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Article

Defining The Most Generalized, Natural Extension
of the Expected Value

Bharath Krishnan

Department of Mathematics, Indiana East University; bharathk98@gmail.com

Abstract: In this paper, we will extend the expected value of the function w.r.t the uniform probability

measure on sets measurable in the Carathèodory sense to be finite for a larger class of functions, since the

set of all measurable functions with infinite or undefined expected values may form a prevalent subset

of the set of all measurable functions. This means "almost all" measurable functions have infinite or

undefined expected values. Before we define the specific problem in Section 2, with a unique solution that

allows "more" functions to have finite expected values, we’ll outline some preliminary definitions. We’ll

then define the specific problem in Section 2 (with a partial solution in Section 3) to visualize the complete

solution to the problem. Along the way, we will ask a series of questions to clarify our understanding of

the paper.

Keywords: prevalence; expected value; uniform measure; measure theory; uniform cover; entropy;

sample; linear; superlinear; choice function; Bernard’s Paradox; pseudo-random

1. Background

I am an undergraduate from Indiana University despite being the age of a grad student. I should have

graduated by now, but my obsession with research prevents me from moving forward. There is a chance

that I might have a learning disability since writing isn’t very easy for me.

As I’ve been in and out of college, I never got the chance to rigorously learn the subjects I’m researching.

Most of what I learned was from Wikipedia, blogs and random research articles. I know little of what I read

but learn what I can from asking questions on math stack exchange.

What I truly want, however; is for someone to take my ideas and publish them.

I warn that the definitions may not be rigorous so try to go easy on me. (I recommend using

programming such as Mathematica, Python, JavaScript or Matlab to understand Sections 3 and 4).

2. Preliminaries

Suppose A is a set measurable in the Carathèodory sense [7], such for n ∈ N, A ⊆ Rn, and functionf ∶ A → R.

2.1. Motivation

It seems the set of measurable functions with infinite or undefined expected values (Definition 1), using
the uniformmeasure (pp. 32-37 [18]), may be a prevalent subset [11,15] of the set of all measurable functions,

meaning "almost every" measurable function has infinite or undefined expected values. Furthermore, when

the Lebesguemeasure ofA, measurable in the Caratheodory sense, has zero or infinite volume (or undefined
measure), there may be multiple, conflicting ways of defining a "natural" uniform measure on A.

Below I will attempt to define a question regarding an extension of the expected value (when it’s

undefined or infinite) which allows finite values instead.

Note the reason the question will be so long is there are plenty of “meaningless” extensions of the

expected value (e.g. if the expected value is infinite or undefined we can just replace it with zero).

Therefore we must be more specific about what is meant by “meaningful” extension but there are

some preliminary definitions we must clarify.
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2.2. Preliminary Definitions

Definition 1 (Expected value w.r.t the Uniform Probability Measure). From an answer to a question

in cross validated (a website for statistical questions) [10], let X ∼ Uniform(A) denote a uniform random

variable on set A ⊆ Rn and pX denote the probability density function from the radon-nikodym derivative

(pp. 419-427 [2]) of the uniform probability measure on Ameasurable in the Carathèodory sense. If I(x ∈ A)
denotes the indicator function on x ∈ A:

I(x ∈ A) = ⎧
⎨⎩
1 x ∈ A
0 x ∉ A

then the radon-nikodym derivative of uniform probability measure must have the form I(x ∈ A)∕U′(A). (NoteU′ is not the derivative of U in the sense of calculus but rather the denominator of the probability density

function derived from the uniform probability measure defined asU.)
Therefore, using the law of the unconscious statistician, we should get

E[f(X)] = ∫
Rn

f(x) ⋅ pX(x) dx (2.2.1)

= ∫
Rn

f(x) ⋅ I(x ∈ A)U′(A) dx

= 1U′(A) ∫A
f(x) dx (P1)

= EU′[f(X)]
such the expected value is undefined when A does not have a uniform probability distribution or f is not
integrable w.r.t the measureU′.
Definition 2 (Defining the pre-structure). Since there’s a chance that X ∼ Uniform(A) does not exist orf is not integrable w.r.t toU′, using Definition 1 we define a sequence of sets {Fr}r∈N where if:

(a) lim infr→∞ Fr = ⋃
r≥1

⋂
q≥rFq

(b) lim supr→∞ Fr = ⋂
r≥1

⋃
q≥rFq

then we have:

1. lim infr→∞ Fr = lim supr→∞ Fr = A
2. For all r ∈ N, Xr ∼ Uniform(Fr) exists (when A is countable infinite then for every r ∈ N, Fr must be a

finite set since Xr would be a discrete uniform distribution of Fr; otherwise, when A is uncountable, thenXr is the normalized Lebesgue measure or some other uniform measure on Fr (e.g. [8]) such for everyr ∈ N the Lebesgue measure or some other uniform measure on Fr exists and is finite.
3. For all r ∈ N,U′(Fr) is positive and finite such thatU′ is intrinsic. (For countably infinite A,U′ would
be the counting measure where U′(Fr) is positive and finite since Fr is finite. For uncountable A, U′
would either be the Lebesgue measure or the radon-nikodym derivative on some other uniform measure

on Fr (e.g. [8]), where either of the measures on Fr are positive and finite.)
where {Fr}r∈N is a pre-structure of A, since for every r ∈ N the sequence does not equal A, but "converges" toA as r increases (see (a) & (b) of this definition).

Example 1. Suppose A = Q. One pre-structure ofQ is {Fr}r∈N = {{c∕r! ∶ c ∈ Z, −r ⋅ r! ≤ c ≤ −r ⋅ r!}}r∈N
since:
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1. lim infr→∞ Fr = lim supr→∞ Fr = A ⟹
⋃
r≥1

⋂
q≥r {c∕q! ∶ c ∈ Z, −q ⋅ q! ≤ c ≤ −q ⋅ q} =⋂

r≥1
⋃
q≥r {c∕q! ∶ c ∈ Z, −q ⋅ q! ≤ c ≤ −q ⋅ q} = Q

2. For every r ∈ N, set Fr = {c∕r! ∶ c ∈ Z, −r ⋅ r! ≤ c ≤ r ⋅ r!} is finite, meaning each term of the

pre-structure has a discrete uniform distribution. Therefore, Xr ∼ Uniform(Fr) exists.
3. For every r ∈ N, Fr is finite; meaningU′ is the counting measure. Furthermore, sinceU′(Fr) = 2r ⋅ r! + 1

and for all r ∈ N, 2r ⋅ r! + 1 is positive and finite, criteria (3) of Definition 2 is satisfied.
Example 2. Suppose A = Q. Another pre-structure ofQ is

{Fr}r∈N = { r⋃
t=1 {c∕d ∶ c ∈ Z, d ∈ N, d ≤ t, −dt ≤ c ≤ dt}}

r∈N
where an union is added, since without the union

lim infr→∞ {c∕d ∶ c ∈ Z, d ∈ N, d ≤ r, −dr ≤ c ≤ dr} =⋃
r≥1

⋂
q≥r {c∕d ∶ c ∈ Z, d ∈ N, d ≤ q, −dq ≤ c ≤ dq} ≠ Q

Note that:

1. lim infr→∞ Fr = lim supr→∞ Fr = A ⟹
⋃
r≥1

⋂
q≥r

q⋃
t=1 {c∕d ∶ c ∈ Z, d ∈ N, d ≤ t, −dt ≤ c ≤ dt} =⋂

r≥1
⋃
q≥r

q⋃
t=1 {c∕d ∶ c ∈ Z, d ∈ N, d ≤ t, −dt ≤ c ≤ dt} = Q

2. For every r ∈ N, set Fr = r⋃
t=1 {c∕d ∶ c ∈ Z, d ∈ N, d ≤ t, −dt ≤ c ≤ dt} is finite, meaning each term of

the pre-structure has a discrete uniform distribution. Therefore, Xr ∼ Uniform(Fr) exists.
3. For every r ∈ N, Fr is finite; meaning U′ is the counting measure,

since (when �(⋅) is the Euler’s totient function (pp. 239-249 [16])) we have

U′(Fr) = r∑
t=1

|||{c∕d ∶ c ∈ Z, d ∈ N, d ≤ t, −dt ≤ c ≤ dt}||| = r∑
t=1 2t�(t), and

if correct,
r∑
t=1 2t�(t) is greater than zero and positive for all r ∈ N. Therefore, criteria (3) of Definition 2 is

satisfied.

There are plenty of pre-structures ofQ. Infact, there may be countably infinite many of these pre-structures.

Example 3. We need additional examples, where U′ is not the counting measure. Perhaps one example of{Fr}r∈N (where A is the Liouville numbers [6]) is:

{Fr}r∈N = ⎧
⎨⎩

⋂
n∈N∩[1,r]

⋃
q⩾2

⋃
p∈Z ((

pq − 1qn , pq + 1qn ) ⧵ {pq })
⎫
⎬⎭r∈N

(2.2.2)

Note we can show lim infr→∞ Fr = lim supr→∞ Fr = A
However, we must also show for every r ∈ N, there is a uniform measure on Fr. We assume this uniform
measure is the normalized ℎ-Hausdorff measure where ℎ is the (exact) dimension function of A [14].

If the ℎ-Hausdorffmeasure is positive and finite for every r ∈ N, thenU′ must be the ℎ-Hausdorffmeasure
which, again, is positive and finite. Therefore {Fr}r∈N or Equation (2.2.2) is a pre-structure.
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Definition 3 (Expected value of Pre-Structure). If {Fr}r∈N is a pre-structure of A (Definition 2), then forr ∈ N, if

EU′[f(Xr)] = 1U′ (Fr) ∫Fr f dx (2.2.3)

we then have that the expected value of the pre-structure could be described as EU′ [f(Xr)] → E⋆U′[f]
(Definition 1) where:

∀(� > 0)∃(N ∈ N)∀(r ∈ N) (r ≥ N ⇒ ||||EU′[f(Xr)] −E⋆U′[f]|||| < �) ⟹ (2.2.4)

∀(� > 0)∃(N ∈ N)∀(r ∈ N) (r ≥ N ⇒ |||||||||
1U′ (Fr) ∫Fr f dx −E⋆U′[f]||||||||| < �) (2.2.5)

Example 4. Suppose A = Q where f ∶ A → R such that:

f(x) = ⎧
⎨⎩
1 x ∈ {(2n+ 1)∕2m ∶ n ∈ Z, m ∈ N}0 x ∈ {j∕(2k + 1) ∶ j ∈ Z, k ∈ N}

Using the pre-structure in Example 1 or {Fr}r∈N = {{c∕r! ∶ c ∈ Z, −r ⋅ r! ≤ c ≤ −r ⋅ r!}}r∈N, we presume
(and prove) E⋆U′[f] using Definition 3 is 1.
And using the pre-structure in Example 2 or

{Fr}r∈N = { r⋃
t=1 {c∕d ∶ c ∈ Z, d ∈ N, d ≤ t, −dt ≤ c ≤ dt}}

r∈N
we presume (but must prove) E⋆U′[f], using Definition 3 is 1∕3.

This shows different pre-structures give different expected values; therefore, we must choose a unique set of

equivelant pre-structures (Definition 8) which gives the same & finite expected value.

Definition 4 (Uniform " coverings of each term of the pre-structure). We define the uniform "
coverings of each term of the pre-structure {Fr}r∈N (i.e., Fr) as a group of pair-wise disjoint sets that coverFr for every r ∈ N, such the measureU′ of each of the sets that cover Fr have the same value of " ∈ range(U′),
where " > inf (range(U′)) and the total sum ofU′ of the coverings is minimized. In shorter notation, if
• The element t ∈ N

• The set T ⊃ N is arbitrary and uncountable.

and setΩ is defined as:

Ω =
⎧⎪
⎨⎪⎩

{1, ⋅ ⋅ ⋅, t} if there are t ways of writing uniform " coverings of Fr
N if there are countably infinite ways of writing uniform " coverings of FrT if there are uncountable ways of writing uniform " coverings of Fr

(2.2.6)

then for every ! ∈ Ω, the set of uniform " coverings is defined using U(�, Fr, !) where ! “enumerates" all

possible uniform " coverings of Fr for every r ∈ N.

Definition 5 (Sample of the uniform " coverings of each term of the pre-structure). The sample of

uniform " coverings of each termof the pre-structure {Fr}r∈N orFr is the set of points, such for every " ∈ range(U′)
and r ∈ N, we take a point from each pair-wise disjoint set in the uniform " coverings of Fr (Definition 4). In
shorter notation, if

• The element k ∈ N
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• The setK ⊃ N is arbitrary and uncountable.

and set Ψ! is defined as:

Ψ! =
⎧⎪
⎨⎪⎩

{1, ⋅ ⋅ ⋅, k} if there are k ways of writing the sample of uniform " coverings of Fr
N if there are countably infinite ways of writing the sample of uniform " coverings of FrK if there are uncountable ways of writing the sample of uniform " coverings of Fr

(2.2.7)

then for every  ∈ Ψ! , the set of all samples of the set of uniform " coverings is defined using S(U(�, Fr, !),  ),
where  “enumerates" all possible samples ofU(�, Fr, !).
Definition 6 (Entropyon the sample ofuniformcoverings of each termof thepre-structure). Since

there are finitely many points in the sample of the uniform " coverings of each term of pre-structure {Fr}r∈N
(Definition 5), we:
1. Arrange the x-value of the points in the sample of uniform " coverings from least to greatest. This is defined

as:

Ord(S(U(�, Fr, !),  ))
2. Take the multi-set of the absolute differences between all consecutive pairs of elements in (1). This is defined

as:

Ord(S(U(�, Fr, !),  ))
3. Normalize (2) into a probability distribution, where for multi-set X, we have |X| as the cardinality of all

elements in the multi-set, including repeated ones. This is defined as:

P(S(U(�, Fr, !),  )) = {y∕ |||Ord(S(U(�, Fr, !),  ))||| ∶ y ∈ Ord(S(U(�, Fr, !),  ))}
4. Take the entropy of (3), (for further reading, see [12, p.61-95]). This is defined as:

E(S(U(�, Fr, !),  )) = − ∑
x∈P(S(U(�,Fr ,!), ))

x log2 x
where (4) is the entropy on the sample of uniform coverings of Fr .
Definition 7 (Pre-Structure Converging Uniformly to A). For every r ∈ N (using Definitions 4–6) if setA is finite: lim"→inf (range(U′)) supr∈N sup!∈Ω sup ∈Ψ! E(S(U(�, Fr, !),  )) ≥ E(Fr)
and if set A is non-finite:

lim"→inf (range(U′)) supr∈N sup!∈Ω sup ∈Ψ! E(S(U(�, Fr, !),  )) = +∞
we say the pre-structure {Fr}r∈N converges uniformly to A (or in shorter notation):

Fr r∈N⇉ A (2.2.8)

(Note we wish to define a uniform convergence of a sequence of sets to A since the definition is analogous to a

uniform measure.)

Definition 8 (Equivalent Pre-Structures). The pre-structures {Fr}r∈N and {F′j}j∈N of A are equivalent

if, from Definition 3, where EU′[f(Xr)] → E⋆U′[f] and EU′[f(X′j)] → E⋆⋆U′ [f]:
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∀ (f ∈ RA) (E⋆U′[f] = E⋆⋆U′ [f])
Definition 9 (Non-Equivalent Pre-Structures). The pre-structures {Fr}r∈N and {F′j}j∈N of A are

non-equivalent if, from Definition 3, where EU′[f(Xr)] → E⋆U′[f] and EU′[f(X′j)] → E⋆⋆U′ [f]:
∃ (f ∈ RA) (E⋆U′[f] ≠ E⋆⋆U′ [f])

Definition 10 (Pre-Structures converging Sublinearly, Linearly, or Superlinearly to A compared

to that of another Sequence). Suppose pre-structures {Fr}r∈N and {F′j}j∈N are non-equivalent and converge
uniformly to A; and suppose for every " ∈ range(U′), where " > inf (range(U′)) and r ∈ N:

(a) From Definition 5 and 6, suppose we have:
|S(U(�, Fr, !),  )| = (2.2.9)

inf {|S(U(�, F′j , !′),  ′)| ∶ j ∈ N, !′ ∈ Ω,  ′ ∈ Ψ!, E(S(U(�, F′j , !′),  ′)) ≥ E(S(U(�, Fr, !),  ))}
then (using 2.2.9) we have

� (�, r, !,  ) = |||S(U(�, Fr, !),  ))||| ∕|||S(U(�, Fr, !),  )||| (2.2.10)

(b) From Definitions 5 and 6, suppose we have:
|S(U(�, Fr, !),  )| = (2.2.11)

sup {|S(U(�, F′j , !′),  ′)| ∶ j ∈ N, !′ ∈ Ω,  ′ ∈ Ψ!, E(S(U(�, F′j , !′),  ′)) ≤ E(S(U(�, Fr, !),  ))}
then (using 2.2.11) we get

� (�, r, !,  ) = |||S(U(�, Fr, !),  ))||| ∕|||S(U(�, Fr, !),  )||| (2.2.12)

1. If using Equations (2.2.10) and (2.2.12) we have that:
lim"→inf(range(U′)) supr∈N sup!∈Ω sup ∈Ψ! � (�, r, !,  ) = lim"→inf (range(U′)) supr∈N sup!∈Ω sup ∈Ψ! � (�, r, !,  ) = 0

then we say {Fr}r∈N converges uniformly to A at a superlinear rate to that of {F′j}j∈N.
2. If using Equations (2.2.10) and (2.2.12) we have that:

0 < lim"→inf(range(U′)) supr∈N sup!∈Ω sup ∈Ψ! � (�, r, !,  ) = lim"→inf (range(U′)) supr∈N sup!∈Ω sup ∈Ψ! � (�, r, !,  ) < +∞
then we say {Fr}r∈N converges uniformly to A at a linear rate to that of {F′j}j∈N.

3. If using Equations (2.2.10) and (2.2.12) we have that:
lim"→inf(range(U′)) supr∈N sup!∈Ω sup ∈Ψ! � (�, r, !,  ) = lim"→inf (range(U′)) supr∈N sup!∈Ω sup ∈Ψ! � (�, r, !,  ) = +∞

we say {Fr}r∈N converges uniformly to A at a sublinear rate to that of {F′j}j∈N.
[leftmargin=*,labelsep=4.9mm] I assume � and � are always equal but I’m not sure how to prove this.

2.3. Question on Preliminary Definitions

1. Are there “simpler" alternatives to either of the preliminary definitions? (Keep this in mind as we

continue reading).
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3. Main Question

Does there exist a unique extension (or a method that constructively defines a unique extension) of the

expected value of f when the value’s finite, using the uniform probability measure (pp. 32-37 [18]) on sets

measurable in the Carathèodory sense, such we replace f with infinite or undefined expected values with f
defined on a chosen pre-structure which depends on A where:

1. The expected value of f on each term of the pre-structure is finite
2. The pre-structure converges uniformly to A
3. The pre-structure converges uniformly toA at a linear or superlinear rate to that of other non-equivalent

pre-structures of A which satisfies (1) and (2).
4. The generalized expected value of f on a pre-structure (i.e. an extension of Definition 3 to answer the

full question) has a unique & finite value, such the pre-structure satisfies (1), (2), and (3).
5. A choice function is defined which chooses a pre-structure from A where the following satisfies (1),

(2), (3), and (4) for the largest possible subset of RA.
6. If there is more than one choice function that satisfies (1), (2), (3), (4) and (5), we choose the choice

function with the “simplest form", meaning for a general pre-structure ofA, when each choice function
is fully expanded, we take the choice function with the fewest variables/numbers (excluding those

with quantifiers).

How do we answer this question? (See Sections 4.1, 4.2 and 4.4 for a partial answer.)

4. Informal Attempt to Answer Main Question

(I advise using computer programmings such as Mathematica, Python, JavaScript, or Matlab to

understand the definitions of the answer below.)

4.1. Generalized Expected Values

If the image of f underA is f[A] ∶= {f(x) ∶ x ∈ A}, such fromDefinition 2 and 7, we take the pre-structure

of f[A] where:
Fr r∈N⇉ f[A]

and take the pre-image under f of Fr (defined as f−1 [Fr] ∶= {x ∈ A ∶ f(x) ∈ Fr}) such that:
f−1 [Fr] r∈N⇉ A

However, note the expected value of f−1 [Fr] (Definition 3) may be infinite (e.g. unbounded f). Hence, for
every r ∈ N, we take

{{Fr,tr }tr∈N
}
r∈N where:

∀(r ∈ N) (Fr,tr tr∈N⇉ Fr)
Thus, the generalized expected value or ËU′[f] is:

∀(� > 0)∃(N ∈ N)∀(r ∈ N)∀ (tr ∈ N) (4.1.1)

⎛⎜⎝r ≥ N, tr ≥ N ⇒ 1
U′ (Fr,tr)∫Fr,tr f dx − ËU′[f] < �⎞⎟⎠

and (similar to Definitions 2 & 3) if

EU′ [f (Xr,tr
)] = 1

U′ (Fr,tr)∫Fr,tr f dx (4.1.2)
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we describe the process of the generalized expected value as EU′ [f (Xr,tr
)] → ËU′[f].

4.2. Choice Function

Suppose S′(A) is the set of all pre-structures ofAwhich satisfies criteria (1) and (2) of themain question

where the generalized expected value of the pre-structures, as they converge uniformly to A, is unique and
finite such the pre-structure

{F′′r }r∈N ∈ S′(A) should be a sequence of sets that satisfies criteria (1), (2), (3)
and (4) of the main question where (using the end of Section 4.1):

EU′
[f (X′′r,tr)]→ Ë′′U′[f] (4.2.1)

and pre-structure {F′j}j∈N is an element of S′(A) such (using the end of Section 4.1):
EU′ [f (X′j,tj)]→ Ë′U′[f] (4.2.2)

but is not an element of the set of equivelant pre-structures of
{F′′r }r∈N (i.e. Definition 8).

Further note from (a), with Equation (2.2.9) in Definition 10, if we take:
|S(U(�, F′′r , !),  )| = (4.2.3)

inf {|S(U(�, F′
j
, !′),  ′)| ∶ j ∈ N, !′ ∈ Ω,  ′ ∈ Ψ!, E(S(U(�, F′j , !′),  ′)) ≥ E(S(U(�, F′′r , !),  ))}

and from (b), with Equation (2.2.11) in Definition 10, we take:
|S(U(�, F′′r , !),  )| = (4.2.4)

sup {|S(U(�, F′
j
, !′),  ′)| ∶ j ∈ N, !′ ∈ Ω,  ′ ∈ Ψ!, E(S(U(�, F′j , !′),  ′)) ≤ E(S(U(�, F′′r , !),  ))}

Then, using Definition 5 with Equations (4.2.3) and (4.2.4), if:
sup
!∈Ω sup

 ∈Ψ! S(U(�, F′′r , !),  ) = S′(", F′′r ) = S′ (4.2.5)

sup
!∈Ω sup

 ∈Ψ! |S(U(�, F′′r , !),  )| = |S′(", F′′r )| = |S′| (4.2.6)

sup
!∈Ω sup

 ∈Ψ! |S(U(�, F′′r , !),  )| = |S′(", F′′r )| = |S′| (4.2.7)

where, using absolute value function ||⋅||, we have:
S(r) = (sup(F′′

r+1) − sup (F′′r )) (inf (F′′r ) − inf (F′′r+1)) |||||||| ( inf (F′′r ) − inf (F′′r+1) ) ( sup(F′′r+1) − sup (F′′r )− 1 ) ||||||||
(4.2.8)

such that

T(r) = (sup (F′′
r+1

) inf (F′′r )− sup (F′′r ) inf (F′′r+1)) ( (inf (F′′r )− inf (F′′r+1))− (sup (F′′
r+1

)− sup (F′′r ))− 1 )
(4.2.9)(inf (F′′r )− inf (F′′r+1)) (sup (F′′r+1)− sup (F′′r ))

and, using Equations (4.2.5)–(4.2.9) with the nearest integer function [⋅], we want:
K(", F′′r ) = ||1 − S(r)||

⎛⎜⎜⎜⎝

‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖
|S′| (1 + [ |S′|(|S′|+2|S′)|

(|S′|+ |S′|) (|S′|+ |S′|+ |S′|)]) (1 + [|S′|∕|S′|])(1 + [|S′|∕|S′|]) (1 + [|S′|∕|S′|]) − |S′|
‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖
+ |S′|

⎞⎟⎟⎟⎠
− T(r) (4.2.10)
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such, using Equation (4.2.10), if set S′′(A) ⊆ S′(A) and P (⋅) is the power-set, then set C(A) is the largest
element of:

{S′′(A) ⊆ S′(A) ∶ ∀(�1 > 0)∃(M ∈ N)∀(" ∈ range(U′))∃ (j ∈ N) ∀ (r ∈ N) ∀ ({F′′r } ∈ S′′(A)) (4.2.11)

( inf (range(U′)) < " ≤ M, r ≥ j ⇒ ||||S′(", F′′r ) −K(", F′′r ) − inf{Fg}∈S′(A)
(S′(", Fg) −K(", Fg)) |||| < �1)} ⊆ P(S′(A))

w.r.t to inclusion, such the choice function is C(A) if the following contains just one element.
Otherwise, for k ∈ N, suppose we say Ck(A) represents the k-th iteration of the choice function

of A, e.g. C3(A) = C(C(C(A))), where the infinite iteration of C(A) (if it exists) is limk→∞Ck(A) = C∞(A).
Therefore, when taking the following:

C′(A) =
⎧⎪
⎨⎪⎩
C(A) if C(A) contains one element
Cj(A) if j ∈ N, such for all k ≥ j, Ck(A) contains one elementC∞(A) if it exists, and C∞(A) contains one element

(4.2.12)

we say C′(A) is the choice function and the expected value, using Definition 4.2.1, is Ë′′U′[f].
4.3. Questions on Choice Function

1. Suppose we define function f ∶ A → R. What unique pre-structure would C′(A) contain (if it exists)
for:

(a) A = Z where if
{F′′r }r∈N ∈ C′(Z) and f = idZ, we want

{F′′r }r∈N = {{m ∈ Z ∶ −r ≤ m ≤ r}}r∈N
(b) A = Q where if

{F′′r }r∈N ∈ C′(Q) and f = idQ, we want
{F′′r }r∈N ={{s∕r! ∶ s ∈ Z, −r ⋅ r! ≤ s ≤ r ⋅ r!}}r∈N

(c) A = R where we’re not sure what
{F′′r }r∈N ∈ C′(R) would be if f = idR. What would

{F′′r }r∈N
be if it’s unique?

4.4. Increasing Chances of an Unique and Finite Expected Value

In caseC′(A), in equation 4.2.12, does not exist; if there exists a unique andfinite Ë′′U′[f] (see Section 4.1)
where:

∀ ({F′′r }r∈N ∈ C (A)) (Ë′′U′[f] is unique & finite
)

(4.4.1)

Then Ë′′U′[f] is the generalized expected value w.r.t choice function C, which answers criteria (1), (2),
(3), (4), (perhaps (5)) of the question in Section 3; however, there is still a chance that the Equation (4.4.1)
fails to give an unique Ë′′U′[f]. Hence; if k ∈ N, we take the k-th iteration of the choice function C in4.2.11, such there exists a j ∈ N, where for all k ≥ j, if Ë′′U′[f] is unique and finite then the following is the
generalized expected value w.r.t finitely iterated C.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 March 2023                   doi:10.20944/preprints202302.0367.v7

https://doi.org/10.20944/preprints202302.0367.v7


10 of 14

In other words, if the k-th iteration of C is represented as C[k] (where e.g. C3(A) = C(C(C(A)))), we
want a unique and finite Ë′′U′[f] where:

∃ (j ∈ N) ∀(k ∈ N)⎛⎜⎜⎝
k ≥ j ⇒ ∀( {F′′r }r∈N ∈ C[k] (A) ) (Ë′′U′[f] is unique & finite

) ⎞⎟⎟⎠
(4.4.2)

If this still does not give a unique and finite expected value, we then take the most generalized

expected value w.r.t an infinitely iterated C where if the infinite iteration of C is stated aslimk→∞C[k](f[A]) = C∞(f[A]), we then want a unique Ë′′U′[f] where:
∀( {F′′r }r∈N ∈ C∞ (A) ) (Ë′′U′[f] is unique & finite

)
(4.4.3)

However, in such cases, Ë′′U′[f] should only be used for functions where the expected value is infinite or
undefined or forworst-case functions—badly behaved f ∶ A → R (where for n ∈ N, A ⊆ Rn, and f is a
function) defined on infinite points covering an infinite expanse of space. For example:

1. For a worst-case f defined on countably infinite A (e.g. countably infinite "pseudo-random points"

non-uniformly scattered across the real plane), one may need just one iteration of C (since most

function on countable sets need just one iteration of C for Ë′′U′[f] to be unique); otherwise, one may
use Equation (4.4.2) for finite iterations of C.

2. For a worst-case f defined on uncountable A, we might have to use Equation (4.4.3) as averaging such
a function might be nearly impossible. We can imagine this function as an uncountable number of

"pseudo-random" points non-uniformly generated on a subset of the real plane (see Section 5.1 for a

visualization.)

Note, however, that no matter how generalized and “meaningful" the extension of an expected value is,

there will always be an f where the expected value does not exist.

4.5. Questions Regarding the Answer

1. Using prevalence and shyness [11,15], can we say the set of f where either Equations (4.4.1)–(4.4.3)
have an unique and finite Ë′′

U′[f] which forms either a prevalent or neither prevalent nor shy subset of
RA? (If the subset is prevalent, this implies either one of the generalized expected values can be unique

and finite for a “large" subset of RA; however, if the subset is neither prevalent nor shy we need more

precise definitions of “size" which takes “an exact probability that the expected values are unique &

finite"—some examples (which are shown in this answer [9]) being:

(a) Fractal Dimension notions
(b) Kolmogorov Entropy
(c) Baire Category and Porosity

2. There may be a total of 120 variables in the choice function C (excluding quantifiers). Is there a

choice function (ignoring quantifiers) which answers criteria (1), (2), (3) & (4) of the main question in

Section 3 for a "larger" subset of RA? (This might be impossible to answer since such a solution cannot

be shown with prevalence or shyness [11,15])—therefore, we need a more precise version of “size"

with some examples, again, shown in [9].
3. If question (2) is correct, what is the choice function C using either Equations (4.4.1)–(4.4.3) fully

answers the question in Section 3?
4. Can either Equations (4.4.1)–(4.4.3) (when A is the set of all Liouville numbers [6] and f = idA) give a

finite value? What would the value be?
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5. Similar to how definition 11 in Section 5 approximates the expected value in definition 1, how do

approximate Equations (4.4.1)–(4.4.3)?
6. Can programming be used to estimate Equations (4.4.1)–(4.4.3) respectively (if an unique/finite result

of either of the expected values exist)?

4.6. Applications

1. InQuantamagazine [3],Woodwrites on Feynman Path Integrals: “No knownmathematical procedure

canmeaningfully average (Meaningful Average—The average answers the main question in Section 3)

an infinite number of objects covering an infinite expanse of space in general. The path integral

is more of a physics philosophy than an exact mathematical recipe."—despite Wood’s statement,

mathematicians Bottazzi E. and Eskew M. [5] found a constructive solution to the statement using

integrals defined on filters over families of finite sets; however, the solution was not unique as one has

to choose a value in a partially ordered ring of infinite and infinitesimal elements.

(a) Perhaps, if Botazzi’s and Eskew’s Filter integral [5] is not enough to solve Wood’s statement,

could we replace the path integral with expected values from Equations (4.4.1)–(4.4.3)
respectively (or a complete solution to section 3)? (See, again, Section 5.1 for a visualization of
Wood’s statement.)

2. As stated in Section 2.1, “when the Lebesgue measure ofA, measurable in the Caratheodory sense, has
zero or infinite volume (or undefined measure), there may be multiple, conflicting ways of defining a

"natural" uniformmeasure onA." This is an example of Bertand’s Paradox which shows, "the principle
of indifference (that allows equal probability among all possible outcomes when no other information

is given) may not produce definite, well-defined results for probabilities if applied uncritically, when

the domain of possibilities is infinite [17].

Using Section 4.1, perhaps if we take (from Definition 4.2.12):

C′(A) =
⎧⎪
⎨⎪⎩
C(A) if C(A) contains one elementCj(A) if j ∈ N, such for all k ≥ j, Ck(A) contains one elementC∞(A) if it exists, and C∞(A) contains one element

then for
{F′′r }r∈N ∈ C′(A), if we want S ⊆ A and we get the following:

∃(U(S) ∈ R)∀(� > 0)∃(N ∈ N)∀(r ∈ N) (r ≥ N ⟹ U′(S ∩ F′′r )U′(F′′r ) −U(S) < �) (4.6.1)

Then U(S) might serve as a solution to Bertand’s Paradox (unless there’s a better C′(A) and{
F′′r }r∈N ∈ C′(A) which completely solves the main question in Section 3).
Now consider the following:

(a) How do we apply U(S) (or a better solution) to the usual example which demonstrates the
Bertand’s Paradox as follows: for an equilateral triangle (inscribed in a circle), suppose a chord

of the circle is chosen at random—what is the probability that the chord is longer than a side

of the triangle? [4] (According to Bertand’s Paradox there are three arguments which correctly

use the principle of indifference yet give different solutions to this problem [4]:

i. The “random endpoints" method: Choose two random points on the circumference of

the circle and draw the chord joining them. To calculate the probability in question

imagine the triangle rotated so its vertex coincides with one of the chord endpoints.

Observe that if the other chord endpoint lies on the arc between the endpoints of the
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triangle side opposite the first point, the chord is longer than a side of the triangle. The

length of the arc is one-third of the circumference of the circle, therefore the probability

that a random chord is longer than a side of the inscribed triangle is 1∕3.
ii. The "random radial point" method: Choose a radius of the circle, choose a point

on the radius, and construct the chord through this point and perpendicular to the

radius. To calculate the probability in question imagine the triangle rotated so a side is

perpendicular to the radius. The chord is longer than a side of the triangle if the chosen

point is nearer the center of the circle than the point where the side of the triangle

intersects the radius. The side of the triangle bisects the radius, therefore the probability

a random chord is longer than a side of the inscribed triangle is 1∕2.
iii. The "random midpoint" method: Choose a point anywhere within the circle and

construct a chord with the chosen point as its midpoint. The chord is longer than

a side of the inscribed triangle if the chosen point falls within a concentric circle of

radius 1∕2 the radius of the larger circle. The area of the smaller circle is one-fourth the
area of the larger circle, therefore the probability a random chord is longer than a side

of the inscribed triangle is 1∕4.
5. Glossary

5.1. Example of Case (2) of Worst Case Functions

(If the explanation below is difficult to understand, see this visualization to accompany the explanation

[1], where when changing the sliders each time, wait a couple of seconds for the graph to load.)

We wish to create a function that appears to be a “pseudo-randomly" distributed but has infinite points

that are non-uniform (i.e. does not have complete spatial randomness [13]) in the sub-space of R2, where
the expected value or integral of the function w.r.t uniform probability measure [18][ p.32-37] is non-obvious

(i.e. not the center of the space the function covers nor the area of that space).

Suppose for real numbers x1, x2, y1 and y2, we generate an uncountable number of "nearly

pseudo-random" points that are non-uniform in the subspace [x1, x2] × [y1, y2] ⊆ R2.
We therefore define the function as f ∶ [x1, x2] → [y1, y2].
Now suppose b ∈ {2, 3, ⋅ ⋅ ⋅, 10} where the base-b expansion of real numbers, in interval [x1, x2], have

infinite decimals that approach x from the right side so when x1 = x2 we get f(x1) = f(x2).
Furthermore, for N ∪ {0} = N0, if r ∈ N0 and digitb ∶ R ×Z → {0, 1, ⋅ ⋅ ⋅, b − 1} is a function where

digitb(x, r) takes the digit in the br-th decimal fraction of the base-b expansion of x (e.g. digit10(1.789, 2) = 8),
then

{
gr
′}
r∈N0 is a sequence of functions such that gr

′ ∶ N0 → N0 is defined to be:

g′r(x) = [10
b
sin(rx) + 10

b
] (5.1.1)

then for some large k ∈ N and x1, x2 ∈ R, the intermediate function (before f) or f1 ∶ [x1, x2] → R is

defined to be

f1(x) =
|||||||||||
⎛⎜⎝
∞∑
r=0 g

′
r+1

⎛⎜⎝
r+k∑
p=r digitb(x, p)

⎞⎟⎠
/
br
⎞⎟⎠
− 10||||||||||| = (5.1.2)

|||||||||||
⎛⎜⎝
⎛⎜⎝
∞∑
r=0

⎡⎢⎣
10
b
sin ⎛⎜⎝(r + 1)

⎛⎜⎝
r+k∑
p=r digitb(x, p)

⎞⎟⎠
⎞⎟⎠
+ 10

b

⎤⎥⎦
⎞⎟⎠
/
br
⎞⎟⎠
− 10|||||||||||

where the points in f1 are "almost pseudo-randomly" and non-uniformly distributed on [x1, x2] × [0, 10].
What we did was convert every digit of the base-b expansion of x to a pseudo-random number that is

non-equally likely to be an integer, including and in-between, 0 and (10 ⋅ 10s)∕b. Furthermore, we also
make the function appear truly “pseudo-random", by adding the br-th decimal fraction with the next k
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decimal fractions; however, we want to control the end-points of [0, 10s+1] such if y1, y2 ∈ R, we convert[x1, x2] × [0, 10] to [x1, x2] × [y1, y2] by manipulating Equation (5.1.2) to get:
f(x) =y2 − y2 − y110 f1(x) (5.1.3)

y2 − (y2 − y110 ) |||||||||||
⎛⎜⎝
⎛⎜⎝
∞∑
r=0

⎡⎢⎣
10
b
sin ⎛⎜⎝(r + 1)

⎛⎜⎝
r+k∑
p=r digitb(x, p)

⎞⎟⎠
⎞⎟⎠
+ 10

b

⎤⎥⎦
⎞⎟⎠
/
br
⎞⎟⎠
− 10|||||||||||

such the larger k is, the more pseudo-random the distribution of points in f in the space [x1, x2] × [y1, y2],
but unlike most distributions of such points, f is uncountable.

5.2. Question Regarding Section 4.1

Let us give a specific example, suppose for the function in Equation (5.1.3) of Section 5.1, we have:
• b = 3
• [x1, x2] × [y1, y2] = [0, 1] × [0, 1]
• k = 100
(one can try simpler parameters); what is the expected value using either Equations (4.4.2) and (4.4.3) (or a
more complete solution to section 3) if the answer is finite and unique?

What about for f in general (i.e. in terms of b, x1, x2, y1, y2 and k)?
(Note if x1, y1 → −∞ and x2, y2 → ∞, then the function is an explicit example of the function that

Wood (Wood wrote on Feynman Path Integrals: “No known mathematical procedure can meaningfully

average 1 an infinite number of objects covering an infinite expanse of space in general".) describes in

Quanta Magazine)

5.3. Approximating the Expected Value

Definition 11 (Approximating the Expected Value). In practice, the computation of this expected value

may be complicated if the set A is complicated. If analytic integration does not give a closed-form solution then

a general and relatively simple way to compute the expected value (up to high accuracy) is with importance

sampling. To do this, we produce values X1,X2, ...,XM ∼ IID g for some density function g with support

A ⊆ support(g) ⊆ Rn (hopefully with support fairly close to A) and we use the estimator:

�̂M ≡ ∑M

i=1 I(Xi ∈ A) ⋅ f(Xi)∕g(Xi)∑M

i=1 I(Xi ∈ A)∕g(Xi) (5.3.1)

From the law of large numbers, we can establish that E[f(X)] = limM→∞ �̂M so if we takeM to be large

then we should get a reasonably good computation of the expected value of interest.

Note importance sampling requires three things:

1. We need to know when point x is in set A or not
2. We need to be able to generate points from a density g that is on a support that covers A but is not too

much bigger than A
3. We have to be able to compute f(x) and g(x) for each point x ∈ A
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