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Concept Paper

Defining The Most Generalized, Natural Extension
of the Expected Value

Bharath Krishnan

Department of Mathematics, Indiana East University; bharathk98@gmail.com

Abstract: In this paper, we will extend the expected value of the function w.r.t the uniform probability

measure on sets measurable in the Carathèodory sense to be finite for a larger class of functions, since the set

of measurable functions with infinite or undefined expected values might form a prevalent subset of the set

of all measurable functions. Before we get to the specific problem in Section 2 of the paper, we will outline

some preliminary definitions. We will then define a precise main question that offers a unique solution

along with a partial solution in Section 3. Along the way, we will ask a series of questions that will clarify our

understanding of the paper.

Keywords: expected value; uniform measure; measure theory; prevalence; entropy; sample; linear;

superlinear; choice function; Bernard’s paradox; pseudo-random

0. Background

I am an undergraduate from Indiana University despite being the age of a grad student. I should have

graduated by now, but my obsession with research prevents me from moving forward. There is a chance that I

might have a learning disability since writing isn’t very easy for me.

As I’ve been in and out of college, I never got the chance to rigorously learn the subjects I’m researching.

Most of what I learned was fromWikipedia, blogs and random research articles. I know little of what I read

but I learn what I can from questions on math stack exchange.

What I truly want, however; is for someone to take my ideas and publish them.

I warn that the definitions may not be rigorous so try to go easy onme. (I recommend using programming

such as Mathematica, Python, JavaScript or Matlab to understand Sections 3 and 4).

1. Preliminaries

SupposeA is a set measurable in the Carathèodory sense [1], such for n ∈ N,A ⊆ Rn, and function f ∶ A → R.

1.1. Motivation

It seems the set of measurable functions with infinite or undefined expected values (def. 1), using
the uniform measure [2] ( pp.32-37), may be a prevalent subset [3,4] of the set of all measurable functions,

meaning "almost every" measurable function has infinite or undefined expected values. Furthermore, when

the Lebesgue measure of A, measurable in the Caratheodory sense, has zero or infinite volume (or undefined
measure), there may be multiple, conflicting ways of defining a "natural" uniform measure on A.

Below Iwill attempt to define a question regarding an extension of the expected value (when it’s undefined

or infinite) which allows finite values instead.

Note the reason the question will be so long is there are plenty of “meaningless” extensions of the expected

value (e.g. if the expected value is infinite or undefined we can just replace it with zero).

Therefore we must be more specific about what is meant by “meaningful” extension but there are some

preliminary definitions we must clarify.

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 March 2023                   doi:10.20944/preprints202302.0367.v6

©  2023 by the author(s). Distributed under a Creative Commons CC BY license.

https://en.wikipedia.org/wiki/Carath%C3%A9odory%27s_criterion
https://golem.ph.utexas.edu/category/2020/11/the_uniform_measure.html#:~:text=The%20uniform%20measure%20is%20the,it%20into%20a%20general%20definition.
https://en.wikipedia.org/wiki/Prevalent_and_shy_sets
https://doi.org/10.20944/preprints202302.0367.v6
http://creativecommons.org/licenses/by/4.0/


2 of 14

1.2. Preliminary Definitions

Definition 1 (Expected value w.r.t the Uniform Probability Measure). From an answer to a question in

cross validated (a website for statistical questions) [5] , let X ∼ Uniform(A) denote a uniform random variable

on set A ⊆ Rn and pX denote the probability density function from the radon-nikodym derivative [6, p.419-427]

of the uniform probability measure onAmeasurable in the Carathèodory sense. If I(x ∈ A) denotes the indicator
function on x ∈ A:

I(x ∈ A) = ⎧
⎨⎩
1 x ∈ A
0 x ∉ A

then the radon-nikodym derivative of uniform probability measure must have the form I(x ∈ A)∕U′(A). (NoteU′ is not the derivative ofU in the sense of calculus but rather the denominator of the probability density function

derived from the uniform probability measure defined asU.)
Therefore, using the law of the unconscious statistician, we should get

E[f(X)] = ∫
Rn

f(x) ⋅ pX(x) dx (1.2.1)

= ∫
Rn

f(x) ⋅ I(x ∈ A)U′(A) dx
= 1U′(A) ∫A

f(x) dx (P1)

= EU′[f(X)]
such the expected value is undefined whenA does not have a uniform probability distribution or f is not integrable
w.r.t the measureU′.
Definition 2 (Defining the pre-structure). Since there’s a chance that X ∼ Uniform(A) does not exist or f
is not integrable w.r.t toU′, using def. 1 we define a sequence of sets {Fr}r∈N where if:

1.
∞⋃
r=1Fr = A

2. For all r ∈ N, Xr ∼ Uniform(Fr) exists (when A is countable infinite then for every r ∈ N, Fr must be a
finite set since Xr would be a discrete uniform distribution of Fr; otherwise, when A is uncountable, thenXr is the normalized Lebesgue measure or some other uniform measure on Fr (e.g. [7]) such for everyr ∈ N the Lebesgue measure or some other uniform measure on Fr exists and is finite.

3. For all r ∈ N,U′(Fr) is positive and finite such thatU′ is intrinsic. (For countably infinite A,U′ would be
the counting measure whereU′(Fr) is positive and finite since Fr is finite. For uncountable A,U′ would
either be the Lebesgue measure or the radon-nikodym derivative on some other uniform measure on Fr
(e.g. [7]), where either of the measures on Fr are positive and finite.)
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{Fr}r∈N is then a pre-structure of A, since for every r ∈ N the sequence does not equal A, but “approaches" A asr increases.
Definition 3 (Expected value of Pre-Structure). If {Fr}r∈N is a pre-structure of A (def. 2), then for r ∈ N, if

EU′[f(Xr)] = 1U′ (Fr) ∫Fr f dx (1.2.2)

we then have that the expected value of the pre-structure could be described as EU′ [f(Xr)] → E⋆U′[f] (def. 1)
where:

∀(� > 0)∃(N ∈ N)∀(r ∈ N) (r ≥ N ⇒ ||||EU′[f(Xr)] −E⋆U′[f]|||| < �) ⟹ (1.2.3)

∀(� > 0)∃(N ∈ N)∀(r ∈ N) (r ≥ N ⇒ |||||||||
1U′ (Fr) ∫Fr f dx −E⋆U′[f]||||||||| < �) (1.2.4)

Definition 4 (Uniform " coverings of each term of the pre-structure). We define the uniform " coverings
of each term of the pre-structure {Fr}r∈N (i.e., Fr) as a group of pair-wise disjoint sets that cover Fr for everyr ∈ N, such the measure U′ of each of the sets that cover Fr have the same value of " ∈ range(U′), where" > inf

(
range(U′)

)
and the total sum ofU′ of the coverings is minimized. In shorter notation, if

• The element t ∈ N

• The set T ⊃ N is arbitrary and uncountable.

and setΩ is defined as:

Ω =

⎧⎪
⎨⎪⎩
{1, ⋅ ⋅ ⋅, t} if there are t ways of writing uniform " coverings of Fr
N if there are countably infinite ways of writing uniform " coverings of FrT if there are uncountable ways of writing uniform " coverings of Fr

(1.2.5)

then for every ! ∈ Ω, the set of uniform " coverings is defined usingU(�, Fr, !) where ! “enumerates" all possible
uniform " coverings of Fr for every r ∈ N.

Definition 5 (Sample of the uniform " coverings of each term of the pre-structure). The sample of

uniform " coverings of each term of the pre-structure {Fr}r∈N or Fr is the set of points, such for every " ∈ range(U′)

and r ∈ N, we take a point from each pair-wise disjoint set in the uniform " coverings of Fr (def. 4). In shorter
notation, if

• The element k ∈ N

• The setK ⊃ N is arbitrary and uncountable.

and set Ψ! is defined as:

Ψ! =
⎧⎪
⎨⎪⎩
{1, ⋅ ⋅ ⋅, k} if there are k ways of writing the sample of uniform " coverings of Fr
N if there are countably infinite ways of writing the sample of uniform " coverings of FrK if there are uncountable ways of writing the sample of uniform " coverings of Fr

(1.2.6)

then for every  ∈ Ψ! , the set of all samples of the set of uniform " coverings is defined using S(U(�, Fr, !),  ),
where  “enumerates" all possible samples ofU(�, Fr, !).
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Definition 6 (Entropy on the sample of uniform coverings of each term of the pre-structure). Since

there are finitely many points in the sample of the uniform " coverings of each term of pre-structure {Fr}r∈N
(def. 5), we:

1. Arrange the x-value of the points in the sample of uniform " coverings from least to greatest. This is defined

as:

Ord(S(U(�, Fr, !),  ))
2. Take the multi-set of the absolute differences between all consecutive pairs of elements in (1). This is defined

as: (Ord(S(U(�, Fr, !),  ))
3. Normalize (2) into a probability distribution, where for multi-set X, we have |X| as the cardinality of all

elements in the multi-set, including repeated ones. This is defined as:

P(S(U(�, Fr, !),  )) = {y∕ |||(Ord(S(U(�, Fr, !),  ))||| ∶ y ∈ (Ord(S(U(�, Fr, !),  ))}
4. Take the entropy of (3), (for further reading, see [8] ( pp.61-95)). This is defined as:

E(S(U(�, Fr, !),  )) = − ∑
x∈P(S(U(�,Fr ,!), ))x log2 x

where (4) is the entropy on the sample of uniform coverings of Fr .

Definition 7 (Pre-Structure Converging Uniformly to A). For every r ∈ N (using def. 4, 5, and 6) if set A

is finite:

lim
"→inf (range(U′))

supr∈N sup!∈Ω sup ∈Ψ! E(S(U(�, Fr, !),  )) ≥ E(Fr)
and if set A is non-finite:

lim"→inf (range(U′))
supr∈N sup!∈Ω sup ∈Ψ! E(S(U(�, Fr, !),  )) = +∞

we say the pre-structure {Fr}r∈N converges uniformly to A (or in shorter notation):

Fr r∈N⇉ A (1.2.7)

(Note we wish to define a uniform convergence of a sequence of sets to A since the definition is analogous to a

uniform measure.)

Definition 8 (Equivalent Pre-Structures). The pre-structures {Fr}r∈N and {F′j}j∈N of A are equivalent if,

from def. 3, where EU′[f(Xr)] → E⋆U′[f] and EU′[f(X′j)] → E⋆⋆U′ [f]:
∀
(f ∈ RA) (E⋆U′[f] = E⋆⋆U′ [f])

Definition 9 (Non-Equivalent Pre-Structures). The pre-structures {Fr}r∈N and {F′
j
}j∈N of A are

non-equivalent if, from def. 3, where EU′[f(Xr)] → E⋆U′[f] and EU′[f(X′j)] → E⋆⋆U′ [f]:
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∃ (f ∈ RA) (E⋆U′[f] ≠ E⋆⋆U′ [f])
Definition 10 (Pre-Structures converging Sublinearly, Linearly, or Superlinearly to A compared to

that of another Sequence). Suppose pre-structures {Fr}r∈N and {F′
j
}j∈N are non-equivalent and converge

uniformly to A; and suppose for every " ∈ range(U′), where " > inf (range(U′)) and r ∈ N:

(a) We take the cardinality of the sample of the uniform " coverings of Fr divided by the smallest
cardinality of the sample of the uniform " coverings of F′

j
(def. 5), where the entropy on the sample

of uniform coverings on F′
j
is larger than the entropy on the sample of uniform coverings on Fr

(def. 6). In other words, if:

|||S(U(�, Fr , !),  )||| = (1.2.8)

inf
{|S(U(�, F′

j
, !′),  ′)| ∶ j ∈ N, !′ ∈ Ω,  ′ ∈ Ψ!, E(S(U(�, F′j , !′),  ′)) ≥ E(S(U(�, Fr , !),  ))}

then the ratio described at the beginning of (a) is defined (using 1.2.8) as

� (�, r, !,  ) = |||S(U(�, Fr, !),  ))||| ∕|||S(U(�, Fr, !),  )||| (1.2.9)

(b) We take the cardinality of the sample of uniform " covering of Fr divided by the largest cardinality
of the sample of the uniform " covering of F′

j
(def. 5), where the entropy on the sample of uniform

coverings on F′
j
is smaller then the entropy on the sample of uniform coverings on Fr (def. 6). In

other words if:

|||S(U(�, Fr, !),  )||| = (1.2.10)

sup
{|S(U(�, F′

j
, !′),  ′)| ∶ j ∈ N, !′ ∈ Ω,  ′ ∈ Ψ!, E(S(U(�, F′j , !′),  ′)) ≤ E(S(U(�, Fr, !),  ))

}
then the ratio described at the start of (b) is defined (using 1.2.10) as

� (�, r, !,  ) = |||S(U(�, Fr, !),  ))||| ∕|||S(U(�, Fr, !),  )||| (1.2.11)

1. If using equations 1.2.9 and 1.2.11 we have that:

lim
"→inf (range(U′))

sup
r∈N

sup
!∈Ω

sup
 ∈Ψ!

� (�, r, !,  ) = lim
"→inf (range(U′))

sup
r∈N

sup
!∈Ω

sup
 ∈Ψ!

� (�, r, !,  ) = 0

we say {Fr}r∈N converges uniformly to A at a superlinear rate to that of {F′
j
}j∈N.

2. If using equations 1.2.9 and 1.2.11 we have that:

0 < lim
"→inf (range(U′))

sup
r∈N

sup
!∈Ω

sup
 ∈Ψ!

� (�, r, !,  ) = lim
"→inf (range(U′))

sup
r∈N

sup
!∈Ω

sup
 ∈Ψ!

� (�, r, !,  ) < +∞

we say {Fr}r∈N converges uniformly to A at a linear rate to that of {F′
j
}j∈N.

3. If using equations 1.2.9 and 1.2.11 we have that:

lim
"→inf (range(U′))

sup
r∈N

sup
!∈Ω

sup
 ∈Ψ!

� (�, r, !,  ) = lim
"→inf (range(U′))

sup
r∈N

sup
!∈Ω

sup
 ∈Ψ!

� (�, r, !,  ) = +∞

we say {Fr}r∈N converges uniformly to A at a sublinear rate to that of {F′
j
}j∈N.
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I assume � and � are always equal but I’m not sure how to prove this.

1.3. Question on Preliminary Definitions

1. Are there “simpler" alternatives to either of the preliminary definitions? (Keep this in mind as we

continue reading).

2. Main Question

Does there exist a unique extension (or a method that constructively defines a unique extension) of the

expected value of f when the value’s finite, using the uniform probability measure [2] (pp.32-37) on sets

measurable in the Carathèodory sense, such we replace f with infinite or undefined expected values with f
defined on a chosen pre-structure which depends on A where:

1. The expected value of f on each term of the pre-structure is finite
2. The pre-structure converges uniformly to A
3. The pre-structure converges uniformly to A at a linear or superlinear rate to that of other non-equivalent

pre-structures of A which satisfies (1) and (2).
4. The generalized expected value of f on a pre-structure (i.e. an extension of def. 3 to answer the full

question) has a unique & finite value, such the pre-structure satisfies (1), (2), and (3).
5. A choice function is defined which chooses a pre-structure from A where the following satisfies (1), (2),

(3), and (4) for the largest possible subset of RA.
6. If there is more than one choice function that satisfies (1), (2), (3), (4) and (5), we choose the choice

function with the “simplest form", meaning for a general pre-structure of A, when each choice function
is fully expanded, we take the choice function with the fewest variables/numbers (excluding those with

quantifiers).

How do we answer this question? (See §3.1, §3.2 & §3.4 for a partial answer.)

3. Informal Attempt to Answer Main Question

(I advise using computer programmings such as Mathematica, Python, JavaScript, or Matlab to

understand the definitions of the answer below.)

3.1. Generalized Expected Values

If the image of f under A is f[A] ∶= {f(x) ∶ x ∈ A}, such from def. 2 and 7, we take the pre-structure off[A] where:
Fr r∈N⇉ f[A]

and take the pre-image under f of Fr (defined as f−1 [F′′r ] ∶= {x ∈ A ∶ f(x) ∈ Fr}) such that:
f−1 [Fr] r∈N⇉ A

However, note the expected value of f−1 [Fr] (def. 3) may be infinite (e.g. unbounded f). Hence, for everyr ∈ N, we take
{{Fr,tr }tr∈N}r∈N where:

∀(r ∈ N) (Fr,tr tr∈N⇉ Fr)
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Thus, the generalized expected value or ËU′[f] is:
∀(� > 0)∃(N ∈ N)∀(r ∈ N)∀ (tr ∈ N) (3.1.1)

⎛⎜⎝r ≥ N, tr ≥ N ⇒ 1U′ (Fr,tr)∫Fr,tr f dx − ËU′[f] < �⎞⎟⎠
And we describe the process of extending EU′(Xr) → E⋆U′[f] (def. 3) to the generalized expected value as
EU′(Xr) → ËU′[f].
3.2. Choice Function

Suppose S′(A) is the set of all pre-structures of A which satisfies criteria (1) and (2) of the main question

where the generalized expected value of the pre-structures, as they converge uniformly to A, is unique and
finite such the pre-structure

{F′′r }r∈N ∈ S′(A) should be a sequence of sets that satisfies criteria (1), (2), (3)
and (4) of the main question where:

EU′(X′′r ) → Ë′′U′[f] (3.2.1)

and pre-structure {F′
j
}j∈N is an element of S′(A) such that:

EU′(X′j) → Ë′U′[f] (3.2.2)

but is not an element of the set of equivelant pre-structures of
{F′′r }r∈N (i.e. def. 8).

Further note from (a), with equation 1.2.8 in def. 10, if we take:
||||S(U(�, F′′r , !),  )|||| = (3.2.3)

inf
{|S(U(�, F′j , !′),  ′)| ∶ j ∈ N, !′ ∈ Ω,  ′ ∈ Ψ!, E(S(U(�, F′j , !′),  ′)) ≥ E(S(U(�, Fr, !),  ))}

and from (b), with equation 1.2.10 in def. 10, we take:
||||S(U(�, F′′r , !),  )|||| = (3.2.4)

sup
{|S(U(�, F′j , !′),  ′)| ∶ j ∈ N, !′ ∈ Ω,  ′ ∈ Ψ!, E(S(U(�, F′j , !′),  ′)) ≤ E(S(U(�, Fr, !),  ))}

Then, using def. 5 with equations 3.2.3 and 3.2.4, if:
sup!∈Ω sup ∈Ψ! S(U(�, F′′r , !),  ) = S′(", F′′r ) = S′ (3.2.5)

sup!∈Ω sup ∈Ψ!
||||S(U(�, F′′r , !),  )|||| = ||||S′(", F′′r )|||| = |S′| (3.2.6)

sup!∈Ω sup ∈Ψ!
||||S(U(�, F′′r , !),  )|||| = ||||S′(", F′′r )|||| = ||||S′|||| (3.2.7)

where, using absolute value function ||⋅||, we have:
S(r) = (sup(F′′r+1) − sup (F′′r )) (inf (F′′r ) − inf (F′′r+1)) |||||||| ( inf (F′′r ) − inf (F′′r+1) ) ( sup(F′′r+1) − sup (F′′r )− 1 ) |||||||| (3.2.8)
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such that

T(r) = (sup (F′′r+1) inf (F′′r )− sup (F′′r ) inf (F′′r+1)) ( (inf (F′′r )− inf (F′′r+1))− (sup (F′′r+1)− sup (F′′r ))− 1 ) (3.2.9)(
inf

(F′′r )− inf (F′′r+1)) (sup (F′′r+1)− sup (F′′r ))
and, using equations 3.2.5, 3.2.6, 3.2.7, 3.2.8, 3.2.9 with the nearest integer function [⋅], we want:

K(", F′′r ) = ||||||1 − S(r)||||||
⎛⎜⎜⎜⎝

|||||||||||||||||

|||||||||||||||||

||||S′|||| (1 + [ |S′|(|S′|+2|S′|)(|S′|+|S′|)(|S′|+|S′|+|S′|)]) (1 + [||||S′||||∕||||S′||||])(
1 +

[|S′|∕|S′|]) (1 + [|S′|∕|S′|]) −
||||S′||||

|||||||||||||||||

|||||||||||||||||
+
||||S′||||

⎞⎟⎟⎟⎠
− T(r) (3.2.10)

such, using equation 3.2.10, if set S′′(A) ⊆ S′(A) andP (⋅) is the power-set, then set C(A) is the largest element
of:

{S′′(A) ⊆ S′(A) ∶ ∀(�1 > 0)∃(M ∈ N)∀(" ∈ range(U′))∃ (j ∈ N) ∀ (r ∈ N) ∀
({F′′r } ∈ S′′(A)) (3.2.11)

( inf (range(U′)
) < " ≤ M, r ≥ j ⇒ ||||S′(", F′′r ) −K(", F′′r ) − inf

{Fg}∈S′(A)
(
S′(", Fg) −K(", Fg)) |||| < �1)} ⊆ P(S′(A))

w.r.t to inclusion, such the choice function is C(A) if the following contains just one element.
Otherwise, for k ∈ N, suppose we say Ck(A) represents the k-th iteration of the choice function of A,

e.g. C3(A) = C(C(C(A))), where the infinite iteration of C(A) (if it exists) is limk→∞
Ck(A) = C∞(A). Therefore,

when taking the following:

C′(A) =
⎧⎪⎨⎪⎩
C(A) if C(A) contains one elementCj(A) if j ∈ N, such for all k ≥ j, Ck(A) contains one elementC∞(A) if it exists, and C∞(A) contains one element

(3.2.12)

we say C′(A) is the choice function and the expected value, using def. 3.2.1, is Ë′′U′[f].
3.3. Questions on Choice Function

1. Supposewe define functionf ∶ A → R. What unique pre-structurewouldC′(A) contain (if it exists) for:
(a) A = Z where if

{F′′r }r∈N ∈ C′(Z) and f = idZ, we want
{F′′r }r∈N = {{m ∈ Z ∶ −r ≤ m ≤ r}}r∈N

(b) A = Q where if
{F′′r }r∈N ∈ C′(Q) and f = idQ, we want

{F′′r }r∈N =

{{s∕r! ∶ s ∈ Z, −r ⋅ r! ≤ s ≤ r ⋅ r!}}r∈N
(c) A = R where we’re not sure what

{F′′r }r∈N ∈ C′(R) would be if f = idR. What would
{F′′r }r∈N

be if it’s unique?
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3.4. Increasing Chances of an Unique and Finite Expected Value

If there exists a unique and finite Ë′′U′[f] (see §3.1) where:
∀ ({F′′r }r∈N ∈ C (A)) (Ë′′U′[f] is unique & finite

)
(3.4.1)

Then Ë′′U′[f] is the generalized expected value w.r.t choice function C, which answers criteria (1), (2),
(3), (4), (perhaps (5)) of the question in §2; however, there is still a chance that the equation 3.4.1 fails to
give an unique Ë′′U′[f]. Hence; if k ∈ N, we take the k-th iteration of the choice function C in 3.2.11, such
there exists a j ∈ N, where for all k ≥ j, if Ë′′U′[f] is unique and finite then the following is the generalized
expected value w.r.t finitely iterated C.

In other words, if the k-th iteration of C is represented as C[k] (where e.g. C3(A) = C(C(C(A)))), we
want a unique and finite Ë′′U′[f] where:

∃ (j ∈ N) ∀(k ∈ N)⎛⎜⎜⎝
k ≥ j ⇒ ∀( {F′′r }r∈N ∈ C[j] (A) ) (Ë′′U′[f] is unique & finite

) ⎞⎟⎟⎠
(3.4.2)

If this still does not give a unique and finite expected value, we then take the most generalized

expected valuew.r.t an infinitely iteratedCwhere if the infinite iteration ofC is stated as limk→∞
C[k](f[A]) =

C∞(f[A]), we then want a unique Ë′′U′[f] where:
∀( {F′′r }r∈N ∈ C∞ (A) ) (Ë′′U′[f] is unique & finite

)
(3.4.3)

However, in such cases, Ë′′U′[f] should only be used for functions where the expected value is infinite or
undefined or forworst-case functions—badly behaved f ∶ A → R (where for n ∈ N, A ⊆ Rn, and f is a
function) defined on infinite points covering an infinite expanse of space. For example:

1. For a worst-case f defined on countably infinite A (e.g. countably infinite "pseudo-random points"

non-uniformly scattered across the real plane), onemay need just one iteration ofC (sincemost function
on countable sets need just one iteration of C for Ë′′U′[f] to be unique); otherwise, one may use equation
3.4.2 for finite iterations of C.

2. For a worst-case f defined on uncountable A, we might have to use equation 3.4.3 as averaging such
a function might be nearly impossible. We can imagine this function as an uncountable number

of "pseudo-random" points non-uniformly generated on a subset of the real plane (see §4.1 for a
visualization.)

Note, however, that no matter how generalized and “meaningful" the extension of an expected value is,

there will always be an f where the expected value does not exist.
3.5. Questions Regarding The Answer

1. Using prevalence and shyness [3,4], can we say the set of f where either equations 3.4.1, 3.4.2 and 3.4.3
have an unique and finite Ë′′U′[f] which forms either a prevalent or neither prevalent nor shy subset of
RA? (If the subset is prevalent, this implies either one of the generalized expected values can be unique
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and finite for a “large" subset of RA; however, if the subset is neither prevalent nor shy we need more
precise definitions of “size" which takes “an exact probability that the expected values are unique &

finite"—some examples (which are shown in this answer [9]) being:

(a) Fractal Dimension notions
(b) Kolmogorov Entropy
(c) Baire Category and Porosity

2. There may be a total of 120 variables in the choice function C (excluding quantifiers). Is there a choice

function (ignoring quantifiers) which answers criteria (1), (2), (3) & (4) of the main question in §2 for a

"larger" subset of RA? (This might be impossible to answer since such a solution cannot be shown with
prevalence or shyness [3,4])—therefore, we need a more precise version of “size" with some examples,

again, shown in [9].
3. If question (2) is correct, what is the choice function C using either equations 3.4.1, 3.4.2 and 3.4.3 fully

answers the question in §2?
4. Can either equations 3.4.1, 3.4.2 and 3.4.3 (when A is the set of all Liouville numbers [10] and f = idA)

give a finite value? What would the value be?
5. Similar to how definition 11 in §4 approximates the expected value in definition 1, how do approximate

equations 3.4.1, 3.4.2 and 3.4.3?
6. Can programming be used to estimate equations 3.4.1, 3.4.2 and 3.4.3 respectively (if an unique/finite

result of either of the expected values exist)?

3.6. Applications

1. InQuantamagazine [11], Woodwrites on Feynman Path Integrals: “No knownmathematical procedure

canmeaningfully average[1] an infinite number of objects covering an infinite expanse of space in general.

The path integral is more of a physics philosophy than an exact mathematical recipe."—despite Wood’s

statement, mathematicians Bottazzi E. and EskewM. [12] found a constructive solution to the statement

using integrals defined on filters over families of finite sets; however, the solution was not unique as

one has to choose a value in a partially ordered ring of infinite and infinitesimal elements.

(a) Perhaps, if Botazzi’s and Eskew’s Filter integral [12] is not enough to solve Wood’s statement,

could we replace the path integral with expected values from equations 3.4.1, 3.4.2 and 3.4.3
respectively (or a complete solution to section 2)? (See, again, §4.1 for a visualization of Wood’s
statement.)

2. As stated in §1.1, “when the Lebesgue measure of A, measurable in the Caratheodory sense, has
zero or infinite volume (or undefined measure), there may be multiple, conflicting ways of defining a

"natural" uniform measure on A." This is an example of Bertand’s Paradox which shows, "the principle
of indifference (that allows equal probability among all possible outcomes when no other information

is given) may not produce definite, well-defined results for probabilities if applied uncritically, when

the domain of possibilities is infinite [13].

Using §3.1, perhaps if we take (from def. 3.2.12):
[1] Meaningful Average—The average answers the main question in §2
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C′(A) =
⎧⎪
⎨⎪⎩
C(A) if C(A) contains one elementCj(A) if j ∈ N, such for all k ≥ j, Ck(A) contains one element
C∞(A) if it exists, and C∞(A) contains one element

then for
{
F′′r }r∈N ∈ C′(A), if we want S ⊆ A and we get the following:

∃(U(S) ∈ R)∀(� > 0)∃(N ∈ N)∀(r ∈ N) (r ≥ N ⟹ U′(S ∩ F′′r )U′(F′′r ) −U(S) < �) (3.6.1)

ThenU(S)might serve as a solution to Bertand’s Paradox (unless there’s a better C′(A) and {F′′r }r∈N ∈
C′(A) which completely solves the main question in §2).
Now consider the following:

(a) How do we apply U(S) (or a better solution) to the usual example which demonstrates the
Bertand’s Paradox as follows: for an equilateral triangle (inscribed in a circle), suppose a chord

of the circle is chosen at random—what is the probability that the chord is longer than a side of

the triangle? [14] (According to Bertand’s Paradox there are three arguments which correctly

use the principle of indifference yet give different solutions to this problem [14]:

i. The “random endpoints" method: Choose two random points on the circumference of the

circle and draw the chord joining them. To calculate the probability in question imagine

the triangle rotated so its vertex coincides with one of the chord endpoints. Observe that

if the other chord endpoint lies on the arc between the endpoints of the triangle side

opposite the first point, the chord is longer than a side of the triangle. The length of the

arc is one-third of the circumference of the circle, therefore the probability that a random

chord is longer than a side of the inscribed triangle is 1∕3.
ii. The "random radial point" method: Choose a radius of the circle, choose a point on the

radius, and construct the chord through this point and perpendicular to the radius. To

calculate the probability in question imagine the triangle rotated so a side is perpendicular

to the radius. The chord is longer than a side of the triangle if the chosen point is nearer

the center of the circle than the point where the side of the triangle intersects the radius.

The side of the triangle bisects the radius, therefore the probability a random chord is

longer than a side of the inscribed triangle is 1∕2.
iii. The "randommidpoint" method: Choose a point anywhere within the circle and construct

a chord with the chosen point as its midpoint. The chord is longer than a side of the

inscribed triangle if the chosen point falls within a concentric circle of radius 1∕2 the
radius of the larger circle. The area of the smaller circle is one-fourth the area of the larger

circle, therefore the probability a random chord is longer than a side of the inscribed

triangle is 1∕4.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 March 2023                   doi:10.20944/preprints202302.0367.v6

https://en.wikipedia.org/wiki/Bertrand_paradox_(probability)
https://en.wikipedia.org/wiki/Bertrand_paradox_(probability)
https://en.wikipedia.org/wiki/Bertrand_paradox_(probability)
https://doi.org/10.20944/preprints202302.0367.v6


12 of 14

4. Glossary

4.1. Example of Case (2) of Worst Case Functions

(If the explanation below is difficult to understand, see this visualization to accompany the explanation [15],

where when changing the sliders each time, wait a couple of seconds for the graph to load.)

We wish to create a function that appears to be a “pseudo-randomly" distributed but has infinite points

that are non-uniform (i.e. does not have complete spatial randomness [16]) in the sub-space of R2, where the
expected value or integral of the function w.r.t uniform probability measure [2] (pp.32-37) is non-obvious (i.e.

not the center of the space the function covers nor the area of that space).

Suppose for real numbers x1, x2, y1 and y2, we generate an uncountable number of "nearly

pseudo-random" points that are non-uniform in the subspace [x1, x2] × [y1, y2] ⊆ R2.
We therefore define the function as f ∶ [x1, x2] → [y1, y2].
Now suppose b ∈ {2, 3, ⋅ ⋅ ⋅, 10} where the base-b expansion of real numbers, in interval [x1, x2], have

infinite decimals that approach x from the right side so when x1 = x2 we get f(x1) = f(x2).
Furthermore, for N ∪ {0} = N0, if r ∈ N0 and digitb ∶ R × Z → {0, 1, ⋅ ⋅ ⋅, b − 1} is a function where

digitb(x, r) takes the digit in the br-th decimal fraction of the base-b expansion of x (e.g. digit10(1.789, 2) = 8),
then

{gr′}r∈N0 is a sequence of functions such that gr′ ∶ N0 → N0 is defined to be:
g′r(x) = [10b sin(rx) + 10b ] (4.1.1)

then for some large k ∈ N and x1, x2 ∈ R, the intermediate function (before f) or f1 ∶ [x1, x2]→ R is defined

to be

f1(x) =
|||||||||||
⎛⎜⎝
∞∑
r=0 g′r+1

⎛⎜⎝
r+k∑
p=r digitb(x, p)

⎞⎟⎠
/br⎞⎟⎠− 10

||||||||||| = (4.1.2)

|||||||||||
⎛⎜⎝
⎛⎜⎝
∞∑
r=0

⎡⎢⎣
10b sin

⎛⎜⎝(r + 1)
⎛⎜⎝
r+k∑
p=r digitb(x, p)

⎞⎟⎠
⎞⎟⎠+

10b ⎤⎥⎦
⎞⎟⎠
/br⎞⎟⎠− 10

|||||||||||
where the points in f1 are "almost pseudo-randomly" and non-uniformly distributed on [x1, x2] × [0, 10]. What

we didwas convert every digit of the base-b expansion ofx to a pseudo-randomnumber that is non-equally likely

to be an integer, including and in-between, 0 and (10 ⋅ 10s)∕b. Furthermore, we also make the function appear
truly “pseudo-random", by adding the br-th decimal fraction with the next k decimal fractions; however, we
want to control the end-points of [0, 10s+1] such if y1, y2 ∈ R, we convert [x1, x2] × [0, 10] to [x1, x2] × [y1, y2]
by manipulating equation 4.1.2 to get:

f(x) =y2 − y2 − y1
10

f1(x) (4.1.3)

y2 − (y2 − y1
10

) |||||||||||
⎛⎜⎝
⎛⎜⎝
∞∑
r=0

⎡⎢⎣
10b sin

⎛⎜⎝(r + 1)
⎛⎜⎝
r+k∑
p=r digitb(x, p)

⎞⎟⎠
⎞⎟⎠+

10b ⎤⎥⎦
⎞⎟⎠
/br⎞⎟⎠− 10

|||||||||||
such the larger k is, the more pseudo-random the distribution of points in f in the space [x1, x2] × [y1, y2],
but unlike most distributions of such points, f is uncountable.
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4.2. Question Regarding Section 4.1

Let us give a specific example, suppose for the function in equation 4.1.3 of §4.1, we have:
• b = 3
• [x1, x2] × [y1, y2] = [0, 1] × [0, 1]
• k = 100

(one can try simpler parameters); what is the expected value using either equations 3.4.2 and 3.4.3 (or a more
complete solution to Section 2) if the answer is finite and unique?

What about for f in general (i.e. in terms of b, x1, x2, y1, y2 and k)?
(Note if x1, y1 → −∞ and x2, y2 → ∞, then the function is an explicit example of the function that

Wood[2] describes in Quanta Magazine)

4.3. Approximating the Expected Value

Definition 11 (Approximating theExpectedValue). In practice, the computation of this expected valuemay

be complicated if the setA is complicated. If analytic integration does not give a closed-form solution then a general

and relatively simple way to compute the expected value (up to high accuracy) is with importance sampling. To do

this, we produce values X1,X2, ...,XM ∼ IID g for some density function g with support A ⊆ support(g) ⊆ Rn
(hopefully with support fairly close to A) and we use the estimator:

�̂M ≡ ∑Mi=1 I(Xi ∈ A) ⋅ f(Xi)∕g(Xi)∑Mi=1 I(Xi ∈ A)∕g(Xi) (4.3.1)

From the law of large numbers, we can establish that E[f(X)] = limM→∞ �̂M so if we takeM to be large

then we should get a reasonably good computation of the expected value of interest.

Note importance sampling requires three things:

1. We need to know when point x is in set A or not
2. We need to be able to generate points from a density g that is on a support that coversA but is not too much

bigger than A
3. We have to be able to compute f(x) and g(x) for each point x ∈ A
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