
A Two-Step Rule for Backpropagation

Ahmed Boughammoura∗

March 2, 2023

Abstract

We present a simplified computational rule for the backpropagation formulas for artificial neural ne tworks. In
this work, we provide a generic two-step rule for the backpropagation algorithm in matrix notation. Moreover,
this rule incorporates both the forward and backward phases of the computations involved in the learning process.
Specifically, this recursively computing rule permits the propagation of the changes to all synaptic weights in
the network, layer by layer, efficiently. In particular, we use this rule to compute both the up and down partial
derivatives of the cost function of all the connections feeding into the output layer.

Key words: Artificial neural networks; back-propagation

1 Introduction
An Artificial Neural Network (ANN) is a mathematical model which is intended to be a universal function

approximator which learns from data (cf. McCulloch and Pitts, [1]). In general, an ANN consists of a number of
units called artificial neurons, which are a composition of affine mappings, and non-linear (activation) mappings
(applied element wise), connected by weighted connections and organized into layers, containing an input layer, one
or more hidden layers, and an output layer.The neurons in an ANN can be connected in many different ways. In the
simplest cases, the outputs from one layer are the inputs for the neurons in the next layer. An ANN is said to be a
feedforward ANN, if outputs from one layer of neurons are the only inputs to the neurons in the following layer. In
a fully connected ANN, all neurons in one layer are connected to all neurons in the previous layer [3]. An example of
a fully connected feedforward network is presented in Figure 1.

In the present work we focus essentially on feed-forward artificial neural networks, with L hidden layers and
a transfer (or activation) function σ, and the corresponding supervised learning problem. Let us define a simple
artificial neural network as follows:

Xout
0 = x, Y out

h = Wh.X
out
h−1, Xout

h = σ(Y out
h), h = 1, · · · , L (1)

where x ∈ Rn is the input to the network, h indexes the hidden layer and Wh is the weight matrix of the h-th hidden
layer. In what follows we shall refer to the two equations of (1) as the two-step recursive forward formula. The
two-step recursive forward formula is very useful in obtaining the outputs of the feed-forward deep neural networks.

A major empirical issue in the neural networks is to estimate the unknown parameters Wh with a sample of data
values of targets and inputs. This estimation procedure is characterized by the recursive updating or the learning
of estimated parameters. This algorithm is called the backpropagation algorithm. As reviewed by Schmidhuber
[4], back-propagation was introduced and developed during the 1970’s and 1980’s and refined by Rumelhart et al.
[2]). In addition, it is well known that the most important algorithms of artificial neural networks training is the
back-propagation algorithm. From mathematical point view, back-propagation is a method to minimize errors for
a loss/cost function through gradient descent. More precisely, an input data is fed to the network and forwarded
through the so-called layers ; the produced output is then fed to the cost function to compute the gradient of the
associated error. The computed gradient is then back-propagated through the layers to update the weights by using
the well known gradient descent algorithm.

As explained in [2]), the goal of back-propagation is to compute the partial derivatives of the cost function J . In
this procedure, each hidden layer h is assigned an error term δh. For each hidden layer, the error term δh is derived
from error terms δk, k = h+ 1, · · ·L; thus the concept of error back-propagation. The output layer L is the only
layer whose error term δL has no error dependencies, hence δL is the element-wise product of the partial derivatives

∗ Department of Mathematics
Higher Institute of Informatics and Mathematics, Monastir, Tunisia
Email: ahmed.boughammoura@gmail.com

1

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 March 2023 doi:10.20944/preprints202303.0001.v2

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202303.0001.v2
http://creativecommons.org/licenses/by/4.0/

of the cost function with respect to the activation Xout
L at the output layer L and the activation function derivative

σ′ with respecr to the preactivation Y out
L . The δL is then given by the following equation

δL =
∂J

∂WL
⊙ σ′(Y out

L) (2)

For the error term δh, this term is derived from matrix multiplying δh+1 with the weight transpose matrix (Wh+1)⊤
and subsequently multiplying (element-wise) the activation function derivative σ′ with respect to the preactivation
Y out
h . Thus, one has the following equation

δh = (Wh+1)
⊤δh+1 ⊙ σ′(Y out

h), h = (L− 1), · · · , 1 (3)

Once the layer error terms have been assigned, the partial derivative ∂J
∂Wl

can be computed by

∂J

∂Wh
= δh+1(Xout

h)⊤ (4)

In particular, we deduce that the back-propagation algorithm is uniquely responsible for computing weight partial
derivatives of J by using the recursive equation (3) with the initialization data given by (2). The key question to
which we address ourselves in the present work is the following: how could one reformulate the back-propagation in
a similar manner as in the forward pass ? Equivalently, how could one reformulate the back-propagation in two-step
recursive backward formula as in (1) ?

In order to provide a first answer to this question, we shall introduce the following up and down delta’s terms

δupL :=
∂J

∂Xout
L

, δdown
h = δuph ⊙ σ′(Y out

h), δuph−1 = (Wh)
⊤δdown

h , h = L, · · · , 1 (5)

Once the δdown
h term have been computed, the partial derivative ∂J

∂Wh
can be evaluated by

∂J

∂Wh
= δdown

h (Xout
h−1)

⊤ (6)

Now, we shall give an answer by proving in the section 3 that one has the two-step recursive backward formula given
by (5).

The rest of the paper is organized as follows. Section 2 outlines some notations, setting and ANN framework.
Section 3 state and proof the main mathematical result of this work. Section 4 application of this method to study
some simple cases. In Section 5 conclusion, related works and mention future work directions.

2 Notations, Setting and the ANN
Let us now precise some notations. Firstly, we shall denote the space of real matrices of dimension n×p byMn×p(R),

(n, p) ∈ (N∗)2, any vector X ∈ Rn, is considered as columns X = (X1, · · · , Xn)
T , for any (A,B) ∈ (Mn×p(R))2, their

component-wise product (the so-called Hadamard product) is denoted by A⊙B (which is exactly the element-wise
multiplication A ∗B in Python). Secondly, for any family of transfer functions σi : R→ R, i = 1, · · · , n, we shall
introduce the coordinate-wise map σ : Rn → Rn by the following formula

σ(X) := (σ1(X1), · · · , σn(Xn))
T
. (7)

This map can be considered as an “operator” Hadamard multiplication of columns σ = (σ1, · · · , σn)
T and X =

(X1, · · · , Xn)
T , i.e., σ(X) = σ ⊙X.

Hereafter, we shall need to recall some useful multi-variable functions derivatives notations. Firstly, for any
n,m ∈ N∗ and any differentiable function with respect to the variable x

F : R ∋ x 7→ F (x) =
(
Fij(x)

)
1≤i≤m
1≤j≤n

∈ Rm×n (8)

we use the following notations associated to the partial derivatives of F with respect to X

∂F

∂x
=

(
∂Fij(x)

∂x

)

1≤i≤m
1≤j≤n

(9)

2

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 March 2023 doi:10.20944/preprints202303.0001.v2

https://doi.org/10.20944/preprints202303.0001.v2

Secondly, for any n,m ∈ N∗ and any differentiable function with respect to the matrix variable

F : Rm×n ∋ X =
(
Xij

)
1≤i≤m
1≤j≤n

7→ F (X) ∈ R (10)

we use the so-called denominator layout notation (see page 15 of [7]) for the partial derivative of F with
respect to the matrix X

∂F

∂X
=

(
∂F (X)

∂Xij

)

1≤i≤m
1≤j≤n

(11)

In particular, this notation leads to the following useful formulas: for any q ∈ N∗ and any matrix W ∈ Rq×m we
have

∂(WX)

∂X
= W⊤, (12)

when X ∈ Rn with Xn = 1 one has
∂(WX)

∂X
= W⊤

♯ (13)

where W♯ is the matrix W whose last column is removed (this formula is highly useful in practice). Moreover, for
any matrix X ∈ Rm×n we have

∂(WX)

∂W
= X⊤. (14)

Then, by the chain rule one has for any q, n,m ∈ N∗ and any differentiable function with respect to the matrices
variables W,X :

F : (W,X) 7→ Z := WX ∈ Rq×n 7→ F (Z) ∈ R
∂F

∂X
= W⊤ ∂F

∂Z
and

∂F

∂W
=

∂F

∂Z
X⊤ (15)

Throughout this paper, we consider layered feedforward neural networks and supervised learning tasks. We will
denote such an architecture by

A[N0, · · · , Nh, · · · , NL] (16)

where N0 is the size of the input layer, Nh is the size of hidden layer h, and NL is the size of the output layer; L is
defined as the depth of the ANN , then the neural network is called as Deep Neural Network (DNN). We assume that
the layers are fully connected, i.e., neurons between two adjacent layers are fully pairwise connected, but neurons
within a single layer share no connections.

X0

X1

...

XN0

Y 1
0

Y 1
1

...

Y 1
N1

. . .

. . .

. . . YL−1
0

YL−1
1

...

YL−1
NL−1

Y L
1

Y L
2

...

Y L
NL

input layer
1st hidden layer (L−1)th hidden layer

output layer

Figure 1: Example of an A[N0, · · · , NL] architechture.

Through the rest of the paper, we will adopt some simplified notations by replacing some subscripts and
superscripts.

Now, let wh
ij denote the weight connecting neuron j in layer h− 1 to neuron i in hidden layer h and let the

associated transfer function denoted σh
i . In general, in the application two different passes of computation are

distinguished. The first pass is referred to as the forward pass, and the second is referred to as the backward pass.

3

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 March 2023 doi:10.20944/preprints202303.0001.v2

https://doi.org/10.20944/preprints202303.0001.v2

In the forward pass, the synaptic weights remain fixed throughout the network, and the output Xh
i of neuron i in

hidden layer h is computed by the following recursive-coordinate form :

Xh
i := σh

i (Y
h
i) where Y h

i :=

Nh−1∑

j=1

wh
ijX

h−1
j (17)

In two-step recursive-matrix form, one may rewrite the above formulas as

Xh = σh(Y h) where Y h = WhXh−1, (18)

with
σh := (σh

1 , · · · , σh
Nh

)T , Wh := (wh
ij) ∈MNh×Nh−1

(R). (19)

Remark 1
It is crucial to remark that, if we impose the following setting on Xh,Wh and σh

Nh
:

1. all input vectors have the form Xh = [x1, · · · , xNh−1, 1]
T for all 0 ≤ h ≤ (L− 1);

2. the last rows of all matrices Wh for all 1 ≤ h ≤ (L− 1) have the form [0, · · · , 0, 1] ;

3. the last functions σh
Nh

in the columns σh for all 1 ≤ h ≤ (L− 1) are identical.

Then, the A[N0, · · · , NL] neural network will be equivalent to a (L− 1)-layered affine neural network with (N0 − 1)-
dimensional input and NL-dimensional output. Each hidden layer h will contain (Nh − 1) “genuine” neurons and
one (last)“formal”, responsible for the bias; the last column of the matrix Wh , except the last element, will be the
bias vector for the h-th layer.

This forward pass computation between the two adjacent layers h− 1 and h may be represented mathematically
as the composition of the following two maps:

RNh−1 −−−→ RNh −−−→ RNh

Xh−1 Wh

7−−→WhXh−1 = Y h σh

7−−→ σh(Y h) = Xh

It could be presented as a simple mapping diagram with Xh−1 as input and the corresponding successive preactivation
and activation Y h = WhXh−1, Xh = σh(Y h) as outputs (see Figure 2).

Xh−1 Y h Xh
Wh

σh

Figure 2: Mapping diagram associated the forward pass between two adjacent layers.

As consequence, the simplest neural network can be defined as a sequence of matrix multiplications and
non-linearities:

X0 = x, Y h = WhXh−1, Xh = σh(Y h), h = 1, 2, · · · , L.
where x ∈ Rn is the input to the network, h indexes the layer and Wh is the weight matrix of the h-th layer. To
optimize the neural network, we compute the partial derivatives of the cost J(.) w.r.t. the weight matrices ∂J(.)

∂Wh .
This quantity can be computed by making use of the chain rule in the back-propagation algorithm. To compute the
partial derivative with respect to the matrices variables {Xh, Y h,Wh}, we put

δuph =
∂J(.)

∂Xh
, δdown

h =
∂J(.)

∂Y h
, δWh =

∂J(.)

∂Wh
. (20)

Now, by using the two-step rule for back-propagation, introduced in the previous section, one could rewrite the
backward propagated values of the partial derivatives of J w.r.t. weight as follows :

4

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 March 2023 doi:10.20944/preprints202303.0001.v2

https://doi.org/10.20944/preprints202303.0001.v2

δupL =
∂J(.)

∂XL
, δdown

h = δuph ⊙ σ′(Y h), δWh = δdown
h (Xh−1)⊤, δuph−1 = (Wh)⊤δdown

h , h = L, · · · , 2. (21)

Furthermore, in the practical setting mentioned in Remark 1, one should replace Wh by Wh
♯ in vertu of (13). Thus,

we have for all h ∈ {(L− 1), · · · , 2}

δuph−1 = (Wh
♯)

⊤δdown
h . (22)

The backward computation between the two adjacent layers h and h− 1 may be represented mathematically as
follows:

RNh−1 × (RNh × RNh−1)←−−−−−−−−−−−−− RNh ←−−−−−−−−−−−−− RNh

(
δuph−1, δWh

)
=

(
(Wh)⊤︸ ︷︷ ︸
Nh−1×Nh

δdown
h︸ ︷︷ ︸
Nh×1

, δdown
h︸ ︷︷ ︸
Nh×1

(Xh−1)⊤︸ ︷︷ ︸
1×Nh−1

)
(.)(Xh)⊤←−−−−−−
(Wh)⊤(.)

[δdown
h = δuph ⊙ σh′(Y h)

(⊙)σh′
(Y h)←−−−−−−−[δuph

The simple mapping diagram below shows the two-step rule for computing the partial derivatives of the cost
function w.r.t. weights (see Figure 3).

δuph−1 δWh δdown
h δuph

(⊙)σh′(Y h)(.)(Xh)⊤

(Wh)⊤(.)

Figure 3: Mapping diagram associated the two-step backward pass between two adjacent layers.

One could combine the forward and backward passes by the following diagram, which shows clearly the two-step
rule for the entire back-propagation process (see Figure 4).

Y 1 Y 2 Y L−1 Y L

δup1 δup2 δupL−1 δupLδdown
1 δdown

2 δdown
L−1 δdown

L

δW 1 δW 2 δWL−1 δWL

x = X0 X1 X2 XL−1 XL

Gradient Values

Forward

Backward

Loss : J(.)

y

Figure 4: Mapping diagram associated the entire back-propagation process.

3 Main mathematical result
In this section we state our main result in the following Proposition. Given any differentiable cost function J(.),

the weight gradient of the hidden layer h is defined by all the partial derivatives of J with respect to the weights,
such as:

Proposition 1 (The gradient backward propagation)
Let L be the depth of a Deep Neural Network and nl the number of neurons in the layer l. We denote by X0 ∈ Rn0

the inputs of the network, Wh ∈ Rnl × Rnh−1 the weights matrix defining the synaptic strengths between the hidden
layer h and its preceding h− 1. The output Y h of the hidden layer h are thus defined as follows:

5

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 March 2023 doi:10.20944/preprints202303.0001.v2

https://doi.org/10.20944/preprints202303.0001.v2





X0 = x,
Y h = WhXh−1,
Xh = σ(Y h),
h = 1, 2, · · · , L.

(23)

Where σ(x) is a point-wise differentiable activation function. We will thus denote by σ′(x) its first order derivative,
σ′(x) = ∂σ

∂x (x), X0 = x is the input to the network and Wh is the weight matrix of the h-th layer. To optimize the
neural network, we compute the partial derivatives of the loss J(f(x), y) w.r.t. the weight matrices ∂J(f(x),y)

∂Wh , with
f(x) and y are the output of the DNN and the associated target/label respectively. This quantity can be computed
similarly by the following two-step rule:





δupL =
∂J(f(x), y)

∂XL
,

δdown
h = δuph ⊙ σ′(Y h)

δuph−1 =
(
Wh

)T
δdown
h ,

h = L, · · · , 1.

(24)

Once δdown
h is computed, the weights update can be computed as

∂J(f(x), y)

∂Wh
= δdown

h

(
Xh−1

)T
. (25)

Proof of the Proposition 1
Firstly, for any h = 1, · · · , L let us recall the simplified notations introduced by (20):

δuph =
∂J(f(x), y)

∂Xh
, δdown

h =
∂J(f(x), y)

∂Y h
.

Secondly, for fixed h ∈ {1, · · · , L}, Xh = σ(Y h), then immediatly one has

∂Xh

∂Y h
= σ′(Y h).

Now, by using the chaine rule and (15) succsecivelly, we obtain

∂J(f(x), y)

∂Y h
=

∂J(f(x), y)

∂Xh
.
∂Xh

∂Y h

and
δdown
h = δuph ⊙ σ′(Y h). (26)

On the other hand, Y h = WhXh−1, thus

∂J(f(x), y)

∂Xh−1
= (Wh)⊤

∂J(f(x), y)

∂Y h

in vertu of (15). As consequence,

δuph−1 = (Wh)⊤δdown
h . (27)

Equations (26) and (27) implies immediately (24). To end the proof of this Proposition, we apply again (15) to the
cost function J and the relation Y h = WhXh−1, we deduce that

∂J(f(x), y)

∂Wh
=

∂J(f(x), y)

∂Y h
(Xh−1)⊤ = δdown

h (Xh−1)⊤.

This end the proof of the Proposition 1.

6

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 March 2023 doi:10.20944/preprints202303.0001.v2

https://doi.org/10.20944/preprints202303.0001.v2

4 Application to the two simplest cases of type A[1, 1, 1]

The present section shows that in the following four simplest cases associated to the DNN A[1, 1, 1], we shall apply
the two-step rule for back-propagation to compute the partial derivative of the elementary cost function J defined
by J(f(x), y) = f(x)− y for any real x and fixed real y. In this particular setting, we have only two simplest cases
of type A[1, 1, 1]: one neuron and two neurons in the hidden layer (see Figures 5 and 6).

4.1 First case
The first simplest case corresponds to A[1, 1, 1] architecture is shows by the Figure 5. Let us denote by a

W 1 =
(
α1
11 α1

12

)
and W 2 =

(
α2
1 α2

2

)
the weights in the first and second layer. We will evaluate the δW 1 and δW 2

by the differential calculus rules firstly and then recover this result by the two-step rule for back-propagation.

X0
1 =x

X0
2 =1

σ(Y 1)

1

σ(Y 2)

α1
11

α
1
12

α2
1

α
2
2

Input
layer

Hidden
layer

Output
layer

X2

Figure 5: The DNN associated to the case 1.

The two-step forward pass :

X0 =

[
x
1

]
W 1

7−−−−→
σ




Y 1 = W 1X0 = α1
11x+ α1

12

X1 =

(
σ(Y 1)

1

)
=

(
σ(α1

11x+ α1
12)

1

)

 W 2

7−−−−→
σ

[
Y 2 = W 2X1 = α2

1σ(α
1
11x+ α1

12) + α2
2

X2 = σ(Y 2) = σ(α2
1σ(α

1
11x+ α1

12) + α2
2)

]

Hence, by using the differential calculus rules one gets

δW 2 =

(
σ′(α2

1σ(α
1
11x+ α1

12) + α2
2)σ(α

1
11x+ α1

12)
σ′(α2

1σ(α
1
11x+ α1

12) + α2
2)

)⊤

and

δW 1 =

(
σ′(α2

1σ(α
1
11x+ α1

12) + α2
2)σ

′(α1
11x+ α1

12)α
2
1x

σ′(α2
1σ(α

1
11x+ α1

12) + α2
2)

)⊤
.

The two-step backward pass :

σ′(w1x)

(
α2
1σ

′(α2
1σ(w

1) + α2
2)

α2
2σ

′(α2
1σ(w

1) + α2
2)

)
= δY 1

0 = δX0


 σ′
←−−−−
(W 1

♯)
⊤

[




σ′(α2
1σ(w

1) + α2
2) = δX2 ⊙ σ′(Y 2) = δY 2(

α2
1σ

′(α2
1σ(w

1) + α2
2)

α2
2σ

′(α2
1σ(w

1) + α2
2)

)
= (W 2)⊤δY 2 = δX1


 σ′
←−−−−
(W 2)⊤

[δX2 = 1

with
w1 = α1

11x+ α1
12

Hence, by using the two-step rule one gets

δW 2 = δY 2(X1)⊤ =

(
σ′(α2

1σ(α
1
11x+ α1

12) + α2
2)σ(α

1
11x+ α1

12)
σ′(α2

1σ(α
1
11x+ α1

12) + α2
2)

)⊤

and

δW 1 = δY 1(X0)⊤ =

(
σ′(α2

1σ(α
1
11x+ α1

12) + α2
2)σ

′(α1
11x+ α1

12)α
2
1x

σ′(α2
1σ(α

1
11x+ α1

12) + α2
2)

)⊤
.

7

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 March 2023 doi:10.20944/preprints202303.0001.v2

https://doi.org/10.20944/preprints202303.0001.v2

4.2 Second case
The second simplest case corresponds to A[1, 1, 1] architecture is shows by the Figure 6. In this case we have

W 1 =

(
α1
11 α1

12

α1
21 α1

22

)
and W 2 =

(
α2
1 α2

2 α2
3

)
. Thus, one deduce immediately that

X0
1 =x

X0
2 =1

Y 1
1

Y 1
2

1

Y 2

α
1
11

α 1
21

α
1
12

α1
22

α 2
1

α
2
2

α
2

3

Input
layer

Hidden
layer

Output
layer

X2

Figure 6: The DNN associated to the case 2.

The two-step forward pass :

X0 =

[
x
1

]
W 1

7−−−−→
σ




Y 1 =

(
α1
11x+ α1

12

α1
21x+ α1

12

)

X1 =



σ(α1

11x+ α1
12)

σ(α1
21x+ α1

22)
1







W 2

7−−−−→
σ

[
Y 2 = α2

1σ(α
1
11x+ α1

12) + α2
2σ(α

1
21x+ α1

22) + α2
3

X2 = σ
(
α2
1σ(α

1
11x+ α1

12) + α2
2σ(α

1
21x+ α1

22) + α2
3

)
]

Hence, by using the differential calculus rules one gets

δW 2 =




σ′
(
α2
1σ(w

1) + α2
2σ(w

2) + α2
3

)
σ(w1)

σ′
(
α2
1σ(w

1) + α2
2σ(w

2) + α2
3

)
σ(w2)

σ′
(
α2
1σ(w

1) + α2
2σ(w

2) + α2
3

)




⊤

, w1 := α1
11x+ α1

12, w
2 := α1

21x+ α1
22

and

δW 1 =



α2
1xσ

′(w1)σ′
(
α2
1σ(w

1) + α2
2σ(w

2) + α2
3

)
α2
1σ

′(w1)σ′
(
α2
1σ(w

1) + α2
2σ(w

2) + α2
3

)

α2
2xσ

′(w1)σ′
(
α2
1σ(w

1) + α2
2σ(w

2) + α2
3

)
α2
2σ

′(w1)σ′
(
α2
1σ(w

1) + α2
2σ(w

2) + α2
3

)


 .

The two-step backward pass :






α2
1σ

′
(
α2
1σ(w

1) + α2
2σ(w

2) + α2
3

)
σ′(w1)

α2
2σ

′
(
α2
1σ(w

1) + α2
2σ(w

2) + α2
3

)
σ′(w2)


=δdown

1

0 = δup0




σ′
←−−−−
(W 1

♯)
⊤

[




σ′
(
α2
1σ(w

1x) + α2
2σ(w

2) + α2
3

)
=δdown

2

α2
1σ

′
(
α2
1σ(w

1) + α2
2σ(w

2) + α2
3

)

α2
2σ

′
(
α2
1σ(w

1) + α2
2σ(w

2) + α2
3

)


=δup1




σ′
←−−−−
(W 2)⊤

[δup2 =1

Hence, by using the two-step rule one gets

8

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 March 2023 doi:10.20944/preprints202303.0001.v2

https://doi.org/10.20944/preprints202303.0001.v2

δW 2 =




σ′
(
α2
1σ(w

1) + α2
2σ(w

2) + α2
3

)
σ(w1)

σ′
(
α2
1σ(w

1) + α2
2σ(w

2) + α2
3

)
σ(w2)

σ′
(
α2
1σ(w

1) + α2
2σ(w

2) + α2
3

)




⊤

, w1 := α1
11x+ α1

12, w
2 := α1

21x+ α1
22

and

δW 1 =



α2
1xσ

′(w1)σ′
(
α2
1σ(w

1) + α2
2σ(w

2) + α2
3

)
α2
1σ

′(w1)σ′
(
α2
1σ(w

1) + α2
2σ(w

2) + α2
3

)

α2
2xσ

′(w1)σ′
(
α2
1σ(w

1) + α2
2σ(w

2) + α2
3

)
α2
2σ

′(w1)σ′
(
α2
1σ(w

1) + α2
2σ(w

2) + α2
3

)


 .

5 Related works and Conclusion
It is interesting to cite related works which have some connections with ours. To the best of our knowledge, in

literature, the related works to this paper are [5] and [6] to the best of our knowledge. In particular, in the first
paper the authors uses some decomposition of the partial derivatives of the cost function, similar to the two-step
formula (5), to replace the standard back-propagation. In addition, they show (experimentally) that for specific
scenarios, the two-step decomposition yield better generalization performance than the one based on the standard
back-propagation. But in the second article, the authors find some similar update equation similar to the one given
by (5) that report similarly to standard back-propagation at convergence. Moreover, this method discovers new
variations of the back-propagation by learning new propagation rules that optimize the generalization performance
after a few epochs of training.

In conclusion, we have provided a two-step rule for back-propagation similar to the one for forward propagation.
We hope that it serve as a pedagogical material for data scientists, and may also inspire the exploration of novel
approaches for optimizing some artificial neural networks training algorithms. As future work, we envision to explore
some experimental issues to compare the performance of this two-step rule for back-propagation and the standard
one.

Declarations
Conflicts of interest/Competing interests Non declared.

References
[1] McCulloch, Warren S., and Walter Pitts. A logical calculus of the ideas immanent in nervous activity. The

bulletin of mathematical biophysics 5 (1943): 115-133.

[2] D. E. Rumelhart, G. E. Hinton and R. J. Williams. Learning representations by backpropagating errors, Nature,
vol. 323, no. 6088, pp: 533–536,1986.

[3] Gencay, Ramazan, and Tung Liu. Nonlinear modelling and prediction with feedforward and recurrent networks.
Physica D: Nonlinear Phenomena 108.1-2 (1997): 119-134.

[4] Schmidhuber, Jürgen. Deep learning in neural networks: An overview. Neural networks 61 (2015): 85-117.

[5] Alber, Maximilian, et al. Backprop evolution. arXiv preprint arXiv:1808.02822 (2018).

[6] Hojabr, Reza, et al. TaxoNN: A Light-Weight Accelerator for Deep Neural Network Training. 2020 IEEE
International Symposium on Circuits and Systems (ISCAS). IEEE, 2020.

[7] Ye, Jong Chul. Geometry of Deep Learning. Springer Singapore, 2022.

9

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 March 2023 doi:10.20944/preprints202303.0001.v2

https://doi.org/10.20944/preprints202303.0001.v2

