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Abstract: In this paper, we will extend the expected value of the function w.r.t the uniform probability

measure on sets measurable in the Carathèodory sense to be finite for a larger class of functions, since

the set of all measurable functions with infinite or undefined expected values forms a prevalent subset

of the set of all measurable functions, which means "almost all" measurable functions have infinite

or undefined expected values. Before we define the specific problem in section 2, we will outline

some preliminary definitions. We’ll then define the specific problem (along with a partial solution

in section 3) to visualize the complete solution. Along the way, we will ask a series of questions to

clarify our understanding of the paper.
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1. Background

I am an undergraduate from Indiana University despite being the age of a grad student. I should

have graduated by now, but my obsession with research prevents me from moving forward. There is a

chance that I might have a learning disability since writing isn’t very easy for me.

As I’ve been in and out of college, I never got the chance to rigorously learn the subjects I’m

researching. Most of what I learned was from Wikipedia, blogs and random research articles. I know

little of what I read but learn what I can from asking questions on math stack exchange.

What I truly want, however; is for someone to take my ideas and publish them.

I warn that the definitions may not be rigorous so try to go easy on me. (I recommend using

programming such as Mathematica, Python, JavaScript or Matlab to understand later sections).

2. Preliminaries

Suppose A is a set measurable in the Carathèodory sense [1], such for n ∈ N, A ⊆ Rn, and function

f : A → R.

2.1. Motivation

It seems the set of measurable functions with infinite or undefined expected values (def. 1),

using the uniform measure [2] (p.32-37), may be a prevalent subset [3,4] of the set of all measurable

functions, meaning "almost every" measurable function has infinite or undefined expected values.

Furthermore, when the Lebesgue measure of A, measurable in the Caratheodory sense, has zero or

infinite volume (or undefined measure), there may be multiple, conflicting ways of defining a "natural"

uniform measure on A.

Below I will attempt to define a question regarding an extension of the expected value (when it’s

undefined or infinite) which allows for finite values instead.

Note the reason the question will be so long is there are plenty of “meaningless” extensions of the

expected value (e.g. if the expected value is infinite or undefined we can just replace it with zero).

Therefore we must be more specific about what is meant by “meaningful” extension but there are

some preliminary definitions we must clarify.
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2.2. Preliminary Definitions

Definition 1 (Expected value w.r.t the Uniform Probability Measure). From an answer to a question

in cross validated (a website for statistical questions) [5] , let X ∼ Uniform(A) denote a uniform random

variable on set A ⊆ Rn and pX denote the probability density function from the radon-nikodym derivative [6]

(p.419-427) of the uniform probability measure on A measurable in the Carathèodory sense. If I(x ∈ A) denotes

the indicator function on x ∈ A:

I(x ∈ A) =

{

1 x ∈ A

0 x ̸∈ A

then the radon-nikodym derivative of uniform probability measure must have the form I(x ∈ A)/U′(A). (Note

U′ is not the derivative of U in the sense of calculus but rather the denominator of the probability density

function derived from the uniform probability measure U.)

Therefore, by using the law of the unconscious statistician, we should get

E[ f (X)] =
∫

Rn

f (x) · pX(x) dx (1)

=
∫

Rn

f (x) · I(x ∈ A)

U′(A)
dx

=
1

U′(A)

∫

A

f (x) dx (P1)

= EU′ [ f (X)]

such the expected value is undefined when A does not have a uniform probability distribution or f is not

integrable w.r.t the measure U′.

Definition 2 (Defining the pre-structure). Since there’s a chance that X ∼ Uniform(A) does not exist or f

is not integrable w.r.t to U′, using def. 1 we define a sequence of sets (Fr)r∈N where if:

(a) lim inf
r→∞

Fr =
⋃

r≥1

⋂

q≥r
Fq

(b) lim sup
r→∞

Fr =
⋂

r≥1

⋃

q≥r
Fq

then we have:

(1) lim inf
r→∞

Fr = lim sup
r→∞

Fr = A

(2) For all r ∈ N, Xr ∼ Uniform(Fr) exists (when A is countable infinite, then for every r ∈ N, Fr must be

finite since Xr would be a discrete uniform distribution of Fr; otherwise, when A is uncountable, Xr is

the normalized Lebesgue measure or some other uniform measure on Fr (e.g. [7]) where for every r ∈ N,

either measure on Fr exists and is finite.
(3) For all r ∈ N, U′(Fr) is positive and finite such that U′ is intrinsic. (For countably infinite A, U′ would

be the counting measure where U′(Fr) is positive and finite since Fr is finite. For uncountable A, U′

would either be the Lebesgue measure or the radon-nikodym derivative of some other uniform measure on

Fr (e.g. [7]), where either of the measures on Fr are positive and finite.)

where (Fr)r∈N is a pre-structure of A, since for every r ∈ N the sequence does not equal A, but "converges" to

A as r increases (see (a) & (b) of this definition).

Example 1. Suppose A = Q. One pre-structure of Q is (Fr)r∈N = ({c/r! : c ∈ Z, −r · r! ≤ c ≤ r · r!})r∈N
since:
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(1) lim inf
r→∞

Fr = lim sup
r→∞

Fr = A =⇒

⋃

r≥1

⋂

q≥r

{c/q! : c ∈ Z, −q · q! ≤ c ≤ q · q} =
⋂

r≥1

⋃

q≥r

{c/q! : c ∈ Z, −q · q! ≤ c ≤ q · q} = Q

(2) For every r ∈ N, set Fr = {c/r! : c ∈ Z, −r · r! ≤ c ≤ r · r!} is finite, meaning each term of the

pre-structure has a discrete uniform distribution. Therefore, Xr ∼ Uniform(Fr) exists.
(3) For every r ∈ N, Fr is finite; meaning U′ is the counting measure. Furthermore, since U′(Fr) = 2r · r!+ 1

and for all r ∈ N, 2r · r! + 1 is positive and finite, criteria (3) of def. 2 is satisfied.

Example 2. Suppose A = Q. Another pre-structure of Q is

(Fr)r∈N = ({c/d : c ∈ Z, d ∈ N, d ≤ r, −dr ≤ c ≤ dr})r∈N

where we note the following:

(1) lim inf
r→∞

Fr = lim sup
r→∞

Fr = A =⇒
⋃

r≥1

⋂

q≥r

{c/d : c ∈ Z, d ∈ N, d ≤ q, −dq ≤ c ≤ dq} =
⋂

r≥1

⋃

q≥r

{c/d : c ∈ Z, d ∈ N, d ≤ q, −dq ≤ c ≤ dq} = Q

(2) For every r ∈ N, set Fr = {c/d : c ∈ Z, d ∈ N, d ≤ r, −dr ≤ c ≤ dr} is finite, meaning each term of

the pre-structure has a discrete uniform distribution. Therefore, Xr ∼ Uniform(Fr) exists.
(3) For every r ∈ N, Fr is finite; meaning U′ is the counting measure,

since (when ϕ(·) is the Euler’s totient function [8] (p.239-249)) we have

U′(Fr) = |{c/d : c ∈ Z, d ∈ N, d ≤ r, −dr ≤ c ≤ dr}| =
r

∑
d=1

2dϕ(d), and

if correct,
r

∑
d=1

2dϕ(d) is greater than zero and positive for all r ∈ N. Therefore, criteria (3) of def. 2 is

satisfied.

There are plenty of pre-structures of Q. Infact, there may be countably infinite many of these

pre-structures.

Example 3. We need additional examples, where U′ is not the counting measure. Perhaps one example of

{Fr}r∈N (where A = R) is:

(Fr)r∈N = ([−r, r])r∈N (2)

It’s obvious that:

lim inf
r→∞

Fr = lim sup
r→∞

Fr = A =⇒
⋃

r≥1

⋂

q≥r

[−q, q] =
⋂

r≥1

⋃

q≥r

[−q, q] = R

Note that the uniform random variable of A = R doesn’t exist but for every r ∈ N, the uniform density of Fr is

I(x ∈ [−r, r])/(2r).

Furthermore, for every r ∈ N, U′ is the 1-d Lebesgue measure where U′(Fr) = 2r, such where 2r is positive

and finite (since r > 0).

Definition 3 (Expected value of f on Pre-Structure). If (Fr)r∈N is a pre-structure of A (def. 2), then for

r ∈ N, if

EU′ [ f (Xr)] =
1

U′ (Fr)

∫

Fr

f dx (3)
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we then have that the expected value of f on the pre-structure could be described as EU′ [ f (Xr)] → E⋆

U′ [ f ]

where:

∀(ϵ > 0)∃(N ∈ N)∀(r ∈ N)
(

r ≥ N ⇒
∣

∣EU′ [ f (Xr)]−E⋆

U′ [ f ]
∣

∣ < ϵ
)

=⇒ (4)

∀(ϵ > 0)∃(N ∈ N)∀(r ∈ N)

(

r ≥ N ⇒
∣

∣

∣

∣

1

U′ (Fr)

∫

Fr

f dx −E⋆

U′ [ f ]

∣

∣

∣

∣

< ϵ

)

(5)

Example 4. Suppose A = Q where f : A → R such that:

f (x) =

{

1 x ∈ {(2n + 1)/2m : n ∈ Z, m ∈ N}
0 x ̸∈ {(2n + 1)/2m : n ∈ Z, m ∈ N}

Using the pre-structure in example 1 or (Fr)r∈N = ({c/r! : c ∈ Z, −r · r! ≤ c ≤ r · r!})r∈N, we presume

(and prove) E⋆

U′ [ f ] using def. 3 is 1.

And using the pre-structure in example 2 or

(Fr)r∈N = ({c/d : c ∈ Z, d ∈ N, d ≤ r, −dr ≤ c ≤ dr})r∈N

we presume (but must prove) E⋆

U′ [ f ], using def. 3 is 1/3.

This shows different pre-structures give different expected values; therefore, we must choose a unique set of

equivelant pre-structures (def. 8) which gives the same & finite expected value.

Definition 4 (Uniform ε coverings of each term of the pre-structure). We define the uniform ε coverings

of each term of the pre-structure (Fr)r∈N (i.e., Fr) as a group of pair-wise disjoint sets that cover Fr for every

r ∈ N, such the measure U′ of each of the sets that cover Fr have the same value of ε ∈ range(U′), where ε > 0

and the total sum of U′ of the coverings is minimized. In shorter notation, if

• The element t ∈ N

• The set T ⊃ N is arbitrary and uncountable.

and set Ω is defined as:

Ω =















{1, · · ·, t} if there are t ways of writing uniform ε coverings of Fr

N if there are countably infinite ways of writing uniform ε coverings of Fr

T if there are uncountable ways of writing uniform ε coverings of Fr

(6)

then for every ω ∈ Ω, the set of uniform ε coverings is defined using U (ϵ, Fr, ω) where ω “enumerates" all

possible uniform ε coverings of Fr for every r ∈ N.

Example 5. Suppose

(1) A = Q∩ [0, 1]
(2) (Fr)r∈N = ({c/d : c ∈ Z, d ∈ N, d ≤ r, 0 ≤ c ≤ d})r∈N

Inorder to calculate U (2, F4, 1), note that:

F4 = {0, 1} ∪ {0, 1/2, 1} ∪ {0, 1/3, 2/3, 1} ∪ {0, 1/4, 2/4, 3/4, 1} ∪ {0/5, 1/5, 2/5, 3/5, 4/5, 5/5} (7)

= {0, 1, 1/2, 1/3, 2/3, 1/4, 3/4, 1/5, 2/5, 3/5, 4/5} (8)

and; since ε = 2 and U′ is the counting measure, one example of U (2, F4, 1) is

{{0, 1} , {1/2, 1/3} , {2/3, 1/4} , {3/4, 1/5} , {2/5, 3/5} , {4/5, 6/5}}
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Note U′ (in this case the counting measure) of each set in the uniform ε covering is 2 where we’re "over-covering"

F4 by one element (i.e. 6/5) as we are minimizing the total sum of U′ of the coverings (which for U (2, F4, 1) is

6 · 2 = 12).

If U (2, F4, 1) = {{0, 1} , {1/2, 1/3} , {2/3, 1/4} , {3/4, 1/5} , {2/5, 3/5} , {4/5, 6/5}}, then

U (2, F4, 2) = {{0, 1/2} , {1/3, 1} , {2/3, 1/4} , {3/4, 1/5} , {2/5, 3/5} , {4/5, 6/5}}

and e.g.

U (2, F4, 3) = {{0, 1/3} , {1/2, 1} , {2/3, 1/4} , {3/4, 1/5} , {2/5, 3/5} , {4/5, 6/5}}

Also note, for counting measure U′, where ε > 0 and ε ∈ range(U′) (i.e. ε ∈ N), we have that inf(ε) = 1.

Definition 5 (Sample of the uniform ε coverings of each term of the pre-structure). The sample

of uniform ε coverings of each term of the pre-structure (Fr)r∈N or Fr is the set of points, such for every

ε ∈ range(U′) and r ∈ N, we take a point from each pair-wise disjoint set in the uniform ε coverings of Fr (def.

4). In shorter notation, if

• The element k ∈ N

• The set K ⊃ N is arbitrary and uncountable.

and set Ψω is defined as:

Ψω =















{1, · · ·, k} if there are k ways of writing the sample of uniform ε coverings of Fr

N if there are countably infinite ways of writing the sample of uniform ε coverings of Fr

K if there are uncountable ways of writing the sample of uniform ε coverings of Fr

(9)

then for every ψ ∈ Ψω , the set of all samples of the set of uniform ε coverings is defined using S(U (ϵ, Fr, ω), ψ),

where ψ “enumerates" all possible samples of U (ϵ, Fr, ω).

Example 6. From example 5 where:

(1) A = Q∩ [0, 1]
(2) (Fr)r∈N = ({c/d : c ∈ Z, d ∈ N, d ≤ r, 0 ≤ c ≤ d})r∈N
(3) U (2, F4, 1) = {{0, 1} , {1/2, 1/3} , {2/3, 1/4} , {3/4, 1/5} , {2/5, 3/5} , {4/5, 6/5}}

Then one sample of U (2, F4, 1) = {{0, 1} , {1/2, 1/3} , {2/3, 1/4} , {3/4, 1/5} , {2/5, 3/5} , {4/5, 6/5}}
is:

S(U (2, Fr, 1), 1) = {0, 1/3, 1/4, 1/5, 3/5, 6/5}

and another sample of U (2, F4, 1) = {{0, 1} , {1/2, 1/3} , {2/3, 1/4} , {3/4, 1/5} , {2/5, 3/5} , {4/5, 6/5}}
is:

S(U (2, Fr, 1), 2) = {0, 1/2, 1/4, 3/4, 2/5, 4/5}

Definition 6 (Entropy on the sample of uniform coverings of each term of the pre-structure). Since

there are finitely many points in the sample of the uniform ε coverings of each term of pre-structure {Fr}r∈N
(def. 5), we:

(1) Arrange the x-value of the points in the sample of uniform ε coverings from least to greatest. This is

defined as:

Ord(S(U (ϵ, Fr, ω), ψ))

(2) Take the multi-set of the absolute differences between all consecutive pairs of elements in (1). This is

defined as:

∇Ord(S(U (ϵ, Fr, ω), ψ))
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(3) Normalize (2) into a probability distribution. This is defined as:

P(S(U (ϵ, Fr, ω), ψ)) =







y

/



 ∑
z∈∇Ord(S(U (ϵ,Fr ,ω),ψ))

z



 : y ∈ ∇Ord(S(U (ϵ, Fr, ω), ψ))







(10)

(4) Take the entropy of (3), (for further reading, see [9] (p.61-95)). This is defined as:

E(S(U (ϵ, Fr, ω), ψ)) = − ∑
x∈P(S(U (ϵ,Fr ,ω),ψ))

x log2 x

where (4) is the entropy on the sample of uniform coverings of Fr.

Example 7. From example 6:

(1) A = Q∩ [0, 1]
(2) (Fr)r∈N = ({c/d : c ∈ Z, d ∈ N, d ≤ r, 0 ≤ c ≤ d})r∈N
(3) U (2, F4, 1) = {{0, 1} , {1/2, 1/3} , {2/3, 1/4} , {3/4, 1/5} , {2/5, 3/5} , {4/5, 6/5}}
(4) S(U (2, F4, 1), 1) = {0, 1/3, 1/4, 1/5, 3/5, 6/5}

Then

(1) Ord (S(U (2, F4, 1), 1)) = {0, 1/5, 1/4, 1/3, 3/5, 6/5} which organizes elements in S(U (2, F4, 1), 1)

from least to greatest.
(2) ∇Ord (S(U (2, F4, 1), 1)) = {|0 − 1/5| , |1/5 − 1/4| , |1/4 − 1/3| , |1/3 − 3/5| , |3/5 − 6/5|} =

{1/5, 1/20, 1/12, 4/15, 3/5}
(3) Since ∑

z∈∇Ord(S(U (2,F4,1),1))
z = 1/5 + 1/20 + 1/12 + 4/15 + 3/5 = 6/5 we use this to normalize (2)

into a probability distribution

P(S(U (2, F4, 1), 1)) = {y/(6/5) : y ∈ ∇Ord(S(U (2, F4, 1), 1))} = {(5/6)y : y ∈ {1/5, 1/20, 1/12, 4/15, 3/5}} =

{1/6, 1/24, 5/72, 2/9, 1/2}

(4) Hence we take the entropy of {1/6, 1/24, 5/72, 2/9, 1/2} or:

E(S(U (ϵ, Fr , ω), ψ)) = − ∑
x∈P(S(U (ϵ,Fr ,ω),ψ))

x log2 x =

− ((1/6) log2 (1/6) + (1/24) log2(1/24) + (5/72) log2(5/72) + (2/9) log2(2/9) + (1/2) log2(1/2)) ≈ 1.8713

Definition 7 (Pre-Structure Converging Uniformly to A). For every r ∈ N (using def. 4, 5, and 6) if set A

is finite and for ε ∈ range(U′), we have ε > 0, we then want:

lim
ε→0

sup
r∈N

sup
ω∈Ω

sup
ψ∈Ψω

E(S(U (ϵ, Fr, ω), ψ)) ≥ E(Fr)

and if set A is non-finite:

lim
ε→0

sup
r∈N

sup
ω∈Ω

sup
ψ∈Ψω

E(S(U (ϵ, Fr, ω), ψ)) = +∞

we say the pre-structure (Fr)r∈N converges uniformly to A (or in shorter notation):

Fr

r∈N
⇒ A (11)

(Note we wish to define a uniform convergence of a sequence of sets to A since the definition is analogous to a

uniform measure.)

Theorem 1. Show every pre-structure of A converges uniformly to A.
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Example 8. I assume, using example 5, if

(1) A = Q∩ [0, 1]
(2) (Fr)r∈N = ({c/d : c ∈ Z, d ∈ N, d ≤ r, 0 ≤ c ≤ d})r∈N

then Fr

r∈N
⇒ A. I need to prove this.

Definition 8 (Equivalent Pre-Structures). The pre-structures (Fr)r∈N and (F′
j )j∈N of A are equivalent if

for all f ∈ RA, where from def. 3, EU′ [ f (Xr)] → E⋆

U′ [ f ] or EU′ [ f (X′
j)] → E⋆⋆

U′ [ f ] such that:

E⋆

U′ [ f ] = E⋆⋆

U′ [ f ]

Definition 9 (Equivelant Pre-Structures (Alternate Def.)). The pre-structures (Fr)r∈N and (F′
j )j∈N of A

are equivalent if we have:

rj = arg min
r∈N

{

U′(Fr \ F′
j ) : Fr ⊇ F′

j

}

is the r-value (for every j ∈ N) where U′(Fr \ F′
j ) is minimized

r′j = arg max
r∈N

{

U′(F′
j \ Fr) : Fr ⊆ F′

j

}

is the r-value (for every j ∈ N) where U′(F′
j \ Fr) is maximized

jr = arg min
j∈N

{

U′(F′
j \ Fr) : F′

j ⊇ Fr

}

is the j-value (for every r ∈ N) where U′(F′
j \ Fr) is minimized and:

j′r = arg max
j∈N

{

U′(F′
j \ Fr) : F′

j ⊆ Fr

}

is the j-value (for every r ∈ N) where U′(F′
j \ Fr) is maximized such that:

sup







inf

{

U′
( ∞
⋃

j=1

Frj
\ F′

j

)

, U′
( ∞
⋃

j=1

F′
j \ Fr′j

)}

, inf

{

U′
( ∞
⋃

r=1

Fjr \ Fr

)

, U′
( ∞
⋃

r=1

Fr \ Fj′r

)

}







< +∞

(12)

means the pre-structures (Fr)r∈N and (F′
j )j∈N are equivelant.

Example 9. From example 3, if A = R where (Fr)r∈N = ([−r, r])r∈N, the cantor set is C and (F′
j )j∈N =

([−j, j] ∪ {x + j : x ∈ C})j∈N. Since with either pre-structure, U′ is the 1-d dimensional Lebesgue measure

and (using equation 12) we get:

sup {inf {+∞, 0} , inf {0,+∞}} = sup {0, 0} = 0 < +∞

Definition 10 (Non-Equivalent Pre-Structures). The pre-structures (Fr)r∈N and (F′
j )j∈N of A are

non-equivalent if there exists an f ∈ RA, where from def. 3, EU′ [ f (Xr)] → E⋆

U′ [ f ] or EU′ [ f (X′
j)] → E⋆⋆

U′ [ f ]

where:

E⋆

U′ [ f ] ̸= E⋆⋆

U′ [ f ]
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Definition 11 (Non-Equivelant Pre-Structures (Alternate Def.)). The pre-structures (Fr)r∈N and (F′
j )j∈N

of A are non-equivalent if we have:

rj = arg min
r∈N

{

U′(Fr \ F′
j ) : Fr ⊇ F′

j

}

is the r-value (for every j ∈ N) where U′(Fr \ F′
j ) is minimized

r′j = arg max
r∈N

{

U′(F′
j \ Fr) : Fr ⊆ F′

j

}

is the r-value (for every j ∈ N) where U′(F′
j \ Fr) is maximized

jr = arg min
j∈N

{

U′(F′
j \ Fr) : F′

j ⊇ Fr

}

is the j-value (for every r ∈ N) where U′(F′
j \ Fr) is minimized and:

j′r = arg max
j∈N

{

U′(F′
j \ Fr) : F′

j ⊆ Fr

}

is the j-value (for every r ∈ N) where U′(F′
j \ Fr) is maximized such that:

sup







inf

{

U′
( ∞
⋃

j=1

Frj
\ F′

j

)

, U′
( ∞
⋃

j=1

F′
j \ Fr′j

)}

, inf

{

U′
( ∞
⋃

r=1

Fjr \ Fr

)

, U′
( ∞
⋃

r=1

Fr \ Fj′r

)

}







= +∞

means the pre-structures (Fr)r∈N and (F′
j )j∈N are non-equivelant.

Example 10. From example 4, if A = Q, pre-structures (Fr)r∈N = ({c/r! : c ∈ Z, −r · r! ≤ c ≤ r · r!})r∈N
and (F′

j )j∈N = ({c/d : c ∈ Z, d ∈ N, d ≤ j, −dj ≤ c ≤ dj})j∈N are non-equivelant since for f : Q → R

where:

f (x) =

{

1 x ∈ {(2n + 1)/2m : n ∈ Z, m ∈ N}
0 x ̸∈ {(2n + 1)/2m : n ∈ Z, m ∈ N}

we have E⋆

U′ [ f ] = 1 (i.e. the expected value of f on Fr) and E⋆⋆

U′ [ f ] = 1/3 (i.e. the expected value of f on F′
j ),

which means

E⋆

U′ [ f ] ̸= E⋆⋆

U′ [ f ]

hence from def. 10, the pre-structures {Fr}r∈N and (F′
j )j∈N are non-equivelant.

Example 11. Suppose A = Z, where (Fr)r∈N = ({s ∈ Z : −r ≤ s ≤ r})r∈N, (F′
j )j∈N =

({s ∈ Z : −2j ≤ s ≤ 2j})j∈N and

f (x) =



























2x + 1 x = r, r is odd, r > 0

0 x = r, r is even, r < 0

2x + 1 x = r, r is even, r ≥ 0

0 x = r, r is odd, r ≥ 0

(13)

E⋆

U′ [ f ] is undefined (i.e. the expected value of f on Fr) and E⋆⋆

U′ [ f ] = 1 (i.e. the expected value of f on F′
j ). Since

at least one of the pre-structure i.e. {F′
j }j∈N has a defined expected value and E⋆

U′ [ f ] ̸= E⋆⋆

U′ [ f ] (i.e. undefined

values do not equal 1), we can say that {Fr}r∈N and {F′
j }j∈N are non-equivelant.
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Definition 12 (Pre-Structures converging Sublinearly, Linearly, or Superlinearly to A compared to

that of another Sequence). Suppose pre-structures (Fr)r∈N and (F′
j )j∈N are non-equivalent and converge

uniformly to A; and suppose for every ε ∈ range(U′), where ε > 0) and r ∈ N:

(a) From def. 5 and 6, suppose we have:

|S(U (ϵ, Fr , ω), ψ)| = (14)

inf
{

|S(U (ϵ, F′
j , ω′), ψ′)| : j ∈ N, ω′ ∈ Ω, ψ′ ∈ Ψω , E(S(U (ϵ, F′

j , ω′), ψ′)) ≥ E(S(U (ϵ, Fr , ω), ψ))
}

then (using 14) we have

α (ϵ, r, ω, ψ) = |S(U (ϵ, Fr, ω), ψ))| /|S(U (ϵ, Fr, ω), ψ)| (15)

(b) From def. 5 and 6, suppose we have:

|S(U (ϵ, Fr , ω), ψ)| = (16)

sup
{

|S(U (ϵ, F′
j , ω′), ψ′)| : j ∈ N, ω′ ∈ Ω, ψ′ ∈ Ψω , E(S(U (ϵ, F′

j , ω′), ψ′)) ≤ E(S(U (ϵ, Fr , ω), ψ))
}

then (using 16) we get

α (ϵ, r, ω, ψ) = |S(U (ϵ, Fr, ω), ψ))| /|S(U (ϵ, Fr, ω), ψ)| (17)

(1) If using equations 15 and 17 we have that:

lim sup
ε→0

lim sup
r→∞

sup
ω∈Ω

sup
ψ∈Ψω

α (ϵ, r, ω, ψ) = lim inf
ε→0

lim inf
r→∞

sup
ω∈Ω

sup
ψ∈Ψω

α (ϵ, r, ω, ψ) = 0

we say (Fr)r∈N converges uniformly to A at a superlinear rate to that of (F′
j )j∈N.

(2) If using equations 15 and 17 we have either:

(a) 0 ≤ lim inf
ε→0

lim inf
r→∞

sup
ω∈Ω

sup
ψ∈Ψω

α (ϵ, r, ω, ψ) < +∞

0 < lim sup
ε→0

lim sup
r→∞

sup
ω∈Ω

sup
ψ∈Ψω

α (ϵ, r, ω, ψ) ≤ +∞

(b) 0 ≤ lim sup
ε→0

lim sup
r→∞

sup
ω∈Ω

sup
ψ∈Ψω

α (ϵ, r, ω, ψ) < +∞

0 < lim inf
ε→0

lim inf
r→∞

sup
ω∈Ω

sup
ψ∈Ψω

α (ϵ, r, ω, ψ) ≤ +∞

(c) 0 ≤ lim sup
ε→0

lim sup
r→∞

sup
ω∈Ω

sup
ψ∈Ψω

α (ϵ, r, ω, ψ) < +∞

0 < lim inf
ε→0

lim inf
r→∞

sup
ω∈Ω

sup
ψ∈Ψω

α (ϵ, r, ω, ψ) ≤ +∞

(d) 0 ≤ lim inf
ε→0

lim inf
r→∞

sup
ω∈Ω

sup
ψ∈Ψω

α (ϵ, r, ω, ψ) < +∞

0 < lim sup
ε→0

lim sup
r→∞

sup
ω∈Ω

sup
ψ∈Ψω

α (ϵ, r, ω, ψ) ≤ +∞

we then say (Fr)r∈N converges uniformly to A at a linear rate to that of (F′
j )j∈N.

(3) If using equations 15 and 17 we have that:

lim inf
ε→0

lim inf
r→∞

sup
ω∈Ω

sup
ψ∈Ψω

α (ϵ, r, ω, ψ) = lim sup
ε→0

lim sup
r→∞

sup
ω∈Ω

sup
ψ∈Ψω

α (ϵ, r, ω, ψ) = +∞

we say (Fr)r∈N converges uniformly to A at a sublinear rate to that of (F′
j )j∈N.

Note 1. Since def. 12 is difficult to apply, we make assumptions (without proofs) for the examples below:

Example 12 (Example of pre-structure converging super-linearly to A compared to that of another

pre-structure). From example 5:
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(1) A = Q∩ [0, 1]
(2) (Fr)r∈N = ({s/r! : 0 ≤ s ≤ r!})r∈N
(3) (F′

j )j∈N = ({c/d : c ∈ Z, d ∈ N, d ≤ j, 0 ≤ c ≤ d})j∈N

we assume that (Fr)r∈N converges at a superlinear rate to that of (F′
j )j∈N.

Example 13 (Obvious Example of pre-structure converging linearly to A compared to that of another

pre-structure). Consider the following:

(1) A = Q∩ [0, 1]
(2) (Fr)r∈N = ({s/r! : 0 ≤ s ≤ r!})r∈N
(3) (F′

j )j∈N = ({w/(2j)! : w ∈ Z, 0 ≤ w ≤ 2j})j∈N

we assume that (Fr)r∈N converges at a linear rate to that of (F′
j )j∈N since, using programming, we assume:

0 < lim inf
ε→0

lim inf
r→∞

sup
ω∈Ω

sup
ψ∈Ψω

α (ϵ, r, ω, ψ) = lim sup
ε→0

lim sup
r→∞

sup
ω∈Ω

sup
ψ∈Ψω

α (ϵ, r, ω, ψ) < +∞

Example 14 (Non-Obvious Example of pre-structure converging linearly to A compared to another

pre-structure). Consider the following:

(1) A =
{√

a : a ∈ Q∩ [0, 1]
}

(2) (Fr)r∈N =
({√

s/r! : 0 ≤ s ≤ r!
})

r∈N

(3) (F′
j )j∈N =

({√

[

(s/2z)2
]

/j! : 0 ≤ s ≤ (j!)1/(7∧z), 0 ≤ z ≤
⌊

log2(
3
√

j + 1)
⌋

}

∩ [0, 1]

)

j∈N
(we

choose this pre-structure since it has a higher entropy (def. 6) per element such if log2(|F′
j |) is the

highest entropy E(F′
j ) could be for every j ∈ N, we say (F′

j )j∈N has a higher entropy per element

than that of (Fr)r∈N if there exists a k ∈ N, such for all j and r greater than or equal to k (where j = r),

E(F′
j )/ log2(|F′

j |) > E(Fr)/ log2(|Fr|)).

we assume that despite (F′
j )j∈N having a higher entropy per element, (Fr)r∈N converges at a linear rate to that

of (F′
j )j∈N, since using programming, we assume:

lim inf
ε→0

lim inf
r→∞

sup
ω∈Ω

sup
ψ∈Ψω

α (ϵ, r, ω, ψ) = 0

lim sup
ε→0

lim sup
r→∞

sup
ω∈Ω

sup
ψ∈Ψω

α (ϵ, r, ω, ψ) = +∞

which should satisfy criteria (0a) in def. 12.

Theorem 2. If (Fr)r∈N converges super-linearly to A compared to that of (F′
j )j∈N then (F′

j )j∈N converges

sub-linearly to A compared to that of (Fr)r∈N

Example 15 (Example of pre-structure converging super-linearly compared to another pre-structure).

In example 12, if we swap (Fr)r∈N for (Fj)j∈N where:

(1) A = Q∩ [0, 1]
(2) (Fr)r∈N = ({c/d : c ∈ Z, d ∈ N, d ≤ r, 0 ≤ c ≤ d})r∈N
(3) (F′

j )j∈N = ({s/j! : 0 ≤ s ≤ j!})j∈N

we assume that (Fr)r∈N converges at a sublinear rate to that of (F′
j )j∈N.

2.3. Question on Preliminary Definitions

(1) Are there “simpler" alternatives to either of the preliminary definitions? (Keep this in mind as

we continue reading).
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3. Main Question

Does there exist a unique extension (or a method that constructively defines a unique extension)

of the expected value of f when the value’s finite, using the uniform probability measure [2, p.32-37]

on sets measurable in the Carathèodory sense, such we replace f with infinite or undefined expected

values with f defined on a chosen pre-structure which depends on A where:

(1) The expected value of f on each term of the pre-structure is finite
(2) The pre-structure converges uniformly to A
(3) The pre-structure converges uniformly to A at a linear or superlinear rate to that of other

non-equivalent pre-structures of A which satisfies (1) and (2).
(4) The generalized expected value of f on a pre-structure (i.e. an extension of def. 3 to answer the full

question) has a unique & finite value, such the pre-structure satisfies (1), (2), and (3).
(5) A choice function is defined which chooses a pre-structure from A where the following satisfies

(1), (2), (3), and (4) for the largest possible subset of RA.
(6) If there is more than one choice function that satisfies (1), (2), (3), (4) and (5), we choose the choice

function with the “simplest form", meaning for a general pre-structure of A, when each choice

function is fully expanded, we take the choice function with the fewest variables/numbers

(excluding those with quantifiers).

How do we answer this question? (See §4.1, §4.2 & §4.4 for a partial answer.)

4. Informal Attempt to Answer Main Question

(I advise using computer programmings such as Mathematica, Python, JavaScript, or Matlab to

understand the definitions of the answer below.)

4.1. Generalized Expected Values

If the image of f under A is f [A] := { f (x) : x ∈ A}, such from def. 2 and 7, we take the pre-structure

of f [A] where:

Fr

r∈N
⇒ f [A]

and take the pre-image under f of Fr (defined as f−1 [Fr] := {x ∈ A : f (x) ∈ Fr}) such that:

f−1 [Fr]
r∈N
⇒ A

However, note the expected value of f−1 [Fr] (def. 3) may be infinite (e.g. unbounded f ). Hence, for

every r ∈ N, we take
{

{Fr,tr}tr∈N
}

r∈N
where:

∀(r ∈ N)

(

Fr,tr

tr∈N
⇒ Fr

)

Thus, the generalized expected value or ËU′ [ f ] is:

∀(ϵ > 0)∃(N ∈ N)∀(r ∈ N)∀ (tr ∈ N) (18)
(

r ≥ N, tr ≥ N ⇒ 1

U′ (Fr,tr )

∫

Fr,tr

f dx − ËU′ [ f ] < ϵ

)

and (similar to def. 2 & 3) if

EU′ [ f (Xr,tr )] =
1

U′ (Fr,tr )

∫

Fr,tr

f dx (19)

we describe the process of the generalized expected value as EU′ [ f (Xr,tr )] → ËU′ [ f ].
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4.2. Choice Function

Suppose S′(A) is the set of all pre-structures of A which satisfies criteria (1) and (2) of the main

question where the generalized expected value of the pre-structures, as they converge uniformly to A, is

unique and finite such the pre-structure (F′′
r )r∈N ∈ S′(A) should be a sequence of sets that satisfies

criteria (1), (2), (3) and (4) of the main question where (using the end of §4.1):

EU′
[

f
(

X′′
r,tr

)]

→ Ë
′′
U′ [ f ] (20)

and pre-structure {F′
j }j∈N is an element of S′(A) such (using the end of §4.1):

EU′
[

f
(

X′
j,tj

)]

→ Ë
′
U′ [ f ] (21)

but is not an element of the set of equivelant pre-structures of {F′′
r }r∈N (i.e. def. 8).

Further note from (a), with equation 14 in def. 12, if we take:

|S(U (ϵ, F′′
r , ω), ψ)| = (22)

inf
{

|S(U (ϵ, F′
j , ω′), ψ′)| : j ∈ N, ω′ ∈ Ω, ψ′ ∈ Ψω , E(S(U (ϵ, F′

j , ω′), ψ′)) ≥ E(S(U (ϵ, F′′
r , ω), ψ))

}

and from (b), with equation 16 in def. 12, we take:

∣

∣S(U (ϵ, F′′
r , ω), ψ)

∣

∣ = (23)

sup
{

|S(U (ϵ, F′
j , ω′), ψ′)| : j ∈ N, ω′ ∈ Ω, ψ′ ∈ Ψω , E(S(U (ϵ, F′

j , ω′), ψ′)) ≤ E(S(U (ϵ, F′′
r , ω), ψ))

}

Then, using def. 5 with equations 22 and 23, if:

sup
ω∈Ω

sup
ψ∈Ψω

S(U (ϵ, F′′
r , ω), ψ) = S ′(ε, F′′

r ) = S ′ (24)

sup
ω∈Ω

sup
ψ∈Ψω

|S(U (ϵ, F′′
r , ω), ψ)| = |S ′(ε, F′′

r )| = |S ′| (25)

sup
ω∈Ω

sup
ψ∈Ψω

∣

∣S(U (ϵ, F′′
r , ω), ψ)

∣

∣ =
∣

∣S ′(ε, F′′
r )
∣

∣ =
∣

∣S ′∣
∣ (26)

where, using absolute value function ||·||, we have:

S(r) =
(

sup(F′′
r+1)− sup

(

F′′
r

)) (

inf(F′′
r )− inf

(

F′′
r+1

)) ∣

∣

∣

∣

(

inf(F′′
r )− inf

(

F′′
r+1

) ) (

sup(F′′
r+1)− sup

(

F′′
r

)

− 1
) ∣

∣

∣

∣ (27)

such that

T(r) =
(

sup
(

F′′
r+1

)

inf
(

F′′
r

)

− sup
(

F′′
r

)

inf
(

F′′
r+1

))

(

(

inf
(

F′′
r

)

− inf
(

F′′
r+1

))

−
(

sup
(

F′′
r+1

)

− sup
(

F′′
r

))

− 1
)

(28)
(

inf
(

F′′
r

)

− inf
(

F′′
r+1

)) (

sup
(

F′′
r+1

)

− sup
(

F′′
r

))

and, using equations 24, 25, 26, 27, 28 with the nearest integer function [·], we want:

K(ε, F′′
r ) = ||1 − S(r)||













∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

|S ′|
(

1 +

[

|S ′|
(

|S ′|+2|S ′|
)

(|S ′ |+|S ′ |)(|S ′ |+|S ′ |+|S ′ |)

])

(

1 +
[

|S ′|/|S ′|
])

(

1 +
[

|S ′|/|S ′|
]) (

1 +
[

|S ′|/|S ′|
]) −

∣

∣S ′∣
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

+
∣

∣S ′∣
∣













− T(r) (29)
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such, using equation 29, if set S′′(A) ⊆ S′(A) and P (·) is the power-set, then set C(A) is the largest
element of:

{

S′′(A) ⊆ S′(A) : ∀(ϵ1 > 0)∃(M ∈ N)∀(ε ∈ range(U′))∃ (j ∈ N) ∀ (r ∈ N) ∀
({

F′′
r

}

∈ S′′(A)
)

(30)

(

0 < ε ≤ M, r ≥ j ⇒
∣

∣S ′(ε, F′′
r )− K(ε, F′′

r )− inf
{Fg}∈S′(A)

(

S ′(ε, Fg)− K(ε, Fg)
) ∣

∣ < ϵ1

)}

⊆ P(S′(A))

w.r.t to inclusion, such the choice function is C(A) if the following contains just one element.

Otherwise, for k ∈ N, suppose we say Ck(A) represents the k-th iteration of the choice function of

A, e.g. C3(A) = C(C(C(A))), where the infinite iteration of C(A) (if it exists) is lim
k→∞

Ck(A) = C∞(A).

Therefore, when taking the following:

C′(A) =















C(A) if C(A) contains one element

Cj(A) if j ∈ N, such for all k ≥ j, Ck(A) contains one element

C∞(A) if it exists, and C∞(A) contains one element

(31)

we say C′(A) is the choice function and the expected value, using def. 20, is Ë′′
U′ [ f ].

4.3. Questions on Choice Function

(1) Suppose we define function f : A → R. What unique pre-structure would C′(A) contain (if it

exists) for:

(a) A = Z where if (F′′
r )r∈N ∈ C′(Z) and f = idZ, we want (F′′

r )r∈N =

({m ∈ Z : −r ≤ m ≤ r})r∈N

(b) A = Q where if (F′′
r )r∈N ∈ C′(Q) and f = idQ, we want (F′′

r )r∈N =

({s/r! : s ∈ Z, −r · r! ≤ s ≤ r · r!})r∈N

(c) A = R where we’re not sure what (F′′
r )r∈N ∈ C′(R) would be if f = idR. What would

(F′′
r )r∈N be if it’s unique?

4.4. Increasing Chances of an Unique and Finite Expected Value

In case C′(A), in equation 31, does not exist; if there exists a unique and finite Ë
′′
U′ [ f ] (see §4.1)

where:

∀
(

(

F′′
r

)

r∈N ∈ C (A)
)

(

Ë
′′
U′ [ f ] is unique & finite

)

(32)

Then Ë
′′
U′ [ f ] is the generalized expected value w.r.t choice function C, which answers criteria (1), (2),

(3), (4), (perhaps (5)) of the question in §3; however, there is still a chance that the equation 32 fails

to give an unique Ë
′′
U′ [ f ]. Hence; if k ∈ N, we take the k-th iteration of the choice function C in 30,

such there exists a j ∈ N, where for all k ≥ j, if Ë′′
U′ [ f ] is unique and finite then the following is the

generalized expected value w.r.t finitely iterated C.
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In other words, if the k-th iteration of C is represented as C[k] (where e.g. C3(A) = C(C(C(A)))),

we want a unique and finite Ë
′′
U′ [ f ] where:

∃ (j ∈ N) ∀(k ∈ N)











k ≥ j ⇒ ∀
(

(

F′′
r

)

r∈N ∈ C[k] (A)

)

(

Ë
′′
U′ [ f ] is unique & finite

)











(33)

If this still does not give a unique and finite expected value, we then take the most generalized

expected value w.r.t an infinitely iterated C where if the infinite iteration of C is stated as

lim
k→∞

C[k]( f [A]) = C∞( f [A]), we then want a unique Ë
′′
U′ [ f ] where:

∀
(

(

F′′
r

)

r∈N ∈ C∞ (A)

)

(

Ë
′′
U′ [ f ] is unique & finite

)

(34)

However, in such cases, Ë′′
U′ [ f ] should only be used for functions where the expected value is infinite

or undefined or for worst-case functions—badly behaved f : A → R (where for n ∈ N, A ⊆ Rn, and f

is a function) defined on infinite points covering an infinite expanse of space. For example:

(1) For a worst-case f defined on countably infinite A (e.g. countably infinite "pseudo-random

points" non-uniformly scattered across the real plane), one may need just one iteration of C

(since most function on countable sets need just one iteration of C for Ë
′′
U′ [ f ] to be unique);

otherwise, one may use equation 33 for finite iterations of C.
(2) For a worst-case f defined on uncountable A, we might have to use equation 34 as averaging

such a function might be nearly impossible. We can imagine this function as an uncountable

number of "pseudo-random" points non-uniformly generated on a subset of the real plane (see

§5.1 for a visualization.)

Note, however, that no matter how generalized and “meaningful" the extension of an expected

value is, there will always be an f where the expected value does not exist.

4.5. Questions Regarding The Answer

(1) Using prevalence and shyness [3,4], can we say the set of f where either equations 32, 33 and

34 have an unique and finite Ë
′′
U′ [ f ] which forms either a prevalent or neither prevalent nor shy

subset of RA? (If the subset is prevalent, this implies either one of the generalized expected values

can be unique and finite for a “large" subset of RA; however, if the subset is neither prevalent

nor shy we need more precise definitions of “size" which takes “an exact probability that the

expected values are unique & finite"—some examples (which are shown in this answer [10])

being:

(a) Fractal Dimension notions
(b) Kolmogorov Entropy
(c) Baire Category and Porosity

(2) There may be a total of 120 variables in the choice function C (excluding quantifiers). Is there

a choice function (ignoring quantifiers) which answers criteria (1), (2), (3) & (4) of the main

question in §3 for a "larger" subset of RA? (This might be impossible to answer since such a

solution cannot be shown with prevalence or shyness [3,4])—therefore, we need a more precise

version of “size" with some examples, again, shown in [10].
(3) If question (2) is correct, what is the choice function C using either equations 32, 33 and 34 fully

answers the question in §3?
(4) Can either equations 32, 33 and 34 (when A is the set of all Liouville numbers [11] and f = idA)

give a finite value? What would the value be?
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(5) Similar to how definition 13 in §5 approximates the expected value in definition 1, how do

approximate equations 32, 33 and 34?
(6) Can programming be used to estimate equations 32, 33 and 34 respectively (if an unique/finite

result of either of the expected values exist)?

4.6. Applications

(1) In Quanta magazine [12], Wood writes on Feynman Path Integrals: “No known mathematical

procedure can meaningfully average[1] an infinite number of objects covering an infinite expanse of

space in general. The path integral is more of a physics philosophy than an exact mathematical

recipe."—despite Wood’s statement, mathematicians Bottazzi E. and Eskew M. [13] found a

constructive solution to the statement using integrals defined on filters over families of finite

sets; however, the solution was not unique as one has to choose a value in a partially ordered

ring of infinite and infinitesimal elements.

(a) Perhaps, if Botazzi’s and Eskew’s Filter integral [13] is not enough to solve Wood’s

statement, could we replace the path integral with expected values from equations 32,

33 and 34 respectively (or a complete solution to section 3)? (See, again, §5.1 for a

visualization of Wood’s statement.)

(2) As stated in §2.1, “when the Lebesgue measure of A, measurable in the Caratheodory sense,

has zero or infinite volume (or undefined measure), there may be multiple, conflicting ways

of defining a "natural" uniform measure on A." This is an example of Bertand’s Paradox

which shows, "the principle of indifference (that allows equal probability among all possible

outcomes when no other information is given) may not produce definite, well-defined results

for probabilities if applied uncritically, when the domain of possibilities is infinite [14].

Using §4.1, perhaps if we take (from def. 31):

C′(A) =















C(A) if C(A) contains one element

Cj(A) if j ∈ N, such for all k ≥ j, Ck(A) contains one element

C∞(A) if it exists, and C∞(A) contains one element

then for {F′′
r }r∈N ∈ C′(A), if we want S ⊆ A and we get the following:

∃(U(S) ∈ R)∀(ϵ > 0)∃(N ∈ N)∀(r ∈ N)

(

r ≥ N =⇒
∣

∣

∣

∣

U′(S ∩ F′′
r )

U′(F′′
r )

− U(S)

∣

∣

∣

∣

< ϵ

)

(35)

Then U(S) might serve as a solution to Bertand’s Paradox (unless there’s a better C′(A) and

{F′′
r }r∈N ∈ C′(A) which completely solves the main question in §3).

Now consider the following:

(a) How do we apply U(S) (or a better solution) to the usual example which demonstrates the

Bertand’s Paradox as follows: for an equilateral triangle (inscribed in a circle), suppose

a chord of the circle is chosen at random—what is the probability that the chord is

longer than a side of the triangle? [15] (According to Bertand’s Paradox there are three

arguments which correctly use the principle of indifference yet give different solutions to

this problem [15]:

[1] Meaningful Average—The average answers the main question in §3
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(i) The “random endpoints" method: Choose two random points on the circumference

of the circle and draw the chord joining them. To calculate the probability in

question imagine the triangle rotated so its vertex coincides with one of the chord

endpoints. Observe that if the other chord endpoint lies on the arc between the

endpoints of the triangle side opposite the first point, the chord is longer than a

side of the triangle. The length of the arc is one-third of the circumference of the

circle, therefore the probability that a random chord is longer than a side of the

inscribed triangle is 1/3.

(ii) The "random radial point" method: Choose a radius of the circle, choose a point on

the radius, and construct the chord through this point and perpendicular to the

radius. To calculate the probability in question imagine the triangle rotated so a

side is perpendicular to the radius. The chord is longer than a side of the triangle if

the chosen point is nearer the center of the circle than the point where the side

of the triangle intersects the radius. The side of the triangle bisects the radius,

therefore the probability a random chord is longer than a side of the inscribed

triangle is 1/2.

(iii) The "random midpoint" method: Choose a point anywhere within the circle and

construct a chord with the chosen point as its midpoint. The chord is longer than a

side of the inscribed triangle if the chosen point falls within a concentric circle of

radius 1/2 the radius of the larger circle. The area of the smaller circle is one-fourth

the area of the larger circle, therefore the probability a random chord is longer than

a side of the inscribed triangle is 1/4.

5. Glossary

5.1. Example of Case (2) of Worst Case Functions

(If the explanation below is difficult to understand, see this visualization to accompany the

explanation [16], where when changing the sliders each time, wait a couple of seconds for the graph to

load.)

We wish to create a function that appears to be a “pseudo-randomly" distributed but has infinite

points that are non-uniform (i.e. does not have complete spatial randomness [17]) in the sub-space of

R2, where the expected value or integral of the function w.r.t uniform probability measure [2][ p.32-37]

is non-obvious (i.e. not the center of the space the function covers nor the area of that space).

Suppose for real numbers x1, x2, y1 and y2, we generate an uncountable number of "nearly

pseudo-random" points that are non-uniform in the subspace [x1, x2]× [y1, y2] ⊆ R2.

We therefore define the function as f : [x1, x2] → [y1, y2].

Now suppose b ∈ {2, 3, · · ·, 10} where the base-b expansion of real numbers, in interval [x1, x2],

have infinite decimals that approach x from the right side so when x1 = x2 we get f (x1) = f (x2).

Furthermore, for N ∪ {0} = N0, if r ∈ N0 and digitb : R× Z → {0, 1, · · ·, b − 1} is a function

where digitb(x, r) takes the digit in the br-th decimal fraction of the base-b expansion of x (e.g.

digit10(1.789, 2) = 8), then {gr
′}r∈N0

is a sequence of functions such that gr
′ : N0 → N0 is defined to

be:

g′r(x) =

[

10

b
sin(rx) +

10

b

]

(36)
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then for some large k ∈ N and x1, x2 ∈ R, the intermediate function (before f ) or f1 : [x1, x2] → R is

defined to be

f1(x) =

∣

∣

∣

∣

∣

(

∞

∑
r=0

g′r+1

(

r+k

∑
p=r

digitb(x, p)

)

/

br

)

− 10

∣

∣

∣

∣

∣

= (37)

∣

∣

∣

∣

∣

((

∞

∑
r=0

[

10

b
sin

(

(r + 1)

(

r+k

∑
p=r

digitb(x, p)

))

+
10

b

])

/

br

)

− 10

∣

∣

∣

∣

∣

where the points in f1 are "almost pseudo-randomly" and non-uniformly distributed on [x1, x2]× [0, 10].

What we did was convert every digit of the base-b expansion of x to a pseudo-random number that

is non-equally likely to be an integer, including and in-between, 0 and (10 · 10s)/b. Furthermore, we

also make the function appear truly “pseudo-random", by adding the br-th decimal fraction with the

next k decimal fractions; however, we want to control the end-points of [0, 10s+1] such if y1, y2 ∈ R, we

convert [x1, x2]× [0, 10] to [x1, x2]× [y1, y2] by manipulating equation 37 to get:

f (x) =y2 −
y2 − y1

10
f1(x) (38)

y2 −
(

y2 − y1

10

)

∣

∣

∣

∣

∣

((

∞

∑
r=0

[

10

b
sin

(

(r + 1)

(

r+k

∑
p=r

digitb(x, p)

))

+
10

b

])

/

br

)

− 10

∣

∣

∣

∣

∣

such the larger k is, the more pseudo-random the distribution of points in f in the space [x1, x2]×
[y1, y2], but unlike most distributions of such points, f is uncountable.

5.2. Question Regarding Section 4.1

Let us give a specific example, suppose for the function in equation 38 of §5.1, we have:

• b = 3
• [x1, x2]× [y1, y2] = [0, 1]× [0, 1]
• k = 100

(one can try simpler parameters); what is the expected value using either equations 33 and 34 (or a

more complete solution to section 3) if the answer is finite and unique?

What about for f in general (i.e. in terms of b, x1, x2, y1, y2 and k)?

(Note if x1, y1 → −∞ and x2, y2 → ∞, then the function is an explicit example of the function that

Wood[2] describes in Quanta Magazine)

5.3. Approximating the Expected Value

Definition 13 (Approximating the Expected Value). In practice, the computation of this expected value

may be complicated if the set A is complicated. If analytic integration does not give a closed-form solution then

a general and relatively simple way to compute the expected value (up to high accuracy) is with importance

sampling. To do this, we produce values X1, X2, ..., XM ∼ IID g for some density function g with support

A ⊆ support(g) ⊆ Rn (hopefully with support fairly close to A) and we use the estimator:

µ̂M ≡ ∑
M
i=1 I(Xi ∈ A) · f (Xi)/g(Xi)

∑
M
i=1 I(Xi ∈ A)/g(Xi)

(39)

[2] Wood wrote on Feynman Path Integrals: “No known mathematical procedure can meaningfully average [1] an infinite number
of objects covering an infinite expanse of space in general."
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From the law of large numbers, we can establish that E[ f (X)] = limM→∞ µ̂M so if we take M to be large

then we should get a reasonably good computation of the expected value of interest.

Note importance sampling requires three things:

(1) We need to know when point x is in set A or not
(2) We need to be able to generate points from a density g that is on a support that covers A but is not too

much bigger than A
(3) We have to be able to compute f (x) and g(x) for each point x ∈ A
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