuit-based knowledge available in the exact poles and zeroes.

8) SA is performed to improve further the quality of the heuristic solution, to gener-
ate the final simplified symbolic pole/zero expressions.

9) Numerical results of the obtained simplified symbolic pole/zero expressions are
calculated.

10) Numerical results of the exact and simplified poles/zeros are compared against
HSPICE and other simplification algorithms.

Table 1. Notations.

Sets / Parameters

Definition

T SS - =

L
[fminr fmax]
Sk
PoleSet
ZeroSet
PE,i
PERs,i
Dsa,i

Ep

ZE,j
ZERS,j
Zsa,j

Index of poles, i = 1,2,...,n
Index of zeroes, j = 1,2, ...,1
Degree of the denominator within the exact expanded TF
Degree of the numerator within the exact expanded TF
Index of the symbolic terms, k = 1,2, ...,L
Number of symbolic terms within all pole/zero expressions
Defined frequency bound range for the pole/zero extraction
A binary decision parameter defining whether the k-th symbolic term is used or not
Set of poles in the frequency range of [fiin, fmax]
Set of zeroes in the frequency range of [finin, fmax]
i-th pole within the exact expanded TF
i-th extracted pole via ERS
i-th simplified pole via SA
Mean pole displacements (in %)
Jj-th zero of the exact expanded TF
Jj-th extracted zero via ERS
j-th simplified zero via SA
Mean zero displacements (in %)
Maximum allowable pole/zero extraction error via ERS
Maximum allowable pole/zero simplification error via SA

do0i:10.20944/preprints202302.0163.v1
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Figure 1. Overall flowchart of the proposed methodology.

3.1. Pole/Zero Extraction via ERS

After the netlist pre-processing, the circuit is solved using MNA [7], and conse-
quently, the exact symbolic TF is achieved in expanded form. Then, the obtained exact
pole/zero expressions are approximately calculated using the proposed ERS method
which is an enhanced version of the traditional RA algorithm. Generally, an expanded TF
could be converted into the factorized form according to Eq. (8), where Z (s, x) is a function

of 1 (real or complex conjugate) zeroes z;, z,, ..

complex conjugate) poles py, p,, ..., Dn.

(5,%)

_flo 26
fo PGX)

., Zy, and P (s, X) is a function of n (real or

®)
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In the ERS algorithm, only poles and zeroes located in the interval {5, finax] would
be extracted, where f,;, and f;,4, are the minimum and maximum user-specified fre-
quency for the pole/zero extraction, respectively. If the frequency range has not been spec-
ified by the user, it is considered as default range of [0,10f;], where f; is the frequency of
unity-gain of the exact expression in the nominal point. In the following, the pole extrac-
tion procedure for P(s,X) is described. By comparing Egs. (1) and (8), P(s,x) can be calcu-

lated as:
D(s,x) fi fa f3 fa
P(s,x) = =1+(—)s+(—) 52+(—)S3+---+(—>S” 9
G0 == AV AT 2 ©
Typically, a single real pole is dominant in OTAs. Assuming p; to be dominant and
all other poles to be located at much higher frequencies, i.e., |[p1 |l << llp2ll, llpsll, ... llp.ll,

the first pole can be splitted, and thus, P(s,X) can be approximately written as:
s
P(s,x) = (1 - a) (14 g15+ 925+ + guogs™H)
1 9 92 Gn-2 Gn-1
=1+ (——+ )s+(——+ )52 + (——+ >s3 +---+<— + Gn- )s"‘l + (——)s"
p DR DR b P
By equating the s coefficients of P(s,x) in Eq. (10) to those in Eq. (9), the dominant
real pole p; can be approximated given as:
b
f
Consequently, by assuming the condition in Eq. (12), we can simplify the rightmost

expression of Eq. (11) as Eq. (13). By equating the s coefficients of Eq. (13) to the same s
coefficients in Eq. (9), the parameters g; can be calculated as Eq. (14).

(10)

P~ (11)

L gi-1 _ | = -
|p1| >> g4l , o | > lgil ,  for i=23,..,n-1 (12)
1 -
P(s,x) ~ 1+ (——)s + (—&) s? + (—&)s3 4+t (—g" 1) st (13)
(21 (21 P1 P1
gi = fira ,  for i=12..,n—1 (14)
fi
and thus, the leftmost expression in Eq. (10) can be expressed as:
f o 15 fn
P(s,x z(l +—s> -(1 +—s+—52+~-+—s"‘1) 15
G0~y AR A )

The circumstances of s coefficients in the original denominator D (s, x), for which
Eq. (15) is valid, are:

i
fi-1
Equation (15) shows that P(s,x) can be simplified into a product of a first-order pol-
ynomial (i.e., first dominant pole) and a high-order polynomial corresponding to other
high-frequency poles. In a more general case, assuming the first m poles (1 <m < n) to
be successively dominant in pairs (i.e., p; dominates p,, p, dominates p;, and so on, p,,,—;
dominates p,,), P(s,x) can be approximated as follows:

, for i =23, ..,n (16)

fi
fo

>>|
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P(s,x) = (1 —1) . (1 —é) (1 —i) I+ g5+ 9257+ 4 Gnems™™™)
m m-1 m m
=1+<—zi+gl>s+ Z ! —glzl+g2 s?
=i = S PP =l
m—-2 m—1 m 1 m-1 m 1 m 1 (17)
T4 L z pipjpk+glz Z pip,-_gzzlerg"’ Shet

i=1 j=i+1 i=

m
1 1

+ ( 1) In-m- 11—[ +( 1)m 1gn mz Z Z IS Sn_1+ (_1)mgn—m1—[_ s"
Pi,Pi,Pi,_q i1 Di

i1=1ip=iy+1 im—1=im—-2+1

By similar approximations as done in the previous case, P(s,X) can be simplified ac-
cording to:

P(s,x) =1+ (—%)s + (pllpz>52 + (_ p1p12p3)s3 4ot <(_1)mﬁi'> S™ 4 oo
(( 1)'”91]2[;) ST 4 +<( D" G- ﬁ ) " 1+<( 1)’”gnm]_[ )

i=1

(18)

By equating the s coefficients of Eq. (18) and Eq. (9), the m first poles are derived as
Eq. (19). Also, the parameters g; can be expressed as Eq. (20). So, P(s,X) can be simplified
into the multiplication of m+1 polynomials: m first-order polynomials (representing the
m first poles) and a high-order polynomial, as Eq. (21). The conditions on s coefficients of
D(s,x), for which Eq. (21) is valid, can be expressed as Eq. (22).

fi-1

pi=— Ak for i=12,..,m (19)

gi =% , for i=12..,n—-m (20)

P(s,x)=(1 +]f7:)s) (1 +%s>- (1+ff 1 ) (1 +f'}‘“ +f’;“sz+---+;—"s"-m) 1)
fi fis1 ) fi i=12,..,m

s >> Ak for i=12,...,m—1; s fj—il , for 3. _ mtlm+2..m (22)

In the general case, let us extend the above formulations for the case that all the n
poles are dominant reciprocally, in which, P(s,X) can be approximated as follows:

rom=(1-2) (-2) (- 2) - 1-2)
:1+(_Z )s+ ;]zl:lplp] o lelk—l+1
- (1)“2 z Z W n1+<( 1)"1_[ )

i1=1iy=i1+1 in—1=ipn-

n-2 n-1 n

S
piP;Pk (23)

Under the assumption that all poles are dominant in pairs (i.e., p; dominates p,, p,
dominates p3, and so on), the following conditions are satisfied:

fin
oy

, for i=123..,n-1 (24)

fi-1
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Therefore, the rightmost expression in Eq. (24) can be approximated as Eq. (25). By
equating s coefficients of Eq. (25) and Eq. (10), P(s,x) in Eq. (25) can be approximately
expressed as Eq. (26), where each pole p; can be calculated according to Eq. (27).

pfp) % 4t ((—1)"—1 ﬁ%) sn1 4 ((—1)n ﬁ%) st (25)

i=1 i=1

P(s,x) =1+ <—pi>s+(

1

P(s,x) = (1 +%s) -(1 +%s> -<1 +%s) <1 +ff7_l1 s) (26)
piz—fl;l . for i=12..,n 7)

The interesting feature is that all poles are derived from s coefficients of the denom-
inator of the transfer function. The above formulations are under the assumption that all
poles are real. In other words, the approach fails for closely spaced or complex conjugate
poles. Therefore, the method should be extended for the cases in which two consecutive
poles are located in a cluster. Assuming that p; and p;,, are a pair of poles (real or conju-
gate), they are remained split off in the expression P(s,x) and can be expressed via a sec-
ond-order polynomial (1 + as + bs?), where a and b can be calculated as follows:

i S

. = fira
fi-1 fi b (28)

a=
fi-1

The condition for which the poles p; and p;,, are real, is a® > 4b. If the condition has
been satisfied, the real poles p; and p;,; can be expressed as Eq. (29). Otherwise, these
poles can be represented as complex conjugate poles according to Eq. (30).

a?—4b a?—4b
Pi=—at——p— P = AT (29)
V4b — a?
Piis1 = —atj——p— (30)

It should be emphasized that all above formulations could be used for the extraction
of simplified zeroes Z(s,x) from the numerator N(s,Xx) of the expanded TF. In ERS, the
pole p; (or zero z;) can be splitted by means of Eq. (26), if the conditions in Egs. (31) and
(32) are met, where pgrs; (Zggs,j) is the absolute of the numerical value of i-th pole (j-th
zero) extracted via the ERS method, and pg; (2 ;) is the absolute of the i-th pole (j-th zero)
of the exact function of Eq. (1), which are numerically achieved by the calculation of the
roots of the transfer function. PoleSet (ZeroSet) is the set of poles (zeroes) which are in
the range of the interval [fiin, finax]- Also, Tggs is a pre-determined constant to specify the
maximum allowable root displacement (in %) for the each ERS-root, compared with the
exact one.

PEeRs,i — PE,i

< Tgrs » V pg; € PoleSet (31)
DE,i

Z i — ZE,j
ZERS)  TEJf Tirs » V zp; € ZeroSet (32)

Zg,j

The ERS pole/zero extraction method comprises evaluation and extraction steps. In
the evaluation step, all poles and zeros within the interval [f,in, finax] are assumed to be
reciprocally dominant, and thus, their ERS values are numerically obtained according to
Eq. (26). In the extraction step, the conditions of Egs. (31) and (32) are checked for all ex-
tracted poles and zeroes. Then, each pole (zero) which has satisfied the mentioned condi-
tion, can be symbolically extracted according to Eq. (26). On the other hand, the pair of
real or complex conjugate poles (zeros) remained split off and the condition a? > 4b is
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checked for them. If the condition has been satisfied, the poles (zeros) are a pair of real
poles (zeroes) and can be calculated by Eq. (29). Otherwise, they are considered as com-
plex conjugate poles (zeroes) which are extracted by means of Eq. (30).

3.2. Polel/Zero Simplification via PZSA

The extracted symbolic pole/zero expressions cannot give an analytical information
about the circuit behavior, due to their high complexity. So, a pole/zero simplification
based on PZSA is used to simplify the exact pole/zero expressions. SA is a single-solution
metaheuristic inspired from the metallurgy annealing, which involves heating and then
slowly cooling of the material to reduce its defects [22]. Generally, SA starts its search from
a fully random solution, and then, iteratively updates the solution until arriving at the
stopping criterion [35]. However, to improve the quality and speed of the search process
in SA, we utilize the knowledge from the exact circuit expressions as heuristic information
to guide the SA algorithm by starting from a near-optimal solution. After generating the
initial solution using the heuristic algorithm, SA is performed for improving further the
quality of the solution using local search operators in an iterative procedure. In the fol-
lowing, the main steps of the PZSA algorithm are described.

3.2.1. Solution Encoding/Decoding

A possible solution to the pole/zero simplification problem, as shown in Fig. 2, is a
binary vector of length L, where L is the number of original terms, which can be calculated
as follows:

n/ n
L=(L,, +Ly++Ly,)+ Ly, +Lp,++Lp)= Z Ly, + Z Ly, (33)
j=1 i=1
where Ly, L, and L, are the number of symbolic terms within the DC-gain K, the j-th
zero, and the i-th pole, respectively.

z Zy P Dn
- ™ ~ - - N o % ~ -~ = ~
o702 Do T T PR R B Ly, T R Ly
1 0 1 1 0 1 1(0 1 110 1
~— T — = YT —
Z(s,x) P(s,x)

Figure 2. Encoding of a solution: If S;=1, the i-th symbolic term is present in the solution; otherwise,
if §;=0, the i-th term has been discarded from the solution.

3.2.2. Generation of the Initial Solution

To construct the initial solution of SA, we utilize heuristic information available in
the circuit via a ranking algorithm (RA). It not only improves the convergence speed of
SA as it utilizes a near-optimal solution, but also can effectively enhance the quality of the
final solution. The RA comprises an evaluation step and a selection step. In the first step,
each term is eliminated, and accordingly, the generated error rate is measured and stored.
After the evaluation of all terms, they are sorted in a list from the best to the worst. In the
selection phase, an empty solution is considered, and then, the terms within the list are
added one by one until all constraints have been satisfied.
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3.2.3. Objective Function Evaluation

To justify the performance of each solution, an objective function is formulated to
compare the simplified pole/zero expressions with the exact ones in terms of the number
of terms and mean pole/zero displacements. Moreover, each pole/zero displacement
should not exceed the user-specified margin Tg,. The objective function is expressed as a
weighted average of the minimization of the number of terms and mean pole/zero dis-
placements. These two conflict objectives are merged into a single formula as Eq. (34),
where pole/zero displacements are calculated according to Eqs. (35) and (36), respectively.

OF = {Wn GZ 5k> + wy, (E, + Ez)] (34)

=1
1 n
E,=— < M) ) V pg,; € PoleSet (35)
n L PE,i
=1
1<
Zsaj ~ Zpj
E, = _’Z< SA] _EJ ) , VYV zg; € ZeroSet (36)
n L& Zg,j
j=1
subject to:
Psai — Prif Toa V pg; € PoleSet (57)
DE,i
Zsai — ZE j
% <Tss, V zp; € ZeroSet (38)
E,j

In Eq. (34), w;, and w,,, are constants (w,,+w,,,=1) which specify the relative impacts of
the two objectives. As the worst-case pole/zero displacement is limited by Egs. (37) and
(38), wy, should be set much larger than w;,, to ensure achieving the simplest expressions.

3.2.4. Generation of a New Solution

In each iteration, a neighbor solution, $™*", is constructed in the vicinity of the cur-
rent solution, S "t We adopt a swap (Fig. 3) and an exchange (Fig. 4) operators as
neighborhood search strategies in SA. To generate a new solution, an operator is ran-
domly selected with the probability of 50%, and then, it operates on the solution S e,

o(1j0|1{0j0|1]...|1

Figure 3. Swap: a symbolic term is randomly selected and complemented.

oO|(1j0|1 (1|01 ]|...]1
oOo(1(1|1]1]0[0]|...1

Figure 4. Exchange: a term “0” and a term “1” are randomly selected and exchanged.
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3.2.5. Acceptance Rule Checking

In each iteration, if OF™Y < OF“*'"¢" the new solution is accepted. Otherwise, if
OF™Y > QF ¥t the new solution (worse solution) has a chance to be accepted with the
probability of P, which can be calculated according to the current temperature T and the
differences between the objective values of the two solutions as follows:

ETL@W — Ecurrent
=)

where T is considered to be linearly decreased during the execution of SA from Tj,;sia
(initial temperature) to Tf;nq; (final temperature), as follows:

(39)

t
T = Thitia + Tter (Trinar — Tinitiar) (40)

4. Performance Evaluation

All simulations were carried out on a PC with 2.6 GHz CPU, 6 GB RAM. The pre-
sented tool has been successfully coded in an m-file - MATLAB R2020b running on Win-
dows 10. All MOS transistors are modelled via a small-signal which can be seen in Fig. 5.
The parameters of the proposed tool have been set as provided in Table 2. As can be seen,
Tgrs has been set to 10 %, and thus, the poles and zeroes with no more than 10 % displace-
ment can be simplified via first-order polynomials, while the other poles and zeroes are
expressed via second-order polynomials. To justify the proposed methodology, we com-
pare it against a time-constant approach [13], an eigenvalue technique [15], and an evo-
lutionary-based algorithm using a genetic algorithm [34].

o d Cgl)

=

By —a

g7 | J> <‘L>8mhvb5 l

|1 |
1 ||_
Cg.s OS Cbs

Figure 5. Small signal representation of MOS transistors.

Table 2. Parameter settings.

Phase Parameter Value/Description
Pole/Zero Tgrs in Egs. (32,33) 10 %
Extraction fmin 1Hz
Parameters frnax 10 x f7

Maximum iterations 5xL
SA Local search mechanisms Swap & Exchange
Parameters Tinitiar in Eq. (41) 105
Trina in Eq. (41) 0
Objective w, in Eq. (35) 0.999
Function wp, in Eq. (35) 0.001

Parameters Ts, in Egs. (38) and (39) 20 %
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4.1. Results for a Three-Stage Amplifier in the RCgm Model (Circuit 1)

The block diagram of a three-stage compensation OTA can be shown in Fig. 6. The
circuit is described by the equivalent RCgm model. By using MNA, the exact expanded TF
has been derived as follows:
H,(s) = _RLRlel((CZRZCmZ + Cm1R2Cm2)52 = (GmyaR,Cpy + Cppp)s — szRszL)
£ CnaR2CLR L CiRy + Ca Ry CL R Crp Ry + Ry Gy R Cia Ry + G Ry CLR G Ry g
(+C2R2Cm1RLC1R1 + CoRyCn2 R CiRy + Gy Ry G R C1 Ry + CoR,CL R G Ry )S
CoRy G Ry + Ci Ry Ca Ry + Gy Ry R, GMy G Ry — Cpy RR,GMy Ca R,
+C R CRy + CoRyCpaRy + iy Ry G Ry + R, CiRy + Crp Ry G Ry
+C,RyR; Cpy + CRyR, Cp + Cpy RyR Gy + Ciy RoR € + Crio R CL Ry
+CiRyCGRy + G RyR,GMy Cip Ry + CLR Criu Ry + Cy R CLRy
R, C, + R, Cpy + R Cpy + RyCppy + RyC, + R1C
<+R1€m2 + RyCpy R, GMyR, Gy, + szRLRszL) s+1

+

. (41)

The exact TF comprises 40 terms. By performing the simplification algorithm in [34],
the simplified expanded TF with 10 terms has been obtained according to Eq. (42). The
expanded TF even in the simplified form, cannot give effective insights for the designer

to evaluate the positions of poles and zeroes. However, by performing PZSA, three poles
and two zeroes can be achieved as Egs. (43)-(47).

S =
SE (CniR2C R, CaR1)S3 + (Cpi Ry R,GMy CiRy + CpyiR{RyR,GMy Crppy — Ciyy Cpa R1 Ry R, Gy )52
+(R,CpaR,GMyR,Gmy)s + 1

(42)
1
Py =- (43)
po—_ Gm,Gm,; (49)
27 Cu(Gmy —Gmy)
(GmL - sz)
Py = _T (45)
Gm
= (46)
le
Gm,
Z,=—
2 CmZ

47)
The comparison of the different methods according to the number of simplified terms
within the simplified poles/zeroes can be summarized in Table 3. Moreover, the numerical
results of the different methods are provided in Table 4, wherein the last four rows illus-

trate the error of the simplified equations when compared to the exact expressions.

||
[
Cm2 ”
[
Cml
Vin ’\I [\I Vout
—Gml \ﬁl —GmL -
RI j— )] R2 — (2 I/ RLS ==L

Figure 6. Three-stage amplifier in the RCgm model.
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Table 3. Number of terms within simplified symbolic poles/zeros in Circuit 1.

Expression Exact Ref.[34]  Ref.[13]  Ref.[15] L oPosed  Proposed
Symbolic ’ ) ) (Complete) (Simplified)
P1 N/A N/A 1 10 10 1
P2 N/A N/A 4 26 26 3
P3 N/A N/A 5 25 25 3
Z1 N/A N/A 2 9 3 2
z2 N/A N/A 2 9 4 2
Overall Transfer Function 40 10 N/A N/A N/A N/A
Table 4. Numerical results for Circuit 1.
Parameter HSPICE Exact . Ref.[34] Ref.[13] Ref.[15] Proposed l?ropo.s?,d
Symbolic ) ’ ) (Complete) (Simplified)
P1 (Hz) -12.8 -12.8 -13.3 -13.2 -12.8 -12.8 -13.2
P2 (MHz) -3.19 -3.19 -3.49 -3.19 -2.96 -2.96 -3.18
P3 (MHz) -40.6 -40.6 -36.3 -43.9 -43.8 -43.8 -39.8
Z1 (MHz) 2.72 2.72 2.72 3.18 3.36 3.18 3.18
72 (MHz) -18.6 -18.6 -18.6 -15.9 -17.5 -15.9 -15.9
Mean pole displacement (%) N/A N/A 7.8 3.8 5 5 1.9
Max pole displacement (%) N/A N/A 10.6 8.36 7.9 7.9 3.5
Mean zero displacement (%) N/A N/A 0.03 15.9 14.7 15.8 15.9
Max zero displacement (%) N/A N/A 0.04 17.1 23.6 17.1 17.1

4.2. Results for a Two-Stage Miller Compensated Amplifier (Circuit 2)
The second circuit is a folded cascode two-stage OTA with the compensation de-

scribed by MOS transistors, as shown in Fig. 7. The exact expanded TF obtained by MNA
contains 134 symbolic terms.

—9m1(Gm1701703704707Cc + Gp1701703706707Cc)S + (Gim1GmeT 01703706707 + GineGmp1 7017037067 07)
2
701(gm170370670;C.Cp + Gimp1703706707;C.C1)S? + (Gim1GmeT 037067 07Cc + Ginp1 GmeT 03706707Cc)S (48)
+(gm1706 + Gmi707 + 170370, /10;)

H(s) =

By performing the simplification method in [34], the simplified TF has been obtained
according to Eq. (48). By utilizing PZSA on Eq. (48), two simplified poles and one zero
have been obtained as Eqgs. (49)-(51), respectively. Similar to Circuit 1, the comparison of
the number of simplified terms and the numerical results are summarized in Tables 5 and
6, respectively.

(ro;rog + royro; + rosrog + rosro,) 1

p, = = — 49
! GmeT 017037051707 C, Ime (01|l r03) (rogll 70;)C, *9)
Ime
P,=——
2 C, (50)
g
7 = mé (51)
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Figure 7. Two-stage compensation amplifier.

Table 5. Number of terms within the simplified symbolic poles/zeroes in Circuit 2.

Expression Exact Ref. [34] Ref. [13] Ref. [15] Proposed Proposed
Symbolic ’ ’ ’ (Complete) (Simplified)
P1 N/A N/A 5 104 104 5
P2 N/A N/A 7 82 82 2
Z N/A N/A 4 18 18 2
Overall Transfer Function 134 11 N/A N/A N/A N/A
Table 6. Numerical results for Circuit 2.
Parameter HSPICE . % Ref.[34] Ref.[13] Ref.[15] - oPosed ~ Proposed
Symbolic ’ ) ) (Complete) (Simplified)
P1 (KHz) -177.1 -178.5 -192 -152.8 -178.4 -178.4 -152.8
P2 (MHz) -377.4 -435.4 -409.1 -341 -435.6 -435.6 -409.3
Z (MHz) 407.2 409.3 409.3 409.3 409.3 409.3 409.3
Mean pole displacement (%) N/A N/A 6.8 18 0.04 0.04 10.2
Max pole displacement (%) N/A N/A 7.5 21.7 0.04 0.04 14.4
Zero displacement (%) N/A N/A 0.01 0.01 0 0 0.01

4.3. Results for a Three-Stage Amplifier in Transistor Model (Circuit 3)

The last circuit is a transistor-level three-stage amplifier with miller compensation,
as shown in Fig. 8. The exact expanded TF of this circuit contains 1320 symbolic terms.
Considering the approximation algorithm in [34], the simplified expanded TF with 18
symbolic terms has been obtained as Eq. (52). By applying PZSA, three simplified poles
and two zeroes have been obtained according to Egs. (53)-(57). The number of simplified
terms and numerical results of the different algorithms are summarized in Tables 7 and §,
respectively.
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2
—(9m19msT 017037 06T 077057091 0197011 Cin1 Cin2)S” — (Im1GmeGmoT 017037 06T 077 0g1 09T 0191 011 Crn2)S
H(s) = T Im19meImogm117 017037 0T 071 0gT 09T 017011
(gm8r01r06ro7r08r010 + JmgT 037 06T 0gT 09T 019 + gl 017 061 057 09T 01 + Jmg? 037067 0gT 0T 011 )

+gms’ 037067077 0g7 019 + GmgT 0117067077017 011 + Jingt 037067077051 011 + gl 017 06T 0gT 09T 011 52)
+(gmgT 017037057 0770g7 0970197011 Cpy1 Ci2C1)S3 + (GmeImoGm117 017037 06T 0770gT 097017011 Cp1)S
GmsT 0117037 06T 077057 097 010 Crn1 Crnz — Gme GmoT 017031 06T 077 0gT 09T 01T 011 Crq Gy
+ | +9m1170170370770gT 09T 0197011 Ci1 Cinz + G117 017037067077 097 0197 011 Cip1 Ci 52
+9msIm11701703T 06T 071051 091 0101011 (i1 Gz
_ Gms(rog +103)(ro; +109)(r019 +17011) Ims (53)
== - _
Ime9mogm117 017037 071097 0197011 Cppy ImeImogmi1Cm1(roq|| 703) (1o, || 709) (1010l 7011)
P, = ImeImoImi1 (54)
, = —
(GmsIm11 — ImeImo) Cma
p, = (nggmll - gm6gm9) (55)
= —
ImsCL
Imi11
Z=3 (56)
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Imslmi
Vdd
Vb2 Vb3
M3 ’——| M4 —-| M6 O—l M7 M10
C;’;I vout
TN 7
" =
CL

Cm2
. 1l
vin- vin+ "
o—| M1 M2 I—O
4| M11
Vb1
o—| Ms MjE|__| Mo

Figure 8. Three-stage amplifier in the transistor model.

Table 7. Number of terms within the simplified symbolic poles/zeroes in Circuit 3.

Proposed Proposed

Expression Sy];:r)l(li:)tlic Ref. [34] Ref. [13] Ref. [15] (Complete) (Simplified)
P1 N/A N/A 29 714 714 9
P2 N/A N/A 21 837 837 3
P3 N/A N/A 23 330 330 3
71 N/A N/A 15 75 75 2
Z2 N/A N/A 13 105 105 2
Overall Transfer Function 1320 18 N/A N/A N/A N/A
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Table 8. Numerical results for Circuit 3.

Parameter HSPICE Exact . Ref.[34] Ref.[13] Ref.[15] Proposed Ifropols?d
Symbolic ’ ) ) (Complete) (Simplified)
P1 (Hz) -27.7 -27.9 -20.6 -20.5 -27.9 -27.9 -22.8
P2 (MHz) -1.84 -1.84 -2.03 -2.16 -1.76 -1.76 -2.07
P3 (MHz) -36.6 -40.2 -36.3 -36.1 -42.1 -42.1 -35.7
Z1 (MHz) 14 14 14 2.23 1.62 1.62 1.62
Z2 (MHz) -10.3 -10.2 -10.5 -7.37 -8.81 -8.81 9.1
Mean pole displacement (%) N/A N/A 15.6 18 3 3 14.2
Max pole displacement (%) N/A N/A 26.4 26.5 4.6 4.6 18.4
Mean zero displacement (%) N/A N/A 1.7 43.5 14.8 14.8 13.5
Max zero displacement (%) N/A N/A 29 59.3 15.9 159 16.1

4.4. Discussion

Generally, in the reported simplified symbolic pole/zero expressions, three types of
errors can be observed:

e Error-1: the first type of error may occur by comparing HSPICE with the exact
expanded TF achieved by MNA. This error may be observed for OTAs described
in the transistor level, as HSPICE considers more accurate small-signal modeling
for transistors than the simple model in our program (see Fig. 5).

e  Error-2: the second type of error may be observed when comparing the exact TF
with the exact extracted poles/zeroes, because of the simplifications done by the
root extraction process via the ERS method.

e Error-3: the third error may occur between exact pole/zero expressions and the
simplified ones, due to the simplifications done by PZSA.

As mentioned above, Error-1 is inevitable in symbolic analysis which is observed in
all symbolic tools. However, Error-2 and Error-3 may occur because of our method in the
pole/zero extraction and simplification, respectively. For this purpose, in the results of
Tables 4, 6, and 8, we have reported these errors for each algorithm by comparing them
with the exact expanded TF. So, the numerical results of the poles and zeroes in the exact
TF were considered as reference to justify the performance of the different techniques.

5. Conclusion

In this paper, we have presented a mathematical modeling following by a combined
heuristic-metaheuristic solution for the symbolic pole/zero simplification in OTAs. In the
proposed method, at first, a mathematical model is presented for the extraction of exact
poles and zeroes from the original expanded expression of OTA. Then, an ensemble heu-
ristic-metaheuristic approach is proposed to obtain the simplest symbolic pole/zero equa-
tions from the exact ones. In the proposed ensemble method, a near-optimal solution is
firstly constructed by means of the knowledge-based heuristic information available in
the circuit model, and then, a metaheuristic algorithm based on simulated annealing is
performed to obtain the simplest pole/zero expressions with the best achievable quality.
The proposed tool has been coded in an m-file of MATLAB to extract simplified pole/zero
equations directly from the circuit netlist. Simulations on three OTAs have demonstrated
the effectiveness and superiority of the proposed technique against the existing algo-
rithms in the literature. Beside the advantages of the proposed technique, it relies on a
nominal point for the circuit parameters. As a future work, it can be extended to deal with
the uncertainties of the parameters by the help of Data Mining, Monte Carlo simulation,
fuzzy logic, etc. Moreover, the proposed SAG technique can be hybridized with SBG and
SDG methods to deal with larger OTAs.
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