
A Two-Step Rule for Backpropagation

Ahmed Boughammoura∗

March 8, 2023

Abstract

We present a simplified computational rule for the backpropagation formulas for artificial neural networks. In this
work, we provide a generic two-step rule for the backpropagation algorithm in matrix notation. Moreover, this rule
incorporates both the forward and backward phases of the computations involved in the learning process. Specifically,
this recursively computing rule permits the propagation of the changes to all synaptic weights in the network, layer by
layer, efficiently. In particular, we use this rule to compute both the up and down partial derivatives of the cost function
of all the connections feeding into the output layer.

1 Introduction
An Artificial Neural Network (ANN) is a mathematical model which is intended to be a universal function approximator

which learns from data (cf. McCulloch and Pitts, [4]). In general, an ANN consists of a number of units called artificial
neurons, which are a composition of affine mappings, and non-linear (activation) mappings (applied element wise), connected
by weighted connections and organized into layers, containing an input layer, one or more hidden layers, and an output
layer.The neurons in an ANN can be connected in many different ways. In the simplest cases, the outputs from one layer
are the inputs for the neurons in the next layer. An ANN is said to be a feedforward ANN, if outputs from one layer of
neurons are the only inputs to the neurons in the following layer. In a fully connected ANN, all neurons in one layer are
connected to all neurons in the previous layer (cf. page 24 of [2]). An example of a fully connected feedforward network is
presented in Figure 1.

In the present work we focus essentially on feed-forward artificial neural networks, with L hidden layers and a transfer
(or activation) function σ, and the corresponding supervised learning problem. Let us define a simple artificial neural
network as follows:

Xout
0 = x, Y out

h = Wh.X
out
h−1, Xout

h = σ(Y out
h), h = 1, · · · , L (1)

where x ∈ Rn is the input to the network, h indexes the hidden layer and Wh is the weight matrix of the h-th hidden layer.
In what follows we shall refer to the two equations of (1) as the two-step recursive forward formula. The two-step recursive
forward formula is very useful in obtaining the outputs of the feed-forward deep neural networks.

A major empirical issue in the neural networks is to estimate the unknown parameters Wh with a sample of data values
of targets and inputs. This estimation procedure is characterized by the recursive updating or the learning of estimated
parameters. This algorithm is called the backpropagation algorithm. As reviewed by Schmidhuber [6], back-propagation
was introduced and developed during the 1970’s and 1980’s and refined by Rumelhart et al. [5]). In addition, it is well
known that the most important algorithms of artificial neural networks training is the back-propagation algorithm. From
mathematical point view, back-propagation is a method to minimize errors for a loss/cost function through gradient
descent. More precisely, an input data is fed to the network and forwarded through the so-called layers ; the produced
output is then fed to the cost function to compute the gradient of the associated error. The computed gradient is then
back-propagated through the layers to update the weights by using the well known gradient descent algorithm.

As explained in [5]), the goal of back-propagation is to compute the partial derivatives of the cost function J . In this
procedure, each hidden layer h is assigned an error term δh. For each hidden layer, the error term δh is derived from error
terms δk, k = h+ 1, · · ·L; thus the concept of error back-propagation. The output layer L is the only layer whose error
term δL has no error dependencies, hence δL is then given by the following equation

δL =
∂J

∂WL
⊙ σ′(Y out

L), (2)

∗ Department of Mathematics
Higher Institute of Informatics and Mathematics, Monastir, Tunisia
Email: ahmed.boughammoura@gmail.com

1

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 March 2023 doi:10.20944/preprints202303.0001.v3

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202303.0001.v3
http://creativecommons.org/licenses/by/4.0/

where ⊙ denotes the element-wise matrix multiplication (the so-called Hadamard product, which is exactly the element-wise
multiplication ” ∗ ” in Python). For the error term δh, this term is derived from matrix multiplying δh+1 with the weight
transpose matrix (Wh+1)⊤ and subsequently multiplying (element-wise) the activation function derivative σ′ with respect
to the preactivation Y out

h . Thus, one has the following equation

δh = (Wh+1)
⊤δh+1 ⊙ σ′(Y out

h), h = (L− 1), · · · , 1 (3)

Once the layer error terms have been assigned, the partial derivative ∂J
∂Wl

can be computed by

∂J

∂Wh
= δh+1(Xout

h)⊤ (4)

In particular, we deduce that the back-propagation algorithm is uniquely responsible for computing weight partial derivatives
of J by using the recursive equation (3) with the initialization data given by (2). The key question to which we address
ourselves in the present work is the following: how could one reformulate the back-propagation in a similar manner as in
the forward pass ? Equivalently, how could one reformulate the back-propagation in two-step recursive backward formula
as in (1) ?

In order to provide a first answer to this question, we shall introduce the following up and down delta’s terms

δupL :=
∂J

∂Xout
L

, δdown
h = δuph ⊙ σ′(Y out

h), δuph−1 = (Wh)
⊤δdown

h , h = L, · · · , 1 (5)

Once the δdown
h term have been computed, the partial derivative ∂J

∂Wh
can be evaluated by

∂J

∂Wh
= δdown

h (Xout
h−1)

⊤ (6)

Now, we shall give an answer by proving in the section 3 that one has the two-step recursive backward formula given by (5).
The rest of the paper is organized as follows. Section 2 outlines some notations, setting and ANN framework. Section 3

state and proof the main mathematical result of this work. Section 4 application of this method to study some simple
cases. In Section 5 conclusion, related works and mention future work directions.

2 Notations, Setting and the ANN
Let us now precise some notations. Firstly, we shall denote any vector X ∈ Rn, is considered as columns X =

(X1, · · · , Xn)
⊤ and for any family of transfer functions σi : R→ R, i = 1, · · · , n, we shall introduce the coordinate-wise

map σ : Rn → Rn by the following formula

σ(X) := (σ1(X1), · · · , σn(Xn))
⊤
. (7)

This map can be considered as an “operator” Hadamard multiplication of columns σ = (σ1, · · · , σn)
⊤ and X =

(X1, · · · , Xn)
⊤, i.e., σ(X) = σ ⊙X.

Secondly, we shall need to recall some useful multi-variable functions derivatives notations. For any n,m ∈ N∗ and any
differentiable function with respect to the variable x

F : R ∋ x 7→ F (x) =
(
Fij(x)

)
1≤i≤m
1≤j≤n

∈ Rm×n (8)

we use the following notations associated to the partial derivatives of F with respect to x

∂F

∂x
=

(
∂Fij(x)

∂x

)

1≤i≤m
1≤j≤n

(9)

In adfdition, for any n,m ∈ N∗ and any differentiable function with respect to the matrix variable

F : Rm×n ∋ X =
(
Xij

)
1≤i≤m
1≤j≤n

7→ F (X) ∈ R (10)

we shall use the so-called denominator layout notation (see page 15 of [7]) for the partial derivative of F with respect
to the matrix X

∂F

∂X
=

(
∂F (X)

∂Xij

)

1≤i≤m
1≤j≤n

(11)

2

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 March 2023 doi:10.20944/preprints202303.0001.v3

https://doi.org/10.20944/preprints202303.0001.v3

In particular, this notation leads to the following useful formulas: for any q ∈ N∗ and any matrix W ∈ Rq×m we have

∂(WX)

∂X
= W⊤, (12)

when X ∈ Rn with Xn = 1 one has
∂(WX)

∂X
= W⊤

♯ (13)

where W♯ is the matrix W whose last column is removed (this formula is highly useful in practice). Moreover, for any
matrix X ∈ Rm×n we have

∂(WX)

∂W
= X⊤. (14)

Then, by the chain rule one has for any q, n,m ∈ N∗ and any differentiable function with respect to the matrices
variables W,X :

F : (W,X) 7→ Z := WX ∈ Rq×n 7→ F (Z) ∈ R
∂F

∂X
= W⊤ ∂F

∂Z
and

∂F

∂W
=

∂F

∂Z
X⊤. (15)

Furthermore, for any differentiable function with respect to Y

F : Rn ∋ Y 7→ X := σ(Y) ∈ Rn 7→ F (X) ∈ R

we have
∂F

∂Y
=

∂F

∂X
⊙ σ′(Y). (16)

Throughout this paper, we consider layered feedforward neural networks and supervised learning tasks. Following [2] (see
(2.18) in page 24), we will denote such an architecture by

A[N0, · · · , Nh, · · · , NL] (17)

where N0 is the size of the input layer, Nh is the size of hidden layer h, and NL is the size of the output layer; L is defined
as the depth of the ANN , then the neural network is called as Deep Neural Network (DNN). We assume that the layers
are fully connected, i.e., neurons between two adjacent layers are fully pairwise connected, but neurons within a single
layer share no connections.

X0
1

X0
2

...

X0
N0

X1
1

X1
2

...

X1
N1

. . .

. . .

. . . XL−1
1

XL−1
2

...

XL−1
NL−1

XL
1

XL
2

...

XL
NL

Input
layer

1st Hidden
layer

(L−1)th Hidden
layer Output

layer

Figure 1: Example of an A[N0, · · · , NL] architechture.

For the rest of the paper, we will adopt some simplified notations by replacing some subscripts and superscripts.
Now, let wh

ij denote the weight connecting neuron j in layer h− 1 to neuron i in hidden layer h and let the associated
transfer function denoted σh

i . In general, in the application two different passes of computation are distinguished. The
first pass is referred to as the forward pass, and the second is referred to as the backward pass. In the forward pass, the
synaptic weights remain fixed throughout the network, and the output Xh

i of neuron i in hidden layer h is computed by
the following recursive-coordinate form :

Xh
i := σh

i (Y
h
i) where Y h

i :=

Nh−1∑

j=1

wh
ijX

h−1
j

3

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 March 2023 doi:10.20944/preprints202303.0001.v3

https://doi.org/10.20944/preprints202303.0001.v3

In two-step recursive-matrix form, one may rewrite the above formulas as

Xh = σh(Y h) where Y h = WhXh−1, σh := (σh
1 , · · · , σh

Nh
)⊤, Wh := (wh

ij) ∈ RNh×Nh−1 .

Remark 1
It is crucial to remark that, if we impose the following setting on Xh,Wh and σh

Nh
:

1. all input vectors have the form Xh = [Xh
1 , · · · , Xh

Nh−1, 1]
⊤ for all 0 ≤ h ≤ (L− 1);

2. the last functions σh
Nh

in the columns σh for all 1 ≤ h ≤ (L− 1) are constant functions equal to 1.

Then, the A[N0, · · · , NL] neural network will be equivalent to a (L − 1)-layered affine neural network with (N0 − 1)-
dimensional input and NL-dimensional output. Each hidden layer h will contain (Nh − 1) “genuine” neurons and one (last)
“formal”, associated to the bias; the last column of the matrix Wh will be the bias vector for the h-th layer (For more details,
see the examples given in Section 4).

This forward pass computation between the two adjacent layers h− 1 and h may be represented mathematically as the
composition of the following two maps:

RNh−1 −−−→ RNh −−−→ RNh

Xh−1 Wh

7−−→WhXh−1 = Y h σh

7−−→ σh(Y h) = Xh

It could be presented as a simple mapping diagram with Xh−1 as input and the corresponding successive preactivation and
activation Y h = WhXh−1, Xh = σh(Y h) as outputs (see Figure 2).

Xh−1 Y h Xh
Wh

σh

Figure 2: Mapping diagram associated to the forward pass between two adjacent layers.

As consequence, the simplest neural network can be defined as a sequence of matrix multiplications and non-linearities:

X0 = x, Y h = WhXh−1, Xh = σh(Y h), h = 1, 2, · · · , L.

where x ∈ RN0 is the input to the network, h indexes the layer and Wh is the weight matrix of the h-th layer. To optimize
the neural network, we compute the partial derivatives of the cost J(.) w.r.t. the weight matrices ∂J(.)

∂Wh . This quantity can
be computed by making use of the chain rule in the back-propagation algorithm. To compute the partial derivative with
respect to the matrices variables {Xh, Y h,Wh}, we put

δuph =
∂J(.)

∂Xh
, δdown

h =
∂J(.)

∂Y h
, δWh =

∂J(.)

∂Wh
. (18)

Now, by using the two-step rule for back-propagation, introduced in the previous section, one could rewrite the backward
propagated values of the partial derivatives of J w.r.t. weight as follows :

δupL =
∂J(.)

∂XL
, δdown

h = δuph ⊙ σ′(Y h), δWh = δdown
h (Xh−1)⊤, δuph−1 = (Wh)⊤δdown

h , h = L, · · · , 2. (19)

The backward computation between the two adjacent layers h and h− 1 may be represented mathematically as follows:

RNh−1 × (RNh × RNh−1)←−−−−−−−−−−−−− RNh ←−−−−−−−−−−−−− RNh

(
δuph−1, δWh

)
=

(
(Wh)⊤︸ ︷︷ ︸
Nh−1×Nh

δdown
h︸ ︷︷ ︸
Nh×1

, δdown
h︸ ︷︷ ︸
Nh×1

(Xh−1)⊤︸ ︷︷ ︸
1×Nh−1

)
(.)(Xh−1)⊤←−−−−−−−
(Wh)⊤(.)

[δdown
h = δuph ⊙ σh′(Y h)

(⊙)σh′
(Y h)←−−−−−−−[δuph

The simple mapping diagram below shows the two-step rule for computing the partial derivatives of the cost function
w.r.t. weights (see Figure 3).

4

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 March 2023 doi:10.20944/preprints202303.0001.v3

https://doi.org/10.20944/preprints202303.0001.v3

δuph−1 δWh δdown
h δuph

(⊙)σh′(Y h)(.)(Xh−1)⊤

(Wh)⊤(.)

Figure 3: Mapping diagram associated to the two-step backward pass between two adjacent layers.

δuph−1 δdown
h δuph

(⊙)σh′(Y h)

(Wh)⊤(.)

Figure 4: Refined mapping diagram associated to the two-step backward pass between two adjacent layers.

One may refine the above diagram to show the similarity between both the forward and backward two-step passes as
follows

Note that Figure 2 and Figure 4 are adjoint to each other in both computational phases. Moreover, one could
combine the forward and backward passes by the following diagram, which shows clearly the two-step rule for the entire
back-propagation process (see Figure 5).

Y 1 Y 2 Y L−1 Y L

δup1 δup2 δupL−1 δupLδdown
1 δdown

2 δdown
L−1 δdown

L

δW 1 δW 2 δWL−1 δWL

X0 = x X1 X2 XL−1 XL

Gradient Values

Forward

Backward

Loss : J(.)

y

Figure 5: Mapping diagram associated to the entire back-propagation process.

3 Main mathematical result
In this section we state our main result in the following Proposition.

Proposition 1 (The gradient backward propagation)
Let L be the depth of a Deep Neural Network and Nh the number of neurons in the h-th hidden layer. We denote by

X0 ∈ RN0 the inputs of the network, Wh ∈ RNh×Nh−1 the weights matrix defining the synaptic strengths between the hidden
layer h and its preceding h− 1. The output Y h of the hidden layer h are thus defined as follows:

X0 = x, Y h = WhXh−1, Xh = σ(Y h), h = 1, 2, · · · , L. (20)

Where σ(.) is a point-wise differentiable activation function. We will thus denote by σ′(.) its first order derivative, x ∈ RN0

is the input to the network and Wh is the weight matrix of the h-th layer. To optimize the neural network, we compute the
partial derivatives of the loss J(f(x), y) w.r.t. the weight matrices ∂J(f(x),y)

∂Wh , with f(x) and y are the output of the DNN
and the associated target/label respectively. This quantity can be computed similarly by the following two-step rule:

δupL =
∂J(f(x), y)

∂XL
, δdown

h = δuph ⊙ σ′(Y h), δuph−1 =
(
Wh

)⊤
δdown
h , h = L, · · · , 1. (21)

Once δdown
h is computed, the weights update can be computed as

∂J(f(x), y)

∂Wh
= δdown

h

(
Xh−1

)⊤
. (22)

5

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 March 2023 doi:10.20944/preprints202303.0001.v3

https://doi.org/10.20944/preprints202303.0001.v3

Proof of the Proposition 1
Firstly, for any h = 1, · · · , L let us recall the simplified notations introduced by (18):

δuph =
∂J(f(x), y)

∂Xh
, δdown

h =
∂J(f(x), y)

∂Y h
.

Secondly, for fixed h ∈ {1, · · · , L}, Xh = σ(Y h), then (16) implies that

∂J(f(x), y)

∂Y h
=

∂J(f(x), y)

∂Xh
⊙ σ′(Y h)

thus
δdown
h = δuph ⊙ σ′(Y h). (23)

On the other hand, Y h = WhXh−1, thus

∂J(f(x), y)

∂Xh−1
= (Wh)⊤

∂J(f(x), y)

∂Y h

by vertue of (15). As consequence,

δuph−1 = (Wh)⊤δdown
h . (24)

Equations (23) and (24) implies immediately (21). Moreover, we apply again (15) to the cost function J and the relation
Y h = WhXh−1, we deduce that

∂J(f(x), y)

∂Wh
=

∂J(f(x), y)

∂Y h
(Xh−1)⊤ = δdown

h (Xh−1)⊤.

This end the proof of the Proposition 1. Furthermore, in the practical setting mentioned in Remark 1, one should replace
Wh by Wh

♯ by vertue of (13). Thus, we have for all h ∈ {L, · · · , 2}

δuph−1 = (Wh
♯)

⊤δdown
h ,

and then the associated two-step rule is given by

δupL =
∂J(f(x), y)

∂XL
, δdown

h = δuph ⊙ σ′(Y h), δuph−1 =
(
Wh

♯

)⊤
δdown
h , h = L, · · · , 1. (25)

4 Application to the two simplest cases A[1, 1, 1] and A[1, 2, 1]

The present section shows that in the following four simplest cases associated to the DNN A[1, N1, 1] with N1 = 1, 2, we
shall apply the two-step rule for back-propagation to compute the partial derivative of the elementary cost function J
defined by J(f(x), y) = f(x)− y for any real x and fixed real y. In this particular setting, we have the two simplest cases
A[1, 1, 1] and A[1, 2, 1]: one neuron and two neurons in the hidden layer (see Figures 6 and 7).

4.1 The first case: A[1, 1, 1]

The first simplest case corresponds to A[1, 1, 1] architecture is shows by the Figure 6. Let us denote by a W 1 =
(
α1
11 α1

12

)

and W 2 =
(
α2
1 α2

2

)
the weights in the first and second layer. We will evaluate the δW 1 and δW 2 by the differential calculus

rules firstly and then recover this result by the two-step rule for back-propagation.

The two-step forward pass :

X0 =

(
x
1

)
W 1

7−−−−→
σ





Y 1 = W 1X0 = α1
11x+ α1

12

X1 =

(
σ(Y 1)

1

)
=

(
σ(α1

11x+ α1
12)

1

)




W 2

7−−−−→
σ

{
Y 2 = W 2X1 = α2

1σ(α
1
11x+ α1

12) + α2
2

X2 = σ(Y 2) = σ
[
α2
1σ(α

1
11x+ α1

12) + α2
2

]
}

Hence, by using the differential calculus rules one gets

δW 2 =



σ′
[
α2
1σ(w

1) + α2
2

]
σ(w1)

σ′
[
α2
1σ(w

1) + α2
2

]




⊤

, w1 := α1
11x+ α1

12 and δW 1 =



σ′
[
α2
1σ(w

1) + α2
2

]
σ′(w1)α2

1x

σ′
[
α2
1σ(w

1) + α2
2

]
σ′(w1)α2

1




⊤

.

6

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 March 2023 doi:10.20944/preprints202303.0001.v3

https://doi.org/10.20944/preprints202303.0001.v3

X0
1 =x

X0
2 =1

X1
1

X1
2 =1

X2

α1
11

α
1
12

α2
1

α
2
2

Input
layer

Hidden
layer

Output
layer

Figure 6: The DNN associated to the case 1.

The two-step backward pass :

α2
1σ

′
[
α2
1σ(w

1) + α2
2

]
σ′(w1) = δY 1

σ′
←−[





σ′
[
α2
1σ(w

1) + α2
2

]
= δX2 ⊙ σ′(Y 2) = δY 2

α2
1σ

′
[
α2
1σ(w

1) + α2
2

]
= (W 2

♯)
⊤δY 2 = δX1





σ′
←−−−−
(W 2

♯)
⊤

[δX2 = 1

Hence, by using the two-step rule (25) one gets

δW 2 = δY 2(X1)⊤ =



σ′
[
α2
1σ(w

1) + α2
2

]
σ(w1)

σ′
[
α2
1σ(w

1) + α2
2

]




⊤

and δW 1 = δY 1(X0)⊤ =



σ′
[
α2
1σ(w

1) + α2
2

]
σ′(w1)α2

1x

σ′
[
α2
1σ(w

1) + α2
2

]
σ′(w1)α2

1




⊤

.

4.2 The second case: A[1, 2, 1]

The second simplest case corresponds to A[1, 2, 1] architecture is shows by the Figure 7. In this case we have

W 1 =

(
α1
11 α1

12

α1
21 α1

22

)
and W 2 =

(
α2
1 α2

2 α2
3

)
. Thus, one deduce immediately that

X0
1 =x

X0
2 =1

X1
1

X1
2

X1
3 =1

X2

α
1
11

α 1
21

α
1
12

α1
22

α 2
1

α
2
2

α
2

3

Input
layer

Hidden
layer

Output
layer

Figure 7: The DNN associated to the case 2.

7

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 March 2023 doi:10.20944/preprints202303.0001.v3

https://doi.org/10.20944/preprints202303.0001.v3

The two-step forward pass :

X0 =

(
x
1

)
W 1

7−−−−→
σ





Y 1 =

(
α1
11x+ α1

12

α1
21x+ α1

12

)

X1 =



σ(α1

11x+ α1
12)

σ(α1
21x+ α1

22)
1








W 2

7−−−−→
σ





Y 2 = α2
1σ(α

1
11x+ α1

12) + α2
2σ(α

1
21x+ α1

22) + α2
3

X2 = σ
[
α2
1σ(α

1
11x+ α1

12) + α2
2σ(α

1
21x+ α1

22) + α2
3

]




Hence, by using the differential calculus rules one gets

δW 2 =




σ′
[
α2
1σ(w

1) + α2
2σ(w

2) + α2
3

]
σ(w1)

σ′
[
α2
1σ(w

1) + α2
2σ(w

2) + α2
3

]
σ(w2)

σ′
[
α2
1σ(w

1) + α2
2σ(w

2) + α2
3

]




⊤

, w1 := α1
11x+ α1

12, w
2 := α1

21x+ α1
22

and

δW 1 =



α2
1xσ

′(w1)σ′
[
α2
1σ(w

1) + α2
2σ(w

2) + α2
3

]
α2
1σ

′(w1)σ′
[
α2
1σ(w

1) + α2
2σ(w

2) + α2
3

]

α2
2xσ

′(w2)σ′
[
α2
1σ(w

1) + α2
2σ(w

2) + α2
3

]
α2
2σ

′(w2)σ′
[
α2
1σ(w

1) + α2
2σ(w

2) + α2
3

]


 .

The two-step backward pass :



α2
1σ

′
[
α2
1σ(w

1) + α2
2σ(w

2) + α2
3

]
σ′(w1)

α2
2σ

′
[
α2
1σ(w

1) + α2
2σ(w

2) + α2
3

]
σ′(w2)


=δdown

1
σ′
←−[





σ′
[
α2
1σ(w

1x) + α2
2σ(w

2) + α2
3

]
=δdown

2



α2
1σ

′
[
α2
1σ(w

1) + α2
2σ(w

2) + α2
3

]

α2
2σ

′
[
α2
1σ(w

1) + α2
2σ(w

2) + α2
3

]


=δup1





σ′
←−−−−
(W 2

♯)
⊤

[δup2 =1

Hence, by using the two-step rule (25) one gets

δW 2 = δdown
2 (X1)⊤ =




σ′
[
α2
1σ(w

1) + α2
2σ(w

2) + α2
3

]
σ(w1)

σ′
[
α2
1σ(w

1) + α2
2σ(w

2) + α2
3

]
σ(w2)

σ′
[
α2
1σ(w

1) + α2
2σ(w

2) + α2
3

]




⊤

and

δW 1 = δdown
1 (X0)⊤ =



α2
1xσ

′(w1)σ′
[
α2
1σ(w

1) + α2
2σ(w

2) + α2
3

]
α2
1σ

′(w1)σ′
[
α2
1σ(w

1) + α2
2σ(w

2) + α2
3

]

α2
2xσ

′(w2)σ′
[
α2
1σ(w

1) + α2
2σ(w

2) + α2
3

]
α2
2σ

′(w2)σ′
[
α2
1σ(w

1) + α2
2σ(w

2) + α2
3

]


 .

5 Related works and Conclusion
It is interesting to cite related works which have some connections with ours. To the best of our knowledge, in literature,

the related works to this paper are [1] and [3] to the best of our knowledge. In particular, in the first paper the authors
uses some decomposition of the partial derivatives of the cost function, similar to the two-step formula (5), to replace the
standard back-propagation. In addition, they show (experimentally) that for specific scenarios, the two-step decomposition
yield better generalization performance than the one based on the standard back-propagation. But in the second article, the
authors find some similar update equation similar to the one given by (5) that report similarly to standard back-propagation
at convergence. Moreover, this method discovers new variations of the back-propagation by learning new propagation rules
that optimize the generalization performance after a few epochs of training.

In conclusion, we have provided a two-step rule for back-propagation similar to the one for forward propagation. We
hope that it serve as a pedagogical material for data scientists, and may also inspire the exploration of novel approaches for
optimizing some artificial neural networks training algorithms. As future work, we envision to explore some experimental
issues to compare the performance of this two-step rule for back-propagation and the standard one.

8

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 March 2023 doi:10.20944/preprints202303.0001.v3

https://doi.org/10.20944/preprints202303.0001.v3

Declarations
Conflicts of interest/Competing interests Non declared.

References
[1] Alber, M., Bello, I., Zoph, B., Kindermans, P. J., Ramachandran, P., & Le, Q. (2018). Backprop evolution. arXiv

preprint arXiv:1808.02822.

[2] Baldi, P. (2021). Deep learning in science. Cambridge University Press.

[3] Hojabr, R., Givaki, K., Pourahmadi, K., Nooralinejad, P., Khonsari, A., Rahmati, D., & Najafi, M. H. (2020, October).
TaxoNN: A Light-Weight Accelerator for Deep Neural Network Training. In 2020 IEEE International Symposium on
Circuits and Systems (ISCAS) (pp. 1-5). IEEE.

[4] McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. The bulletin of
mathematical biophysics, 5, 115-133.

[5] Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. nature,
323 (6088), 533-536.

[6] Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural networks, 61, 85-117.

[7] Ye, J. C. (2022). Geometry of Deep Learning. Springer Singapore.

9

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 March 2023 doi:10.20944/preprints202303.0001.v3

https://doi.org/10.20944/preprints202303.0001.v3

