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the Expected Value
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Abstract: In this paper, we will extend the expected value of the function w.r.t the uniform probability
measure on sets measurable in the Carathéodory sense to be finite for a larger class of functions, since
the set of all measurable functions with infinite or undefined expected values forms a prevalent subset
of the set of all measurable functions, which means "almost all" measurable functions have infinite
or undefined expected values. Before we define the specific problem in section 2, we will outline
some preliminary definitions. We’ll then define the specific problem (along with a partial solution
in section 3) to visualize the complete solution. Along the way, we will ask a series of questions to
clarify our understanding of the paper.

Keywords: prevalence; expected value; uniform measure; measure theory; uniform cover; entropy;
sample; linear; superlinear; choice function; bernard’s paradox; pseudo-random

0. Background

I am an undergraduate from Indiana University despite being the age of a grad student. I should
have graduated by now, but my obsession with research prevents me from moving forward. There is a
chance that I might have a learning disability since writing isn’t very easy for me.

As I've been in and out of college, I never got the chance to rigorously learn the subjects I'm
researching. Most of what I learned was from Wikipedia, blogs and random research articles. I know
little of what I read but learn what I can from asking questions on math stack exchange.

What I truly want, however; is for someone to take my ideas and publish them.
I warn that the definitions may not be rigorous so try to go easy on me. (I recommend using
programming such as Mathematica, Python, JavaScript or Matlab to understand later sections).

1. Preliminaries

Suppose A is a set measurable in the Caratheodory sense [1], such for n € N, A C R”, and function
frA—=R

1.1. Motivation

It seems the set of measurable functions with infinite or undefined expected values (def. 1),
using the uniform measure [2, p.32-37], may be a prevalent subset [3,4] of the set of all measurable
functions, meaning "almost every" measurable function has infinite or undefined expected values.
Furthermore, when the Lebesgue measure of A, measurable in the Caratheodory sense, has zero or
infinite volume (or undefined measure), there may be multiple, conflicting ways of defining a "natural"
uniform measure on A.

Below I will attempt to define a question regarding an extension of the expected value (when it’s
undefined or infinite) which allows for finite values instead.

Note the reason the question will be so long is there are plenty of “meaningless” extensions of the
expected value (e.g. if the expected value is infinite or undefined we can just replace it with zero).

Therefore we must be more specific about what is meant by “meaningful” extension but there are
some preliminary definitions we must clarify.

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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1.2. Preliminary Definitions

Definition 1 (Expected value w.r.t the Uniform Probability Measure). From an answer to a question in
cross validated (a website for statistical questions) [5] , let X ~ Uniform(A) denote a uniform random variable
on set A C R" and px denote the probability density function from the radon-nikodym derivative [6, p.419-427]
of the uniform probability measure on A measurable in the Carathéodory sense. If I(x € A) denotes the indicator
function on x € A:

1 x€A

]I(xeA):{o rd A

then the radon-nikodym derivative of uniform probability measure must have the form I(x € A)/U'(A). (Note
U’ is not the derivative of U in the sense of calculus but rather the denominator of the probability density

function derived from the uniform probability measure U.)

Therefore, by using the law of the unconscious statistician, we should get

E[f(X)] = /f(x)-px(x) dx (1.2.1)
RVI
I(x € A)
:R{f(x) : W dx
= u,gA) /f(x) dx (P1)
A
= Ew [f(X)]

such the expected value is undefined when A does not have a uniform probability distribution or f is not
integrable w.r.t the measure U'.

Definition 2 (Defining the pre-structure). Since there’s a chance that X ~ Uniform(A) does not exist or f
is not integrable w.r.t to U', using def. 1 we define a sequence of sets (), where if:

(a) lirnlg}flfr =U Nk

r>1q>r
(b) limsupF, = N U F,
r—0o r>1q>r

then we have:

1. liminf F, = limsup F, = A
r—eo r—s00
2. Forallr € N, X, ~ Uniform(F,) exists (when A is countable infinite, then for every r € N, F, must be
finite since X, would be a discrete uniform distribution of F,; otherwise, when A is uncountable, X, is the
normalized Lebesgue measure or some other uniform measure on F; (e.g. [7]1) where for every v € N, either
measure on Fy, exists and is finite.

3. Forall v € N, U'(F,) is positive and finite such that U’ is intrinsic. (For countably infinite A, U’ would
be the counting measure where U’ (F,) is positive and finite since F, is finite. For uncountable A, U’
would either be the Lebesque measure or the radon-nikodym derivative of some other uniform measure on
F, (e.g. [7]), where either of the measures on F, are positive and finite.)
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where (Fy),cy is a pre-structure of A, since for every r € N the sequence does not equal A, but "converges” to
A as r increases (see (a) & (b) of this definition).

Example 1. Suppose A = Q. One pre-structure of Q is (F;),cy = ({c/1!:c € Z, —r-1! <c <r-11}),cn
since:

1. liminf F, = limsupF, = A =
r—oo r—00

UNA{c/qt:ceZ —q-q<c<q-qt=VUJ{c/q':c€Z —q-9'<c<q-q} =Q

r>1q>r r>1q>r

2. Foreveryr € N, set F, = {c/rl:ce€Z, —r-rl <c <r-r} is finite, meaning each term of the
pre-structure has a discrete uniform distribution. Therefore, X, ~ Uniform(F,) exists.

3. Foreveryr € N, F, is finite; meaning U’ is the counting measure. Furthermore, since U'(F,) = 2r-rl+1
and for all ¥ € N, 2r - r! + 1 is positive and finite, criteria (3) of def. 2 is satisfied.

Example 2. Suppose A = Q. Another pre-structure of Q is
(F)yen={c/d:c€Z,deN,d<r, —dr <c<dr}),.y

where we note the following:

1. liminfF, = limsupF, = A =
r—oo r—c0

UNA{c/d:cezdeNd<g —dg<c<dgt=()J{c/d:c€Z deN,d<qg —dg<c<dg}=Q

r>1q>r r>1q>r

2. Foreveryr € N,set F, = {c/d:c€Z,d € N,d <r, —dr < c < dr} is finite, meaning each term of
the pre-structure has a discrete uniform distribution. Therefore, X, ~ Uniform(F;) exists.

3. For every r € N, F is finite, ~meaning U’ is the counting measure,
since (when ¢(-) is the Euler’s totient function [8, p.239-249])  we  have

14
uwF) = {c/d:c€Z deN,d<r, —dr <c<dr} = Y 2d¢(d), and

if correct, Y. 2d¢(d) is greater than zero and positive for all r € N. Therefore, critefia(3) of def. 2 is
satisfied. =1

There are plenty of pre-structures of Q. Infact, there may be countably infinite many of these pre-structures.

Example 3. We need additional examples, where U’ is not the counting measure. Perhaps one example of
{F},cn (where A = R) is:

(Br)ren = ([=7 "D ey (122)

It’s obvious that:

liminf F, = limsup F, = A —> UNl29 =N Ul-24 =R

r—o r>1g>r r>1g>r

Note that the uniform random variable of A = R doesn’t exist but for every r € N, the uniform density of F; is
I(x € [—r,r])/(2r).
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Furthermore, for every r € N, U’ is the 1-d Lebesgue measure where U’ (F,) = 2r, such where 2r is positive
and finite (since r > 0).

Definition 3 (Expected value of f on Pre-Structure). If (F;), . is a pre-structure of A (def. 2), then for

reN,if
1
Eulf(Xr)] = U(E) Frfdx (1.2.3)
we then have that the expected value of f on the pre-structure could be described as Eqpr [f(X;)] — Ej[f]
where:
V(e>0)3(NeNV(reN)(r>N= |[Ey[f(X)] —E[f]| <e) = (1.2.4)
V(e >0)3(N e N)V(r € N) <r >N= ‘UIEF)/F fdx—]E{l,[f]‘ < e) (1.2.5)

Example 4. Suppose A = Q where f : A — R such that:
) 1 xe{(2n+1)/2m:n € Z me N}
X)) =
0 x¢{(2n+1)/2m:ne€Z,me N}

Using the pre-structure in example 1 or (Fy),cy = ({c/1!:c € Z, —r-r! < ¢ <1 -1!}), o, we presume
(and prove) £y, [f] using def. 3 is 1.

And using the pre-structure in example 2 or
(B)yen = ({c/d:c€Z,d e N, d <r, —dr <c <dr}),ey

we presume (but must prove) B, [f], using def. 3is 1/3.

This shows different pre-structures give different expected values; therefore, we must choose a unique set of
equivelant pre-structures (def. 8) which gives the same & finite expected value.

Definition 4 (Uniform ¢ coverings of each term of the pre-structure). We define the uniform € coverings
of each term of the pre-structure (F,),. (i.e., F;) as a group of pair-wise disjoint sets that cover F, for every
r € N, such the measure U’ of each of the sets that cover F, have the same value of ¢ € range(U'), where ¢ > 0
and the total sum of U’ of the coverings is minimized. In shorter notation, if

o Theelementt € N
® Theset T D Nis arbitrary and uncountable.

and set Q) is defined as:

{1,---,t} if there are t ways of writing uniform e coverings of Fy
O=¢N if there are countably infinite ways of writing uniform € coverings of F, (1.2.6)

T if there are uncountable ways of writing uniform e coverings of F,

then for every w € Q), the set of uniform ¢ coverings is defined using % (€, Fr, w) where w “enumerates” all
possible uniform e coverings of F; for every r € N.

Example 5. Suppose

1. A=Qn[0,1]
2. (B)yen={c/d:ceZ,deN,d<r,0<c<d}), oy


https://doi.org/10.20944/preprints202302.0367.v10

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 April 2023 doi:10.20944/preprints202302.0367.v10

50f19

Inorder to calculate % (2, Fy, 1), note that:

F ={0,1}U{0,1/2,1}U{0,1/3,2/3,1}U{0,1/4,2/4,3/4,1} U {0/5,1/5,2/5,3/5,4/5,5/5}
1.2.7)

={0,1,1/2,1/3,2/3,1/4,3/4,1/5,2/5,3/5,4/5} (1.2.8)
and; since e = 2 and U’ is the counting measure, one example of % (2, Fy, 1) is
{{0,1},{1/2,1/3},{2/3,1/4},{3/4,1/5},{2/5,3/5} ,{4/5,6/5}}

Note U’ (in this case the counting measure) of each set in the uniform e covering is 2 where we’re "over-covering”
Fy by one element (i.e. 6/5) as we are minimizing the total sum of U’ of the coverings (which for % (2, Fy, 1) is
6-2=12).

If% (2,F,1) = {{0,1},{1/2,1/3},{2/3,1/4},{3/4,1/5},{2/5,3/5} ,{4/5,6/5}}, then

% (2,Fy,2) ={{0,1/2} ,{1/3,1} ,{2/3,1/4} ,{3/4,1/5} ,{2/5,3/5} ,{4/5,6/5} }
and e.g.

w(2,F,3)=1{{0,1/3},{1/2,1},{2/3,1/4} ,{3/4,1/5},{2/5,3/5} ,{4/5,6/5} }
Also note, for counting measure U', where e > 0 and ¢ € range(U’) (i.e. ¢ € N), we have that inf(e) = 1.

Definition 5 (Sample of the uniform ¢ coverings of each term of the pre-structure). The sample
of uniform e coverings of each term of the pre-structure (F;),.y or F, is the set of points, such for every
¢ € range(U") and r € N, we take a point from each pair-wise disjoint set in the uniform € coverings of F, (def.
4). In shorter notation, if

o The element k € N
® The set K D Nis arbitrary and uncountable.

and set ¥, is defined as:

{1,---,k} if there are k ways of writing the sample of uniform ¢ coverings of F,
Yo=9 N if there are countably infinite ways of writing the sample of uniform e coverings of F;
K if there are uncountable ways of writing the sample of uniform e coverings of Fr
(1.2.9)

then for every € Y, , the set of all samples of the set of uniform € coverings is defined using S(% (€, Fr, w), ),
where W “enumerates” all possible samples of % (€, F;, w).

Example 6. From example 5 where:

1. A=Qn[0,1]
2. (F)yen={c/d:c€Z,deN,d<r,0<c<d}),y
3. % (2,Fy,1) = {{0,1},{1/2,1/3},{2/3,1/4},{3/4,1/5},{2/5,3/5},{4/5,6/5}}

Then one sample of % (2,F4,1) = {{0,1},{1/2,1/3},{2/3,1/4},{3/4,1/5},{2/5,3/5} ,{4/5,6/5} }
is:
S(%(2,F,1),1) ={0,1/3,1/4,1/5,3/5,6/5}

and another sample of % (2, F4, 1) = {{0,1},{1/2,1/3},{2/3,1/4},{3/4,1/5} ,{2/5,3/5},{4/5,6/5}}
is:
S(%(2,F,1),2) = {0,1/2,1/4,3/4,2/5,4/5}
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Definition 6 (Entropy on the sample of uniform coverings of each term of the pre-structure). Since
there are finitely many points in the sample of the uniform e coverings of each term of pre-structure {F, },
(def. 5), we:

1. Arrange the x-value of the points in the sample of uniform € coverings from least to greatest. This is
defined as:
Ord(S(% (e, F,w), ¢))

2. Take the multi-set of the absolute differences between all consecutive pairs of elements in (1). This is
defined as:
VOrd(S(% (e, F,w),P))

3. Normalize (2) into a probability distribution. This is defined as:

P(S(% (e, F,w),p)) = {y/ ( ) z) 1y € VOrd(S(% (e, F,w), ¥))
2eVOrd(S(Z (e Fpio) $))

(1.2.10)
4. Take the entropy of (3), (for further reading, see [9, p.61-95]). This is defined as:

E(S(% (&, F,w), 9)) = — )y xlog, ¥
XEP(S(% (e,Frw),¥))

where (4) is the entropy on the sample of uniform coverings of F,.

Example 7. From example 6:
1. A=Qn[0,1]
2. (F)yen={c/d:ce€Z,deN,d<r,0<c<d}),y
3. %(2,k,1) ={{0,1},{1/2,1/3},{2/3,1/4},{3/4,1/5},{2/5,3/5},{4/5,6/5}}
4. S(%(2,F4,1),1) ={0,1/3,1/4,1/5,3/5,6/5}
Then

1. Ord (S(% (2,F4,1),1)) ={0,1/5,1/4,1/3,3/5,6/5} which organizes elements in S(% (2, Fs,1),1)
from least to greatest.
2. VOrd (S§(%(2,F,1),1)) ={|0—1/5],|]1/5—1/4|,|1/4—1/3],|1/3—-3/5|,|3/5—6/5|} =
{1/5,1/20,1/12,4/15,3/5}
3. Since Y z=1/5+1/20+1/12+4+4/1543/5 = 6/5 we use this to normalize (2)
2eVOrd(S(% (2,F4,1),1))
into a probability distribution

P(S(% (2,F4,1),1)) = {y/(6/5) : y € VOrd(S(%(2,F4,1),1))} =
{(5/6)y:y € {1/5,1/20,1/12,4/15,3/5}} = {1/6,1/24,5/72,2/9,1/2}

4. Hence we take the entropy of {1/6,1/24,5/72,2/9,1/2} or:

E(S(#% (e, Fr,w), ) = — Yy xlog, x =
xeP(S(% (e,Fw) 1))

—((1/6)log, (1/6) + (1/24)log,(1/24) + (5/72)log,(5/72) + (2/9)log,(2/9) + (1/2)log,(1/2))
~ 1.8713

Definition 7 (Pre-Structure Converging Uniformly to A). For every r € N (using def. 4, 5, and 6) if set
Ais finite and for € € range(U’), we have € > 0, we then want:

limsup sup sup E(S(% (¢, F,w),¥)) > E(F)
e=0 1eN weQ pety,


https://en.wikipedia.org/wiki/Entropy_(information_theory)
https://doi.org/10.20944/preprints202302.0367.v10

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 April 2023

7 of 19
and if set A is non-finite:
limsup sup sup E(S(% (e, F,w),P)) = +oo
=0 1N weh pe¥y,
we say the pre-structure (F,), .y converges uniformly to A (or in shorter notation):
reN
F=A (1.2.11)

(Note we wish to define a uniform convergence of a sequence of sets to A since the definition is analogous to a
uniform measure.)

Theorem 1. Show every pre-structure of A converges uniformly to A.

Example 8. I assume, using example 5, if

1. A=QnI0,1]
2. (B)yen={c/d:ceZ,deN,d<r,0<c<d}), oy

reN .
then F, = A. I need to prove this.

Definition 8 (Equivalent Pre-Structures). The pre-structures (F;),.y and (F]’ )jen of A are equivalent if
forall f € R4, where from def. 3, Eyp [f (X;)] — Eiy [f] or Eq [f(X;)] — B} [f] such that:

i lf] = Eglf]

Definition 9 (Equivelant Pre-Structures (Alternate Def.)). The pre-structures (F,), .y and (F]’ )jen of A
are equivalent if we have:

rj= arirg'm {u/(Fr\pj’) :F D F].’}

is the r-value (for every j € N) where U'(F, \ F) is minimized

o 1/t . /
rj—ar%enl\}ax{u (F\F):F QFj}

is the r-value (for every j € N) where U’ (F]’ \ E,) is maximized

r = argmin{U/(Fj'\Fr) : Fj/ 2 Fr}
jeN

is the j-value (for every r € N) where U'(F; \ F;) is minimized and:

ji = argmax {U'(F/\ F,) :  C .}
jEN

is the j-value (for every r € N) where U’ (P]’ \ E,) is maximized such that:

sup{ inf{U’(j[_]lFrj\F}),U’(JQF}\R}) } mf{u’(gjll-"jr\Fr>,U’<YQFr\Fj;)} } < o0

(1.2.12)
means the pre-structures (F;), .y and (F]’ )jeN are equivelant.

doi:10.20944/preprints202302.0367.v10
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Example 9. From example 3, if A = R where (F;),.y = ([—7,7]),cn, the cantor set is C and (F]'/)jeN =
([=j j1U{x+j:x €C})jen. Since with either pre-structure, U’ is the 1-d dimensional Lebesgue measure
and (using equation 1.2.12) we get:

sup {inf {+0c0,0},inf {0, 00} } = sup{0,0} =0 < +oo

Definition 10 (Non-Equivalent Pre-Structures). The pre-structures (F),.y and (F]’ )jen of A are
non-equivalent if there exists an f € R4, where from def. 3, By [f(X,)] — Eiy [f] or By [f(X;)] - Eff1f]
where:

wlf] # Eiplf]
Definition 11 (Non-Equivelant Pre-Structures (Alternate Def.)). The pre-structures (F;),.n and

(Ff)jen of A are non-equivalent if we have:

rj = argmin {U’(F,\Pj’) A F]’}
reN
is the r-value (for every j € N) where U'(F, \ F) is minimized
rh :argmax{U'(P{\F) :F C F-’}
] ] r r=7j
reN
is the r-value (for every j € N) where U'(Fj \ Fy) is maximized
j, = argmin {U’(Fj’ \E):F D Fr}
jeN
is the j-value (for every r € N) where U’ (F]-’ \ F,) is minimized and:
g 1/t L/
= argmax{ll (F\F):F < Fr}
jeN

is the j-value (for every r € N) where U’ (F]-’ \ F,) is maximized such that:

sup{ o fur (O ) () e (Ome)u(Onn) } .

means the pre-structures (F;), . and (F]’ )jeN are non-equivelant.

Example 10. From example 4, if A = Q, pre-structures (F,),.y = ({c/1' :c € Z, —r-1! <c < v 11}),cn
and (Fj’)jeN = ({c/d:ce€Z,deN,d<j, —dj <c<dj})cy are non-equivelant since for f : Q — R
where:

flx) = {1 xe{(2n+1)/2m:n € Z,m e N}

0 x¢{(2n+1)/2m:ne€Z,me N}

we have B}, [f] = 1 (i.e. the expected value of f on F,) and B} [f] = 1/3 (i.e. the expected value of f on Fj'),
which means

wlf] # Eiplf]

hence from def. 10, the pre-structures {F, }, . and (F]’ )jeN are non-equivelant.

doi:10.20944/preprints202302.0367.v10
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Example 11. Suppose A = Z, where (F),.y = ({5€Z:—-r<s<r})en (Fj’)jeN =
({s €Z:-2j <5 <2j})cyand
2x+1 x=vr,risodd, v >0
0 x=r,riseven,r <0
flx) = (1.2.13)
2x+1 x=vr,riseven,r >0
0 x=vr,risodd, v >0

E7,/[f] is undefined (i.e. the expected value of f on F,) and Ejj;[f] = 1 (i.e. the expected value of f on Fj’ ). Since
at least one of the pre-structure i.e. {F] }jen has a defined expected value and EJ, [f] # E[j;[f] (i.e. undefined
values do not equal 1), we can say that {F}, .y and {F]’ }jen are non-equivelant.

Definition 12 (Pre-Structures converging Sublinearly, Linearly, or Superlinearly to A compared to
that of another Sequence). Suppose pre-structures (F;), . and ( ]) jeN are non-equivalent and converge
uniformly to A; and suppose for every € € range(U'), where ¢ > 0) and r € N:

(a) From def. 5 and 6, suppose we have:

|S(% (e, Fr,w), )| = (1.2.14)

inf {|S(% (e, F, ), ) 1] €N, o € Q, ¢/ € Yoo, E(S((e,F, &), 4") = E(S(% (&, Fr,w), $)) }

then (using 1.2.14) we have

@ (e r,w, ) =|S(% (e F,w), )| /|S(% e Fr,w), )| (1.2.15)

(b) From def. 5 and 6, suppose we have:
|S(% (e, Fr,w), )| = (1.2.16)
sup {IS(% (e, F, '), ¢/)] : ] €N, &' € Q, ¢ € Yo, E(S( (&, F,«),¢)) < E(S(% (e, Fy), $)) }

then (using 1.2.16) we get

aler,w ) =I[S(% (e Fw), )| /|S(% (e F w) )| (1.217)

1. If using equations 1.2.15 and 1.2.17 we have that:

limsup limsup sup sup « (€,7,w, ) = liminfliminf sup sup a (e,7,w, ) =0
50 o0 weQpeY, =0 TP e e,

we say (Fy),en converges uniformly to A at a superlinear rate to that of (F; /) jen-

2. If using equations 1.2.15 and 1.2.17 we have either:

(@) 0< hmmfllmmf sup sup & (€,7,w,P) < +o0
= wen peYy,
0 < limsup limsup sup sup a(€,7,w, ) < 400
e—0 r—oo  weQypeY,

(b) 0 < hmmfhmlnf sup sup @ (€,1,w,P) < +oo
r—eo weQpe¥y
0 < limsuplimsup sup sup a (€7, w, ) < +o0
e—0 r—oo  weQyYPeY,
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(c) 0 <limsuplimsup sup sup & (€,7,w, ) < +0co
e—0 r—oo  weQypeYy,

0<li fli f <
liilél im in zl;glpsg]l}awa(e r,w,P) < +oo

(d) 0 < limsuplimsup sup sup & (€7, w,P) < 400
e—0 r—o  weQypely

0< hglglfhrnl)gleelgws:ﬁa(e r,w,P) < +oo

we then say (F;), .y converges uniformly to A at a linear rate to that of (F )]EN

3. If using equations 1.2.15 and 1.2.17 we have that:

lim inf liminf sup sup « (e,7, w, ) = limsup limsup sup sup a (€7, w, ) = +oo
=0 17O e ety =0 r—=o weQpeY,

we say (Fy),cy converges uniformly to A at a sublinear rate to that of (F ) jeN-

Note 1. Since def. 12 is difficult to apply, we make assumptions (without proofs) for the examples below:

Example 12 (Example of pre-structure converging super-linearly to A compared to that of another
pre-structure). From example 5:

1. A=Qn[0,1]
2. (F)ren = ({s/r1:0<s <rl}),cn

3. (Fj’)]EN ={c/d:c€Z,deN,d<j0<c< d})]-eN

we assume that (F;),.y converges at a superlinear rate to that of (F ) jeN-

Example 13 (Obvious Example of pre-structure converging linearly to A compared to that of
another pre-structure). Consider the following:

1. A=Qn[0,1]
2. (F)ren = ({s/r1:0<s <7!}),en
3 (Flyjen = 10/ (2 0 € 2,0 < w0 < 27}) g

we assume that (F,),.y converges at a linear rate to that of (Fj’ )jeN since, using programming, we assume:

0< hmmfhrnmf sup sup @ (€,7,w,P) = limsup limsup sup sup a(€,7,w,P) < +oo
=% wen pety e—=0 r—o0  weQypety

Example 14 (Non-Obvious Example of pre-structure converging linearly to A compared to another
pre-structure). If [-] is the nearest integer function and |- | is the floor function, consider the following:

1. A={ya:a€Qno0,1]}
2. (B)ren = ({Vs/r1:0<s <rl}),
3. (Fjen = ({ [(5/22) }/]' 0<s< (Y7, 0<z< Llogz(«/j+1)J}ﬂ [0,1]) (we
jeN
choose this pre-structure since if log2(|Fj’ |) is the highest entropy (def. 6) that E(F].’ ) could be for every
j € N, we say (F]’ )jen has a higher entropy per element than that of (F;),cy if there exists a k € N,

such for all j > k, E(F})/ log, (| Fj|) > E(F;)/ log,(|Fj|))
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despite (F]’ )jen having a higher entropy per element, (Fy),y converges at a linear rate to that of (F]’ )jen, since
using programming, we assume:

lim inf lim inf w(er,w, ) =0
im inflimin Zgglps;}?wa(e r,w, )

lim sup limsup sup sup «(€,7,w, ) = +oco
e—0 r—oo  weQypeYy

which should satisfy criteria (2a) in def. 12.

Theorem 2. If (F,),.y converges super-linearly to A compared to that of (F]-’ )jen then (F]’ )jeN converges
sub-linearly to A compared to that of (F),eN

Example 15 (Example of pre-structure converging super-linearly compared to another
pre-structure). In example 12, if we swap (Fy),cy for (Fj)jen where:

1. A=Qn[0,1]
2. (F)ren=({c/d:c€Z,deN,d<r,0<c<d}),n
3. (F)jen = ({/71:0 < 5 < 1)) e

we assume that (F,),.y converges at a sublinear rate to that of (F]-’)jeN.

1.3. Question on Preliminary Definitions

1. Are there “simpler" alternatives to either of the preliminary definitions? (Keep this in mind as
we continue reading).

2. Main Question

Does there exist a unique extension (or a method that constructively defines a unique extension)
of the expected value of f when the value’s finite, using the uniform probability measure [2, p.32-37]
on sets measurable in the Caratheodory sense, such we replace f with infinite or undefined expected
values with f defined on a chosen pre-structure which depends on A where:

1. The expected value of f on each term of the pre-structure is finite
2. The pre-structure converges uniformly to A

3. The pre-structure converges uniformly to A at a linear or superlinear rate to that of other
non-equivalent pre-structures of A which satisfies (1) and (2).

4. The generalized expected value of f on a pre-structure (i.e. an extension of def. 3 to answer the full
question) has a unique & finite value, such the pre-structure satisfies (1), (2), and (3).

5. A choice function is defined which chooses a pre-structure from A where the following satisfies
(1), (2), (3), and (4) for the largest possible subset of RA.

6. If there is more than one choice function that satisfies (1), (2), (3), (4) and (5), we choose the choice
function with the “simplest form", meaning for a general pre-structure of A, when each choice
function is fully expanded, we take the choice function with the fewest variables/numbers
(excluding those with quantifiers).

How do we answer this question? (See §3.1, §3.2 & §3.4 for a partial answer.)


https://golem.ph.utexas.edu/category/2020/11/the_uniform_measure.html#:~:text=The%20uniform%20measure%20is%20the,it%20into%20a%20general%20definition.
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3. Informal Attempt to Answer Main Question

(Iadvise using computer programmings such as Mathematica, Python, JavaScript, or Matlab to
understand the definitions of the answer below.)

3.1. Generalized Expected Values

If the image of f under A is f[A] := {f(x) : x € A}, such from def. 2 and 7, we take the pre-structure
of f[A] where:
reN
F = f[A]
and take the pre-image under f of F, (defined as f ! [F,] := {x € A : f(x) € F,}) such that:

RS A

However, note the expected value of f~! [F,] (def. 3) may be infinite (e.g. unbounded f). Hence, for
every r € N, we take the pre-structure (F, ), ey of f![F] where:

wrem) (Fi 'S 7))

Thus, the generalized expected value or Ky [f] is:

V(e > 0)3(N e N)V(r e N)V (t, € N) (3.1.1)
1 .
> > —_ —E;n
(rN,trN:> u,(Fr,tr)/FWfdx wlf] <e>
and (similar to def. 2 & 3) if
1

Ep [f (X = 7/ d 3.1.2
u [f( V/tr)} u’ (Fr,tr) Fr,rrf X ( )

we describe the process of the generalized expected value as Eyy [f (X, )] — Ew[f]-

3.2. Choice Function

Suppose S'(A) is the set of all pre-structures of A which satisfies criteria (1) and (2) of the main
question where the generalized expected value of the pre-structures, as they converge uniformly to A,

is unique and finite such the pre-structure ((F/} );,en)ren € S'(A) should be a sequence of sets that

satisfies criteria (1), (2), (3) and (4) of the main question where (using the end of §3.1):

Ew [f (X2s,)] — Elp[f] (3.2.1)

and pre-structure ((P]’ .

)tjeN)jeN is an element of S'(A) such (using the end of §3.1):
Ew [ (X),,)] = Biwlf] (322)

but is not an element of the set of equivelant pre-structures of {F/, }t o (e def. 8).

Further note from (a), with equation 1.2.14 in def. 12, if we take:

S (e, Bl 0), )

rtr

= (3.2.3)

inf{|8(%(e, F]-',t/,w’),lp’)\ jeN, teN, o' eQ, ¢ €Yo, E(S( (e, Fj',tj,w’),lp’)) > E(S(% (e, F,'/'tr,w),lp))}
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and from (b), with equation 1.2.16 in def. 12, we take:

}S(%(e, Frf,,tr/w)/ lP)| = (324)

sup {|S(% (., @) ¢)| N, G €N, & €0, ¢ € Yo, E(S(%(&,Fy,«),¢) < ES( (e, Fy,w),9)) }

Then, using def. 5 with equations 3.2.3 and 3.2.4, if:

sup sup S(% (e, Fy,w), ) =S'(e, F; ) =8 (3.2.5)
weQypeY,
sup sup 8(?/(6,Fr’,’tr,w),lp)’ = ‘S’(s, Fr/,,tr)’ =5 (3.2.6)
weQpe¥y
sup sup |S(% (e, F,, w), )| =|S(e, F)| = |S] (3.2.7)
weQ pe¥ey, —

where, using absolute value function ||-||, we have:

S(r) = (3.2.8)
(sup(Fr’,/tM) — sup (F;,’ty)) (inf(Fr’,’tr) — inf (p;{t,+l)) I (mf(g{@r) — inf (p;jt,“) ) (sup(Fr','trH) —sup (F/}, ) — 1) I
such that
T(r) = (3.2.9)

(sup (Ef,., ) inf (L) = sup (K, ) inf (Fy,,, ) ) ( (inf (F,) —inf (F,,, ) ) = (sup (B, ) —sup (FF,)) 1)
(inf (F7,) —inf (F,., ) ) (sup (Ffh,., ) —sup (Ff%,) )

and, using equations 3.2.5, 3.2.6, 3.2.7, 3.2.8, 3.2.9 with the nearest integer function [-], we want

K(e,E') = [[1— S(r)]| 5 <1+ [(IS’\+||‘:’|I()|ZL|9’+\T§’I\)+IS’I)}) (1 i [li’|/|5/\]) — 18|+ 18" | = T(r)
’ (i v/ (= [50T)

(3.2.10)

such, using equation 3.2.10, if set S”"(A) C S'(A) and P (-) is the power-set, then set C(A) is the largest

element of:

{S”(A) CS'(A): V(e > 0)I(M € N)V(e € range(U'))I (k e N)V (r e N)V(t, e N)V ({F; } € S"(A))
(3.2.11)

(0 <e<M, r>k t, >k=|S(eF})—K(F,)—  inf (SI(S,Fg,tg) - K(S,Fg,tg)) | < el>}
{Fytg }ES/(A)
cP

(S'(A))

w.r.t to inclusion, such the choice function is C(A) if the following contains just one element.

Otherwise, for k € N, suppose we say C¥(A) represents the k-th iteration of the choice function of
A, e.g. C3(A) = C(C(C(A))), where the infinite iteration of C(A) (if it exists) is klim CK(A) = C™(A).
—00

Therefore, when taking the following;:
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C(A)  if C(A) contains one element
C'(A) =4 CI(A) ifj€N,such forall k > j, CF(A) contains one element (3.2.12)

C®(A) ifitexists, and C®(A) contains one element

we say C’(A) is the choice function and the expected value, using def. 3.2.1, is E{} [f].

3.3. Questions on Choice Function

1. Suppose we define function f : A — R. What unique pre-structure would C’(A) contain (if it
exists) for:

(@) A =Zwhereif ((F/, )en), .y € C'(Z) and f = idz, we want

((Pr/,/t,)t,eN),EN =(({meZ:—r<t,<m<t < r})treN)reN

(b) A =Qwhereif ((F);,en),ey € C'(Q) and f = idg, we want

(B )hen), ey = (({s/rtis €Z, —r- 1! <t <5 <ty <711} )peN) ey

(c) A = R where we're not sure what ((F; )r,en),.y € C'(R) would be if f = idg. What
would ((F} )i,en), o be if it’s unique?

3.4. Increasing Chances of an Unique and Finite Expected Value

In case C'(A), in equation 3.2.12, does not exist; if there exists a unique and finite I£{;/ [f] (see §3.1)
where:

v (((Fr/,/tr)trEN)reN eC (A)) (E{p[f] is unique & finite) (3.4.1)

Then ]/ [f] is the generalized expected value w.r.t choice function C, which answers criteria (1), (2),
(3), (4), (perhaps (5)) of the question in §2; however, there is still a chance that the equation 3.4.1 fails to
give an unique [}/ [f]. Hence; if k € N, we take the k-th iteration of the choice function C in 3.2.11,
such there exists a j € N, where for all k > j, if E{;[f] is unique and finite then the following is the
generalized expected value w.r.t finitely iterated C.

In other words, if the k-th iteration of C is represented as CI¥l (where e.g. C3(A) = C(C(C(A)))),
we want a unique and finite E{;/[f] where:

JGjeN)VkeN) | k>j= V( (B )ten) ey € clt (A)) (E{r[f] is unique & finite) (3.4.2)

If this still does not give a unique and finite expected value, we then take the most generalized
expected value w.rt an infinitely iterated C where if the infinite iteration of C is stated as
klim CH(f[A]) = C*(f[A]), we then want a unique [&{}; [f] where:

— 00
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V( ((F )ten),ey € CT (A) ) (E{r[f] is unique & finite) (34.3)

However, in such cases, I£{/[f] should only be used for functions where the expected value is infinite
or undefined or for worst-case functions—badly behaved f : A — R (where forn € N, A C R", and f
is a function) defined on infinite points covering an infinite expanse of space. For example:

1. For a worst-case f defined on countably infinite A (e.g. countably infinite "pseudo-random
points" non-uniformly scattered across the real plane), one may need just one iteration of C (since
most function on countable sets need just one iteration of C for [£{1[f] to be unique); otherwise,
one may use equation 3.4.2 for finite iterations of C.

2. For a worst-case f defined on uncountable A, we might have to use equation 3.4.3 as averaging
such a function might be nearly impossible. We can imagine this function as an uncountable
number of "pseudo-random" points non-uniformly generated on a subset of the real plane (see
§4.1 for a visualization.)

Note, however, that no matter how generalized and “meaningful" the extension of an expected
value is, there will always be an f where the expected value does not exist.

3.5. Questions Regarding The Answer

1. Using prevalence and shyness [3,4], can we say the set of f where either equations 3.4.1, 3.4.2 and
3.4.3 have an unique and finite [E{},[f] which forms either a prevalent or neither prevalent nor shy
subset of RA4? (If the subset is prevalent, this implies either one of the generalized expected values
can be unique and finite for a “large" subset of R*; however, if the subset is neither prevalent nor
shy we need more precise definitions of “size" which takes “an exact probability that the expected
values are unique & finite"—some examples (which are shown in this answer [10]) being:

(a) Fractal Dimension notions
(b) Kolmogorov Entropy
(c) Baire Category and Porosity

2. There may be a total of 292 variables in the choice function C (excluding quantifiers). Is there
a choice function (ignoring quantifiers) which answers criteria (1), (2), (3) & (4) of the main
question in §2 for a "larger" subset of R*? (This might be impossible to answer since such a
solution cannot be shown with prevalence or shyness [3,4])—therefore, we need a more precise
version of “size"” with some examples, again, shown in [10].

3. If question (2) is correct, what is the choice function C using either equations 3.4.1, 3.4.2 and 3.4.3
fully answers the question in §2?

4. Can either equations 3.4.1, 3.4.2 and 3.4.3 (when A is the set of all Liouville numbers [11] and
f =id4) give a finite value? What would the value be?

5. Similar to how definition 13 in §4 approximates the expected value in definition 1, how do
approximate equations 3.4.1, 3.4.2 and 3.4.3?

6. Can programming be used to estimate equations 3.4.1, 3.4.2 and 3.4.3 respectively (if an
unique/ finite result of either of the expected values exist)?


https://en.wikipedia.org/wiki/Prevalent_and_shy_sets
https://math.stackexchange.com/a/4623168/1142990
https://en.wikipedia.org/wiki/Prevalent_and_shy_sets
https://en.wikipedia.org/wiki/Liouville_number
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3.6. Applications

1. In Quanta magazine [12], Wood writes on Feynman Path Integrals: “No known mathematical
procedure can meaningfully average' an infinite number of objects covering an infinite expanse of
space in general. The path integral is more of a physics philosophy than an exact mathematical
recipe."—despite Wood's statement, mathematicians Bottazzi E. and Eskew M. [13] found a
constructive solution to the statement using integrals defined on filters over families of finite
sets; however, the solution was not unique as one has to choose a value in a partially ordered
ring of infinite and infinitesimal elements.

(a) Perhaps, if Botazzi’s and Eskew’s Filter integral [13] is not enough to solve Wood’s
statement, could we replace the path integral with expected values from equations 3.4.1,
3.4.2 and 3.4.3 respectively (or a complete solution to section 2)? (See, again, §4.1 for a
visualization of Wood’s statement.)

2. As stated in §1.1, “when the Lebesgue measure of A, measurable in the Caratheodory sense,
has zero or infinite volume (or undefined measure), there may be multiple, conflicting ways
of defining a "natural" uniform measure on A." This is an example of Bertand’s Paradox
which shows, "the principle of indifference (that allows equal probability among all possible
outcomes when no other information is given) may not produce definite, well-defined results for
probabilities if applied uncritically, when the domain of possibilities is infinite [14].

Using §3.1, perhaps if we take (from def. 3.2.12):

C(A) if C(A) contains one element
C'(A) = CI(A) ifj€N,such forall k > j, C(A) contains one element

C®(A) ifitexists,and C*(A) contains one element
then for ((F, )t,en),.y € C'(A), if we want S C A and we get the following:

< U'(Snk,)
J(U(S) € R)V(e > 0)I(N e NW(r e NW(t €N) [r2 N, t, 2 N = |—o ) _y(s)

<€
u(r)

(36.1)

Then U(S) might serve as a solution to Bertand’s Paradox (unless there’s a better C'(A) and
((Fy)t,en) e € C'(A) which completely solves the main question in §2).

Now consider the following;:

(a) How do we apply U(S) (or a better solution) to the usual example which demonstrates the
Bertand’s Paradox as follows: for an equilateral triangle (inscribed in a circle), suppose a
chord of the circle is chosen at random—what is the probability that the chord is longer
than a side of the triangle? [15] (According to Bertand’s Paradox there are three arguments
which correctly use the principle of indifference yet give different solutions to this problem
[15]:

i. The “random endpoints" method: Choose two random points on the circumference of
the circle and draw the chord joining them. To calculate the probability in question
imagine the triangle rotated so its vertex coincides with one of the chord endpoints.
Observe that if the other chord endpoint lies on the arc between the endpoints of the

1 Meaningful Average—The average answers the main question in §2


https://en.wikipedia.org/wiki/Bertrand_paradox_(probability)
https://en.wikipedia.org/wiki/Principle_of_indifference
https://en.wikipedia.org/wiki/Bertrand_paradox_(probability)
https://en.wikipedia.org/wiki/Bertrand_paradox_(probability)
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triangle side opposite the first point, the chord is longer than a side of the triangle. The
length of the arc is one-third of the circumference of the circle, therefore the probability
that a random chord is longer than a side of the inscribed triangle is 1/3.

ii. The "random radial point" method: Choose a radius of the circle, choose a point
on the radius, and construct the chord through this point and perpendicular to the
radius. To calculate the probability in question imagine the triangle rotated so a side is
perpendicular to the radius. The chord is longer than a side of the triangle if the chosen
point is nearer the center of the circle than the point where the side of the triangle
intersects the radius. The side of the triangle bisects the radius, therefore the probability
a random chord is longer than a side of the inscribed triangle is 1/2.

iii. The "random midpoint" method: Choose a point anywhere within the circle and
construct a chord with the chosen point as its midpoint. The chord is longer than a side
of the inscribed triangle if the chosen point falls within a concentric circle of radius 1/2
the radius of the larger circle. The area of the smaller circle is one-fourth the area of
the larger circle, therefore the probability a random chord is longer than a side of the
inscribed triangle is 1/4.

4. Glossary

4.1. Example of Case (2) of Worst Case Functions

(If the explanation below is difficult to understand, see this visualization to accompany the
explanation [16], where when changing the sliders each time, wait a couple of seconds for the graph to
load.)

We wish to create a function that appears to be a “pseudo-randomly” distributed but has infinite
points that are non-uniform (i.e. does not have complete spatial randomness [17]) in the sub-space of
R2, where the expected value or integral of the function w.r.t uniform probability measure [2][ p.32-37]
is non-obvious (i.e. not the center of the space the function covers nor the area of that space).

Suppose for real numbers x1,x3,; and y,, we generate an uncountable number of "nearly
pseudo-random" points that are non-uniform in the subspace [x1, x5] % [y1,y2] € R2.

We therefore define the function as f : [x1, x2] — [y1,y2)-

Now suppose b € {2,3,---,10} where the base-b expansion of real numbers, in interval [x1, x3],
have infinite decimals that approach x from the right side so when x1 = x, we get f(x1) = f(x2).

Furthermore, for NU {0} = Ny, if r € Ny and digit, : R x Z — {0,1,---,b — 1} is a function
where digit, (x,7) takes the digit in the b"-th decimal fraction of the base-b expansion of x (e.g.
digity((1.789,2) = 8), then {g;'},y, is a sequence of functions such that g;" : Ng — Ny is defined to
be:

gr(x) = {1170 sin(rx) + ﬂ 4.1.1)

then for some large k € N and x1, x; € R, the intermediate function (before f) or f; : [x1, x2] — Ris
defined to be

filx) = 4.1.2)

(Egm (rikdlgltb >/b> —10=
(( [Sm <(7+1) (;i]:;digitb(xlm)) 1b0

o)
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where the points in f are "almost pseudo-randomly" and non-uniformly distributed on [x1, x2] % [0, 10].
What we did was convert every digit of the base-b expansion of x to a pseudo-random number that
is non-equally likely to be an integer, including and in-between, 0 and (10 - 10°) /b. Furthermore, we
also make the function appear truly “pseudo-random", by adding the b"-th decimal fraction with the
next k decimal fractions; however, we want to control the end-points of [0, lOSH] suchif y1,y» € R, we
convert [x1,x2] x [0,10] to [x1,x2] X [y1,y2] by manipulating equation 4.1.2 to get:

_ Y2—y
f@) =y =P il) (4.13)

_ o r+k
ya — (yzloyl) ‘((E) llbo sin ((r—i—l) <;digitb(x,p)>> + % >/bf> -10

such the larger k is, the more pseudo-random the distribution of points in f in the space [x1, x2] X
[v1, y2], but unlike most distributions of such points, f is uncountable.

4.2. Question Regarding Section 4.1

Let us give a specific example, suppose for the function in equation 4.1.3 of §4.1, we have:

L] b = 3
o [xi,x2] X [y1,y2] = [0,1] < [0,1]
* k=100

(one can try simpler parameters); what is the expected value using either equations 3.4.2 and 3.4.3 (or
a more complete solution to section 2) if the answer is finite and unique?

What about for f in general (i.e. in terms of b, x1, X2, y1, y2 and k)?

(Note if x1,y; — —oo0 and xp,y, — oo, then the function is an explicit example of the function that
Wood? describes in Quanta Magazine)

4.3. Approximating the Expected Value

Definition 13 (Approximating the Expected Value). In practice, the computation of this expected value
may be complicated if the set A is complicated. If analytic integration does not give a closed-form solution then
a general and relatively simple way to compute the expected value (up to high accuracy) is with importance
sampling. To do this, we produce values X1,Xa, ..., Xp1 ~ 1ID g for some density function g with support
A C support(g) C R” (hopefully with support fairly close to A) and we use the estimator:

CMIX € A) - £(X)/8(X:)
YMIX € A)/g(X;)

iy = 4.3.1)

From the law of large numbers, we can establish that E[f (X)] = limp_co fip S0 if we take M to be large
then we should get a reasonably good computation of the expected value of interest.

Note importance sampling requires three things:

1. We need to know when point x is in set A or not

2 Wood wrote on Feynman Path Integrals: “No known mathematical procedure can meaningfully average 1 an infinite number

of objects covering an infinite expanse of space in general."
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2. We need to be able to generate points from a density g that is on a support that covers A but is not too
much bigger than A
3. We have to be able to compute f(x) and g(x) for each point x € A
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