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Abstract: In recent years, the unmanned aerial vehicle (UAV) synthetic aperture radar (SAR) has
become a highly sought-after topic for its wide applications in the field of target recognition, detection,
and tracking. However, SAR automatic target recognition (ATR) models based on deep neural
networks (DNN) are suffering from adversarial examples. Generally, non-cooperators rarely disclose
any information about SAR-ATR models, making adversarial attacks challenging. In this situation,
we propose Transferable Adversarial Network (TAN) to attack these models with highly transferable
adversarial examples. The proposed method improves the transferability via a two-player game,
in which we simultaneously train two encoder-decoder models: a generator that crafts malicious
samples through a one-step forward mapping from original data, and an attenuator that weakens
the effectiveness of malicious samples by capturing the most harmful deformations. In particular,
compared to traditional iterative methods, our approach is able to one-step map original samples
to adversarial examples, thus enabling real-time attacks. Experimental results indicate that the
proposed approach achieves state-of-the-art transferability with acceptable adversarial perturbations
and minimum time costs compared to existing attack methods, i.e., it excellently realizes real-time
transferable adversarial attacks.

Keywords: unmanned aerial vehicle (UAV); synthetic aperture radar (SAR); automatic
target recognition (ATR); deep neural network (DNN); adversarial example; transferability;
encoder-decoder; real-time attack

1. Introduction

The ongoing advances in unmanned aerial vehicle (UAV) and synthetic aperture radar (SAR)
technologies have enabled the acquisition of high-resolution SAR images through UAVs. However,
unlike visible light imaging, SAR images reflect the reflection intensity of imaging targets to radar
signals, making it difficult for humans to extract effective semantic information from SAR images
without the aid of interpretation tools. Currently, deep learning has achieved excellent performance
in various scenarios [1-3], and SAR automatic target recognition (SAR-ATR) models based on deep
neural networks (DNN) [4-8] have become one of the most popular interpretation methods. With their
powerful representation capabilities, DNNs outperform traditional approaches in image classification
tasks. Yet, recent studies have shown that DNN-based SAR-ATR models are susceptible to adversarial
examples [9].

The concept of adversarial examples was first proposed by Szegedy et al. [10], which suggests
that a carefully designed tiny perturbation can cause a well-trained DNN model to misclassify. This
finding has made adversarial attacks one of the most serious threats to artificial intelligence (AI)
security. To date, researchers have proposed a variety of adversarial attack methods, which can be
mainly divided into two categories from the perspective of prior knowledge: the white-box and
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black-box attacks. In the first case, attackers can utilize a large amount of prior knowledge, such as
the model structure and gradient information, etc., to craft adversarial examples for victim models.
Examples of white-box methods include gradient-based attacks [11,12], boundary-based attacks [13],
and saliency map-based attacks [14], etc. While in the second case, attackers can only access the output
information or even less, making adversarial attacks much more difficult. Examples of black-box
methods include probability label-based attacks [15,16] and decision-based attacks [17], etc. We now
consider an extreme situation, where attackers have no access to any feedback from victim models,
such that existing attack methods are unable to craft adversarial examples until researchers discover
that adversarial examples can transfer among DNN models. Liu et al. [18] proposed an ensemble-based
approach to generating transferable adversarial examples for the non-targeted and targeted attacks.
Subsequent studies focused on improving the basic FGSM [11] method to enhance the transferability of
adversarial examples, such as gradient-based methods [19,20], transformation-based methods [20,21],
and variance-based methods [22], etc. However, the transferability and real-time performance of the
above approaches are still insufficient to meet realistic attack requirements. Consequently, further
improvements in the adversarial attack are pending to be solved in the future.

With the wide application of DNNs in the field of remote sensing, researchers have embarked
on investigating the adversarial examples of remote sensing images. Xu et al. [23] first investigated
the adversarial attack and defense in safety-critical remote sensing tasks, and proposed the mixup
attack [24] to generate universal adversarial examples for remote sensing images. However, the
research on the adversarial example of SAR images is still in its infancy. Li et al. [25] generated
abundant adversarial examples for CNN-based SAR image classifiers through the basic FGSM method
and systematically evaluated critical factors affecting the attack performance. Du et al. [26] designed
a Fast C&W algorithm to improve the efficiency of generating adversarial examples by introducing
an encoder-decoder model. To enhance the universality and feasibility of adversarial perturbations,
the work in [27] presented a universal local adversarial network to generate universal adversarial
perturbations for the target region of SAR images. Furthermore, the latest research [28] has broken
through the limitations of the digital domain and implemented the adversarial example of SAR images
in the signal domain by transmitting a two-dimensional jamming signal. Despite the high attack
success rates achieved by the above methods, the problem of transferable adversarial examples in the
field of SAR-ATR has yet to be addressed.

In this paper, a transferable adversarial network (TAN) is proposed to improve the transferability
and real-time performance of adversarial examples in SAR images. Specifically, during the training
phase of TAN, we simultaneously train two encoder-decoder models: a generator that crafts malicious
samples through a one-step forward mapping from original data, and an attenuator that weakens
the effectiveness of malicious samples by capturing the most harmful deformations. We argue that
if the adversarial examples crafted by the generator are robust to the deformations produced by
the attenuator, i.e., the attenuated adversarial examples remain effective to DNN models, then they
are capable of transferring to other victim models. Moreover, unlike traditional iterative methods,
our approach can one-step map original samples to adversarial examples, thus enabling real-time
attacks. In other words, we realize real-time transferable adversarial attacks through a two-player
game between the generator and attenuator.

The main contributions of this paper are summarized as follows.

(1) For the first time, this paper systematically evaluates the transferability of adversarial examples
among DNN-based SAR-ATR models. Meanwhile, our research reveals that there may be potential
common vulnerabilities among DNN models performing the same task.

(2) We propose a novel network to enable real-time transferable adversarial attacks. Once the proposed
network is well-trained, it can real-time craft adversarial examples with high transferability, thus
attacking black-box victim models without resorting to any prior knowledge. As such, our approach
possesses promising applications in Al security.
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(3) The proposed method is evaluated on the most authoritative SAR-ATR dataset. Experimental results
indicate that our approach achieves state-of-the-art transferability with acceptable adversarial
perturbations and minimum time costs compared to existing attack methods, i.e., it excellently
realizes real-time transferable adversarial attacks.

The rest parts of this paper are arranged as follows. Section 2 introduces the relevant preparation
knowledge, and Section 3 describes the proposed method in detail. The experimental results and
conclusions are given in Sections 4 and 5, respectively.

2. Preliminaries

2.1. Adversarial Attacks for DNN-Based SAR-ATR Models

Suppose x,€[0,255]"W*H is a single channel SAR image from the dataset X and f(-) is a
DNN-based K-class SAR-ATR model. Given a sample x, as input to f(-), the output is a K-dimensional
vector f(xn)=[f(xn)1, f(xn)2, -+, f(xn)k], where f(x,);€R denotes the score of x, belonging to class
i. Let C, = argmax;(f(xy);) represent the predicted class of f(-) for x,. The adversarial attack is to
fool f(-) with an adversarial example %, that only has a minor perturbation on x,,. The detail process
can be expressed as follows:

argmax f(%); # Cp, st [|Tn —xull, <& 1)

1

where the Ly,-norm is defined as |[v[|, =(Y; |Ui|p)%, and ¢ controls the magnitude of adversarial
perturbations.

Meanwhile, adversarial attacks can be mainly divided into two modes. The first basic mode is
called the non-targeted attack, making DNN models misclassify. The second one is more stringent,
called the targeted attack, which induces models to output specified results. There is no doubt that the
latter poses a higher level of threat to Al security. In other words, the non-targeted attack is to minimize
the probability of models correctly recognize samples; conversely, the targeted attack maximizes the
probability of models identifying samples as target classes. Thus, (1) can be transformed into the
following optimization problems:

¢ For the non-targeted attack:

N
minimize( Nﬂ; argmaxf Zn)i == Cp)), st [T —xull, <¢ )
¢ For the targeted attack:
o1
maxzmzze(ﬁ Z D(argmax f(%); == Cua)),  st.[|%u —xull, <¢ 3)

i

where the discriminant function D(-) equals one if the equation holds; otherwise, it equals zero. Cy,
and Cy, represent the true and target classes of the input. N is the number of samples in the dataset.
Obviously, the above optimization problems are exactly the opposite of a DNN’s training process, and
the corresponding loss functions will be given in the next chapter.

2.2. Transferability of Adversarial Examples

We consider an extreme situation where attackers have no access to any feedback from victim
models, such that existing white-box and black-box attacks are unable to craft adversarial examples. In
this case, attackers can utilize the transferability of adversarial examples to attack models. Specifically,
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due to the similarity between models, adversarial examples generated for a certain model can also
successfully attack other models performing the same task [18]. Details are shown in Figure 1.

False class
True class

Confidence

S

f

Q)

False class

True class

Attack Algorithm

Confidence

0

- “
“

X
False class

I True class

Confidence

fvz ()

Figure 1. Transferability of adversarial examples.

As shown in Figure 1, for an image classification task, we have trained three recognition models.
Suppose that only the surrogate model f;(-) is a white-box model, and victim models f1(-), fo2(+) are
black-box models. Undoubtedly, given an sample x, attackers can craft an adversarial example & to fool
fs(+) through attack algorithms. Meanwhile, since the transferability of adversarial examples, ¥ can
also fool f1(+) and fy(-) successfully. However, the transferability generated by existing algorithms
is very weak, so this paper is dedicated to crafting highly transferable adversarial examples.

3. The Proposed Transferable Adversarial Network (TAN)

In this paper, the proposed Transferable Adversarial Network (TAN) utilizes the encoder-decoder
model and data augmentation technology to improve the transferability and real-time performance of
adversarial examples. The framework of our network is shown in Figure 2. As we can see, compared to
traditional iterative methods, TAN introduces a generator G(-) to learn the one-step forward mapping
from the clean sample x to the adversarial example %, thus enabling real-time attacks. Meanwhile,
to improve the transferability of X, we simultaneously train an attenuator A(-) to capture the most
harmful deformations, which are supposed to weaken the effectiveness of ¥ while still preserving
the semantic meaning of x. We argue that if & is robust to the deformations produced by A(-), i.e.,
%* remains effective to DNN models, then ¥ is capable of transferring to the black-box victim model
fo(+). In other words, we achieve real-time transferable adversarial attacks through a two-player game
between G(-) and A(+). This chapter will introduce our method in detail.

False class

True class

x G(O)

Confidence

Figure 2. Framework of TAN.

3.1. Training Process of the Generator

For easy understanding, Figure 3 shows the detailed training process of the generator. Note that a
white-box model is selected as the surrogate model f;(+) during the training phase.
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Figure 3. Training process of the generator.

As we can see, given a clean sample x, the generator G(-) crafts the adversarial example ¥ through
a one-step forward mapping, as follows:
%= G(x) @

Meanwhile, the attenuator A(-) takes ¥ as input and outputs the attenuated adversarial example ¥*:
¥ =A%) )

Since & has to fool f;(-) with a minor perturbation, and * needs to remain effective against
fs(+), the loss function of G(-) consists of three parts. Next, we will give the generator loss L of
non-targeted and targeted attacks, respectively.

For the non-targeted attack: First, according to (2), ¥ is to minimize the classification accuracy of
fs(+), which means that it has to decrease the confidence of being recognized as the true class Cy, i.e.,
to increase the confidence of being identified as others. Thus, the first part of £ can be expressed as:

coin o (T

(
o ep(fil®)e,)
=log (1 Y exp(fs(3 a)

Second, to improve the transferability of ¥, we expect that ¥* remains effective to f;(-), so the second
part of L can be derived as:

(6)

Yizc, exp(fs(%7):) )
L %),Cy) = —1lo I _
a5 (), ) = —log (LIPS
exp(fs(¥7)c,,) )
—log(1— —F—7"%
(- Cowi )
Finally, the last part of L is used to limit the perturbation magnitude. We introduce the traditional
Lp-norm to measure the degree of image distortion as follows:

@)

Los(x®) = |2 -1,
1 8
= (T |ax/?)? ®

In summary, we apply the linear weighted sum method to balance the relationship between L1,
L, and Lg3. As such, the complete generator loss for the non-targeted attack can be represented as:

Le =wec1Lci1(fs(X),Ch) +wea - Loa(fs(X°), Chr) + wes - Loz (x, %) ©)

where wg1 + wey + was = 1. we1, wea, wes€[0, 1] are the weight coefficients of L1, L5z, and L3,
respectively.

doi:10.20944/preprints202303.0034.v1
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For the targeted attack: According to (3), & is to maximize the probability of being recognized as
the target class Cy, i.e., to increase the confidence of Cy,. Thus, L1 here can be expressed as:

5 o eXP(fS(f)Cm)
EGl(fs(x)/Cm) = —log (Elexp(fs(f)l)) (10)
To maintain the effectiveness of ¥* against f;(-), L here is derived as:
. B eXp(fs(f*)Cm)
Leo(fs(%),Cra) = —log (Zzexp(fs(f*)z)> (v

The perturbation magnitude is still limited by the £s3 shown in (8). Therefore, the complete generator
loss for the targeted attack can be represented as:

L =wect - Lci1(fs(X),Cra) +wia - Loa(fs(£7), Cra) + wes - Loz (x, %) (12)

3.2. Training Process of the Attenuator

According to Figure 2, during the training phase of TAN, an attenuator A(-) is introduced to
weaken the effectiveness of ¥ while still preserving the semantic meaning of x. We show the detailed
training process of A(-) in Figure 4.

= G0) ¥
R i ‘CAI @ L A

X x

L,-norm

Figure 4. Training process of the attenuator.

As we can see, the attenuator loss £ 4 also consists of three parts. First, to preserve the semantic
meaning of x, f(-) has to keep a basic classification accuracy on the following attenuated sample x*:

x* = A(x) (13)
It means that the first part of £4 should increase the confidence of x* being recognized as the true

class Cy, as follows:
exp(fs(x)c,) )
Y exp(fs(x)i)
Meanwhile, to weaken the effectiveness of X, A(-) also need to improve the confidence of the attenuated
adversarial example £* being identified as Cy,, so the second part of £ 4 can be expressed as:

exp(fs(¥7)c,) )
Liexp(fs(2%);)

[,Al(fs(x*), Ctr) = —log ( (14)

EAz(fs(f*), Cty) = —log ( (15)

doi:10.20944/preprints202303.0034.v1
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Finally, to avoid excessive image distortion caused by A(-), the third part of £, is used to limit the
deformation magnitude, which can be expressed by the traditional L,-norm, as follows:

Laz(x,x%) = |[x* = x|,

1 (16)
= (L [Axi[")?
1
As with the generator loss, we utilize the linear weighted sum method to derive the complete
attenuator loss as follows:

La=war-Lai1(fs(x*),Ch)+war- Laz(fs(X*),Ctr) + waz - Laz(x,x¥) (17)

where wa1 + wap +was = 1. wa1, wa, waz€0,1] are the weight coefficients of L41, L4z, and L3,
respectively.

3.3. Network Structure of the Generator and Attenuator

According to Sections 3.1 and 3.2, the generator and attenuator are essentially two
encoder-decoder models, so the choice of a suitable model structure is necessary. We mainly consider
two factors. First, as the size of original samples and adversarial examples should be the same, the
model has to keep the input and output sizes identical. Second, to prevent our network from overfitting
while saving computational resources, a lightweight model will be a better choice. In summary, we
apply ResNet Generator proposed in [29] as the encoder-decoder model of TAN. The structure of
ResNet Generator is shown in Figure 5.

[ enpisoy
7 renprsoy
¢ Tenpisay
t [enprsoy
¢ Tenprsoy
9 [enprsay

JoAeT nduy
1 Surdwesumo(y

¢ Surdwesdn
1oKeT nding

7 Surduwresumo(q
1 Surdwresdny

Figure 5. Structure of ResNet Generator.

As we can see, ResNet Generator mainly consists of downsampling, residual, and upsampling
modules. For a visual understanding, given an input data of size 1 x 128 x 128, the input and output
sizes of each module are listed in Table 1.

Obviously, the input and output sizes of ResNet Generator are the same. Meanwhile, to ensure
the validity of the generated data, we add a tanh function after the output module, which restricts the
generated data to the interval [0, 1]. The total number of parameters in ResNet Generator has been
calculated to be approximately 7.83M, which is a fairly lightweight network. For more details, please
refer to literature [29].
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Table 1. Input-output relationships for each module of ResNet Generator.

Module Input size Output Size

Input 1x128 x 128 64 x 128 x 128
Downsampling_ 1 64 x 128 x 128 128 x 64 x 64
Downsampling_Z 128 x 64 x 64 256 x 32 x 32

Residual_1 ~ 6 256 x 32 x 32 256 x 32 x 32
Upsampling_1 256 x 32 x 32 128 x 64 x 64
Upsampling_Z 128 x 64 x 64 64 x 128 x 128

Output 64 x 128 x 128 1 x 128 x 128

3.4. Complete Training Process of TAN

As we described earlier, TAN improves the transferability of adversarial examples through a
two-player game between the generator and attenuator, which is quite similar to the working principle
of generative adversarial networks (GAN) [30]. Therefore, we also adopt an alternating training
scheme to train our network. Specifically, given the dataset & and batch size S, we first randomly
divide X into M batches {bq, by, - - - , by} at the beginning of each training iteration. Second, we set a
training ratio REN*, which means that TAN trains the generator R times and then trains the attenuator
once, i.e., once per batch for the former and only once per R batches for the latter. In this way, we can
prevent the attenuator from being so strong that the generator cannot be optimized. Meanwhile, to
shorten training time, we set an early stop condition ESC so that training can be ended early when
certain indicators meet the condition. Note that the generator and attenuator are trained alternately,
i.e., the attenuator’s parameters are fixed when the generator is trained, and vice versa. More details
of the complete training process for TAN are shown in Algorithm 1.

Algorithm 1 Transferable Adversarial Network Training.

Input: Dataset X’; batch size S; surrogate model f;; target class Cy,; training loss function of the
generator Lg; training loss function of the attenuator £ 4; number of training iterations T; learning

rate 177; H‘alnm ratio fth ener for a,nd ttenuator R; early stop condition ESC.
Out ut: | T terg é 5 we trame generator.
2: gan o ;P nFHa 1ze UG an
i' o(;cor 1r}]g to S éandomly divide X into M batches {b1, by, -, b}
5: (nfla Cu ate G@GIGAIfS Cm)
6: J date 0 = aec
7:
8: ! mC/aFculate ZA? G, GA,fs ,,2
9: Update 64 =
10: el se
11:
: ot
14: é(l? == True then
b
17: C?ntmue

%g ende?or

4. Experiments

4.1. Data Descriptions

To date, there is no publicly available dataset for UAV SAR-ATR, thus this paper experiments
on the most authoritative SAR-ATR dataset, i.e., the moving and stationary target acquisition and
recognition (MSTAR) dataset [31]. MSTAR is collected by a high-resolution spotlight SAR and
published by the U.S. Defense Advanced Research Projects Agency (DARPA) in 1996, which contains
SAR images of Soviet military vehicle targets at different azimuth and depression angles. In standard
operating conditions (SOC), MSTAR includes ten classes of targets, such as self-propelled howitzers
(251); infantry fighting vehicles (BMP2); armored reconnaissance vehicles (BRDM2); wheeled armored
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transport vehicles (BTR60, BTR70); bulldozers (D7); main battle tanks (162, T72); cargo trucks (ZIL131);
and self-propelled artillery (ZSU234). The training dataset contains 2747 images collected at a
depression angle of 17°, and the testing dataset contains 2426 images captured at a depression angle of
15°. More details about the dataset are given in Table 2, and Figure 6 shows the optical images and
corresponding SAR images of each class.

Table 2. Details of the MSTAR dataset under SOC, including target class, serial, depression angle, and
sample numbers.

Target Class Serial Training Data Testing Data

Depression Angle Number Depression Angle Number

251 b01 17° 299 15° 274
BMP2 9566 17° 233 15° 196
BRDM2 E-71 17° 298 15° 274
BTR60 k10yt7532 17° 256 15° 195
BTR70 c71 17° 233 15° 196
D7 92v13015 17° 299 15° 274
T62 Ab51 17° 299 15° 273
172 132 17° 232 15° 196
ZIL131 E12 17° 299 15° 274
Z5U234 dos 17° 299 15° 274

BMP2 BRDM2 BTR60 BTR70 D7 T62 T72 ZILi31 Z8U234

Figure 6. Optical images (top) and SAR images (bottom) of the MSTAR dataset.

4.2. Implementation Details

We evaluate the attack performance of our approach on the following six common DNN models:
DenseNet121 [32], GoogLeNet [33], InceptionV3 [34], Mobilenet [35], ResNet50 [36], and Shufflenet [37].
To uniform image sizes, we resize all the images in MSTAR to 128 x 128. As for the dataset processing,
we uniformly sample 10% of data from the training dataset to form the validation dataset. During
the training phase of recognition models, we set the training epoch and batch size to 100 and 32,
respectively. For the training parameters of TAN, we set the generator loss weights [wg1, wga, Wes]
to [0.25,0.25,0.5], the attenuator loss weights [wa1, w a2, wa3] to [0.25,0.25,0.5], the training ratio to 3,
the training epoch to 50, the batch size to 8, and the norm type to the Ly-norm. For above models, we
optimize them through an Adam optimizer [38] with the learning rate of 0.001. When evaluating the
transferability of adversarial examples, we first take each network as the surrogate model in turn and
craft adversarial examples for them, respectively. Then, we assess the transferability by testing the
recognition results of victim models on corresponding adversarial examples. Detailed experimental
results will be given later.

For baseline methods, we adopt the following six attack algorithms from the Torchattacks [39]
toolbox to compare with TAN: MIFGSM [19], DIFGSM [21], NIFGSM [20], SINIFGSM [20],
VMIFGSM [22], and VNIFGSM [22]. All codes were written in Pytorch, and the experimental
environment consisted of Windows 10 with an NVIDIA GeForce RTX 2080 Ti GPU and a 3.6 GHz Intel
Core i9-9900K CPU).
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4.3. Evaluation Metrics

We mainly consider two factors to comprehensively evaluate the performance of adversarial
attacks: the effectiveness and stealthiness, which are directly related to the classification accuracy
Acc of victim models on adversarial examples and the norm value L, of adversarial perturbations,
respectively. For the Acc metric, the formula is as follows:

& YN D(arg max;(fy(%0);)==Ci) for the non-targeted attack
Acc = (18)
N Zlémzl YN | D(argmax;(fy(%,);)==Cts) for the targeted attack

where C;; and Cy, represent the true and target classes of the input data, K is the number of target
classes, and D(-) is a discriminant function. In the non-targeted attack, the Acc metric reflects the
probability that the victim model f; ( ) identifies the adversarial example %, as C;r, while in the targeted
attack it indicates the probability that f, (-) recognizes X, as Cy,. Obviously, in the non-targeted attack,
the lower the Acc metric, the better the attack. Conversely, in the targeted attack, a higher Acc
metric represents f,(+) is more likely to recognize X, as Ct;, and thus the attack is more effective. In
conclusion, the effectiveness of non-targeted attacks is inversely proportional to the Acc metric, and
the effectiveness of targeted attacks is proportional to this metric. Additionally, there are other three
similar indicators Acc, Acc*, and Acc” that represent the classification accuracy of f;(+) for the original
sample x;, the attenuated sample x};, and the attenuated adversarial example %}, respectively. Note
that whether it is a non-targeted or targeted attack, Acc* always represents the accuracy with which
fu(+) identifies x}, as C,, while the other three accuracy indicators need to be calculated via (18) based
on the attack mode. In particular, Acc” represents the recognition result of f,(-) on ¥, which indirectly
reflects the strength of the transferability possessed by %;,.
Meanwhile, we apply the following L,-norm values to measure the attack stealthiness:

L,=4 X0 1% — Xul|, for the generator
(19)

L; = % 2111\]:1 l|xk — xn||p for the attenuator

where L, and L, represent the image distortion caused by the generator and attenuator, respectively.
In our experiments, the L,-norm defaults to Ly-norm. In summary, we can set the early stop condition
ESC mentioned in Section 3.4 with the above indicators, as follows:

Ace < 0.05, Acc* > 0.9, Acc™ < 0.1, ip <4, L;‘, <4 for the non-targeted attack
ESC = (20)
Ace > 095, Acc* > 0.9, Acc™ > 0.9, L, <4, Ly <4 for the targeted attack

Furthermore, to evaluate the real-time performance of adversarial attacks, we introduce the Tc
metric to denote the time cost of generating a single adversarial example, as follows:
_ Time

Te = — (21)

where Time is the total time consumed to generate N adversarial examples.

4.4. DNN-Based SAR-ATR Models

A well-trained recognition model is a prerequisite for effective adversarial attacks, so we
have trained six SAR-ATR models on the MSTAR dataset: DenseNet121, GoogLeNet, InceptionV3,
Mobilenet, ResNet50, Shufflenet. All of them achieve outstanding recognition performance, with the
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classification accuracy of 98.72%, 98.06%, 96.17%, 96.91%, 97.98%, and 96.66% on the testing dataset,
respectively. In addition, we show the confusion matrix of each model in Figure 7.
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Figure 7. Confusion matrixes of DNN-based SAR-ATR models on the MSTAR dataset. (a) DenseNet121.
(b) GoogLeNet. (c) InceptionV3. (d) Mobilenet. (e) ResNet50. (f) Shufflenet.

4.5. Comparison of Attack Performance

In this section, we first evaluated the attack performance of the proposed method against
DNN-based SAR-ATR models on the MSTAR dataset. Specifically, during the training phase of
TAN, we took each network as the surrogate model in turn and assessed the recognition results of
corresponding models on the outputs of TAN at each stage. The results of non-targeted and targeted
attacks are detailed in Tables 3 and 4, respectively.

In non-targeted attacks, the Acc metric of each model on the MSTAR dataset exceeds 95%.
However, after the non-targeted attack, the classification accuracy of all models on the generated
adversarial examples, i.e., the Acc metric, is below 5%, and the L, indicator is less than 3.7. It means
that adversarial examples deteriorate the recognition performance of models rapidly through minor
adversarial perturbations. Meanwhile, during the training phase of TAN, we evaluate the performance
of the attenuator. According to the Acc” metric, the attenuator leads to an average improvement of
about 25% in the classification accuracy of models on adversarial examples, that is, it indeed weakens
the effectiveness of adversarial examples. We also should pay attention to the metrics Acc* and L3, i.e.,
the recognition accuracy of models on the attenuated samples, and the deformation distortion caused
by the attenuator. The fact is that the Acc* indicator of each model exceeds 80%, and the average value
of the L} metric is about 4. It means that the attenuator retains most semantic information of original
samples without causing excessive deformation distortion, which is in line with our requirements.


https://doi.org/10.20944/preprints202303.0034.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 March 2023 doi:10.20944/preprints202303.0034.v1

12 of 21

Table 3. Non-targeted attack results of our method against DNN-based SAR-ATR models on the
MSTAR dataset.

Surrogate Acc Acc Acc* Aec” L Ly

DenseNet121  98.72% 1.90% 81.53% 24.03% 3.595 4.959
GoogLeNet  98.06% 3.83% 89.78% 36.11% 2.884 3.305
InceptionV3  96.17% 0.82% 89.41% 19.62% 3.552 4.181
Mobilenet 96.91% 2.72% 87.88% 36.81% 3.218 4.083
ResNet50 97.98%  3.34% 83.80% 28.65% 3.684 4.568
Shufflenet 96.66% 3.46% 84.30% 23.66% 3.331 3.286
Mean 97.42% 2.68% 86.12% 28.15% 3.377 4.064

In targeted attacks, the Acc metric represents the probability that models identify original samples
as target classes, so it can reflect the dataset distribution, i.e., each category accounts for about 10% of
the total dataset. While after the targeted attack, the probability of each model recognizing adversarial
examples as target classes, i.e., the Acc metric, is over 97%, and the L, indicator shows that the image
distortion caused by adversarial perturbations is less than 3.5. It means that the adversarial examples
crafted by the generator can induce models to output specified results with high probability through
minor perturbations. As with the non-targeted attack, we evaluate the performance of the attenuator.
The Acc” metric shows that the attenuator results in an average decrease of about 17% in the probability
of adversarial examples being identified as target classes. Meanwhile, the Acc* metric of each model
exceeds 85%, and the average value of the L; indicator is about 3.7. That is, the attenuator weakens
the effectiveness of adversarial examples through slight deformations, while preserving the semantic
meaning of original samples well.

Table 4. Targeted attack results of our method against DNN-based SAR-ATR models on the MSTAR
dataset.

Surrogate Acc Acc Acc* Acc” L, L}

DenseNet121  10.00% 98.08%  88.47%  78.09% 3.086 3.587
GoogLeNet  10.00% 99.09% 89.25% 85.90% 3.377 4.289
InceptionV3  10.00% 98.81% 86.87% 78.97% 3.453 3.495
Mobilenet 10.00% 97.40% 88.38%  81.37% 3.257 3.553
ResNet50 10.00%  97.69% 87.29%  82.10% 3.408 3.490
Shufflenet 10.00% 98.36% 86.85% 83.11% 3.345 3.874
Mean 10.00% 98.24% 87.85% 81.59% 3.321 3.714

In summary, for both non-targeted and targeted attacks, the adversarial examples crafted by the
generator can fool models with high success rates, and the attenuator is able to weaken the effectiveness
of adversarial examples with slight deformations while retaining the semantic meaning of original
samples. Moreover, we ensure that the generator always outperforms the attenuator by adjusting the
training ratio between the two models. To visualize the attack results of TAN, we take ResNet50 as the
surrogate model and display the outputs of TAN at each stage in Figure 8.
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Figure 8. Visualization of attack results against ResNet50. (a) Original samples. (b) Adversarial
examples. (c) Adversarial perturbations. (d) Attenuated samples. (e) Deformation distortion. (f)
Attenuated adversarial examples. From top to bottom, the corresponding target classes are None, 251,
and D7, respectively.

Finally, we compared the non-targeted and targeted attack performance of different methods
against DNN-based SAR-ATR models on the MSTAR dataset, as detailed in Table 5. Obviously, for the
same image distortion, the attack effectiveness of the proposed method against a single model may
not be the best. Nevertheless, we focus more on the transferability of adversarial examples, which will
be the main topic of the following section.

Table 5. Attack performance of different methods against DNN-based SAR-ATR models on the MSTAR
dataset.

Non-targeted Targeted

Surrogate Method
A~CC i,z A:ZC I:z

TAN 190% 3.595 98.08%  3.086

MIFGSM  0.00% 3.555 98.61% 3.613

DIFGSM  0.00% 3.116 95.39% 2.816

DenseNetl121 ~ NIFGSM  0.21% 3.719 68.72%  3.550

SINIFGSM  1.15% 3.676  82.32%  3.648

VMIFGSM  0.00% 3.665 98.14%  3.602

VNIFGSM  0.08% 3.691 96.89%  3.635

TAN 3.83% 2.884 99.09% 3.377

MIFGSM  0.04% 3.615 98.36% 3.601

DIFGSM  0.04% 3.090 94.47% 2.830

GoogLeNet NIFGSM  041% 3.674 64.32% 3.520

SINIFGSM  4.04% 3.647 69.79% 3.615

VMIFGSM  0.04% 3.587 97.84% 3.601

VNIFGSM  0.37% 3.588 95.74%  3.636
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Table 5. Cont.

Non-targeted Targeted
Surrogate Method

ANCC i,z A~CC iz
TAN 0.82% 3.552 98.81%  3.453
MIFGSM  0.00% 3.599  96.00%  3.563
DIFGSM 0.04% 3.010 86.72%  2.811
InceptionV3  NIFGSM  0.21% 3.671 51.66%  3.397
SINIFGSM  293% 3.689  62.46%  3.593
VMIFGSM  0.00% 3.614 91.54%  3.577
VNIFGSM  0.00% 3.632 84.02%  3.605
TAN 2.72% 3218 97.40%  3.257
MIFGSM  829% 3.557 99.86%  3.538
DIFGSM  6.64% 2.821 91.64%  2.610
Mobilenet NIFGSM  6.88% 3.575 80.05%  3.519
SINIFGSM  1.77% 3.664  85.14%  3.662
VMIFGSM  2.35% 3.572  99.40%  3.499
VNIFGSM  1.32% 3.635 95.58%  3.582
TAN 3.34% 3.684 97.69%  3.408
MIFGSM  0.95% 3.659 97.08%  3.613
DIFGSM 0.33% 3.141 90.35%  2.824
ResNet50 NIFGSM  0.33% 3.710 45.34% 3.501
SINIFGSM  3.96% 3.720 71.64%  3.652
VMIFGSM  0.87% 3.644 96.17%  3.618
VNIFGSM  0.25% 3.692 94.17%  3.632
TAN 3.46% 3331 98.36%  3.345
MIFGSM  0.00% 3.567 100.00% 3.518
DIFGSM  0.00% 2.790 97.54%  2.599
Shufflenet NIFGSM  0.16% 3.632 91.77%  3.455
SINIFGSM  0.00% 3.660  95.79%  3.568
VMIFGSM  0.00% 3.617 100.00% 3.511
VNIFGSM  0.04% 3.654 99.73%  3.568

4.6. Comparison of Transferability

In this section, we evaluated the transferability of adversarial examples among DNN-based
SAR-ATR models on the MSTAR dataset. Specifically, we first took each network as the surrogate model
in turn and crafted adversarial examples for them, respectively. Then, we assessed the transferability
by testing the recognition results of victim models on corresponding adversarial examples. The
transferability in non-targeted and targeted attacks are shown in Tables 6 and 7, respectively.

In non-targeted attacks, when the proposed method sequentially takes DenseNet121, GoogLeNet,
InceptionV3, Mobilenet, ResNet50, and Shufflenet as the surrogate model, the highest recognition
accuracy of victim models on the generated adversarial examples are 12.90%, 26.88%, 23.45%, 18.59%,
11.01%, and 23.54%, respectively. Equivalently, the highest recognition accuracy of victim models on
the adversarial examples produced by baseline methods are 36.11%, 44.44%, 56.06%, 65.99%, 33.84%,
and 68.51%, respectively. Meanwhile, for each surrogate model, victim models always have the lowest
recognition accuracy on the adversarial examples crafted by our approach. Obviously, compared with
baseline methods, the proposed method slightly sacrifices the performance on attacking surrogate
models, but achieves state-of-the-art transferability among victim models in non-targeted attacks.
Detailed results are shown in Table 6.
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Table 6. Transferability of adversarial examples generated by different attack algorithms in non-targeted

attacks.
Surrogate Method DenseNet121 GoogLeNet InceptionV3 Mobilenet ResNet50 Shufflenet
TAN 1.90% 4.25% 7.46% 9.93% 9.11% 12.90%
MIFGSM 0.00% 10.10% 12.82% 26.46% 16.32% 28.65%
DIFGSM 0.00% 8.16% 11.46% 26.01% 19.17% 30.83%
DenseNet121 NIFGSM 0.21% 14.67% 14.67% 26.75% 20.07% 30.67%
SINIFGSM 1.15% 16.69% 19.29% 35.66% 17.64% 36.11%
VMIFGSM 0.00% 8.86% 11.62% 24.40% 15.13% 25.89%
VNIFGSM 0.08% 8.04% 11.62% 22.38% 13.60% 23.54%
TAN 6.88% 3.83% 8.16% 23.62% 10.51% 26.88%
MIFGSM 10.18% 0.04% 17.72% 32.36% 27.66% 42.13%
DIFGSM 8.33% 0.04% 14.47% 32.52% 24.73% 38.66%
GoogLeNet NIFGSM 22.88% 0.41% 24.28% 32.32% 35.16% 44.44%
SINIFGSM 7.96% 4.04% 13.15% 33.22% 15.09% 28.07%
VMIFGSM 8.57% 0.04% 16.32% 29.72% 25.64% 38.58%
VNIFGSM 10.02% 0.37% 15.50% 27.99% 26.30% 36.93%
TAN 8.20% 9.60% 0.82% 21.43% 14.67% 23.45%
MIFGSM 19.25% 35.00% 0.00% 39.45% 33.14% 42.54%
DIFGSM 16.86% 33.22% 0.04% 43.69% 33.76% 47.07%
InceptionV3 NIFGSM 32.11% 34.46% 0.21% 42.09% 43.08% 44.89%
SINIFGSM 27.37% 38.05% 2.93% 49.22% 41.18% 56.06%
VMIFGSM 18.51% 26.92% 0.00% 34.46% 31.04% 37.18%
VNIFGSM 21.68% 26.38% 0.00% 33.80% 34.50% 37.63%
TAN 14.34% 15.83% 13.56% 2.72% 14.18% 18.59%
MIFGSM 65.99% 59.32% 53.59% 8.29% 55.56% 59.77%
DIFGSM 51.28% 53.34% 49.34% 6.64% 49.34% 52.18%
Mobilenet NIFGSM 65.75% 58.66% 51.85% 6.88% 52.31% 55.56%
SINIFGSM 64.67% 45.14% 49.01% 1.77% 51.81% 58.37%
VMIFGSM 62.49% 52.10% 50.45% 2.35% 49.63% 52.84%
VNIFGSM 56.27% 50.04% 43.61% 1.32% 43.82% 48.19%
TAN 5.94% 9.27% 10.14% 12.94% 3.34% 11.01%
MIEFGSM 14.59% 24.15% 17.72% 16.90% 0.95% 26.42%
DIFGSM 11.13% 17.07% 15.09% 20.45% 0.33% 26.59%
ResNet50 NIFGSM 21.72% 28.19% 20.28% 19.74% 0.33% 29.43%
SINIFGSM 26.50% 24.15% 22.59% 30.50% 3.96% 33.84%
VMIFGSM 13.31% 22.42% 16.36% 15.95% 0.87% 23.33%
VNIFGSM 15.00% 22.67% 16.45% 14.47% 0.25% 22.63%
TAN 17.72% 23.54% 16.49% 22.22% 17.85% 3.46%
MIFGSM 66.69% 70.03% 65.00% 55.81% 65.00% 0.00%
DIFGSM 53.46% 57.58% 55.32% 51.44% 55.44% 0.00%
Shufflenet NIFGSM 67.23% 61.58% 58.62% 48.35% 61.62% 0.16%
SINIFGSM 68.51% 58.33% 60.92% 50.41% 56.64% 0.00%
VMIFGSM 57.25% 55.32% 54.29% 40.23% 53.34% 0.00%
VNIFGSM 56.68% 54.25% 51.57% 37.30% 52.14% 0.04%

In targeted attacks, the proposed method still takes DenseNetl121, GoogLeNet,
InceptionV3, Mobilenet, ResNet50, and Shufflenet as the surrogate model in turn, and the
minimum probability that victim models identify the generated adversarial examples as target classes
are 52.39%, 55.02%, 54.57%, 57.66%, 66.26%, and 47.78%, respectively. Correspondingly, the minimum
probability that victim models recognize the adversarial examples produced by baseline methods as
target classes are 22.18%, 19.63%, 19.49%, 15.52%, 19.36%, and 13.06%, respectively. Moreover, for each
surrogate model, victim models always identify the adversarial examples crafted by our approach as
target classes with the maximum probability. Thus, the proposed method also achieves state-of-the-art
transferability among victim models in targeted attacks. Detailed results are shown in Table 7.
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Table 7. Transferability of adversarial examples generated by different attack algorithms in targeted

attacks.

Surrogate Method DenseNet121 GoogLeNet InceptionV3 Mobilenet ResNet50 Shufflenet

TAN 98.08% 79.12% 70.71% 59.03% 62.31% 52.39%

MIFGSM 98.61% 52.47% 49.05% 39.47% 43.78% 37.62%

DIFGSM 95.39% 51.08% 46.62% 35.02% 39.51% 32.29%

DenseNet121 NIFGSM 68.72% 33.06% 27.61% 22.18% 25.78% 22.92%

SINIFGSM 82.32% 40.62% 33.17% 29.95% 31.93% 30.59%

VMIFGSM 98.14% 48.94% 44.10% 33.56% 39.29% 34.06%

VNIFGSM 96.89% 48.78% 46.03% 34.70% 39.80% 35.52%

TAN 81.04% 99.09% 66.59% 56.72% 63.86% 55.02%

MIEFGSM 61.56% 98.36% 47 .57% 34.16% 37.57% 29.75%

DIFGSM 58.81% 94.47% 47.91% 32.17% 36.20% 26.88%

GoogLeNet NIFGSM 31.46% 64.32% 25.34% 19.85% 23.14% 19.63%

SINIFGSM 41.97% 69.79% 34.39% 28.21% 29.77% 25.48%

VMIFGSM 53.37% 97.84% 42.19% 30.67% 34.94% 26.36%

VNIFGSM 56.26% 95.74% 43.96% 32.31% 36.11% 29.49%

TAN 75.11% 71.56% 98.81% 67.23% 63.62% 54.57%

MIFGSM 42.64% 35.92% 96.00% 32.49% 35.00% 29.51%

DIFGSM 42.99% 33.70% 86.72% 31.16% 34.13% 28.20%

InceptionV3 NIFGSM 27.12% 24.67% 51.66% 19.49% 23.76% 22.45%

SINIFGSM 26.76% 25.23% 62.46% 21.90% 24.36% 22.59%

VMIFGSM 36.38% 34.05% 91.54% 30.15% 31.43% 28.52%

VNIFGSM 37.82% 33.55% 84.02% 31.44% 32.28% 28.58%

TAN 61.30% 57.66% 61.53% 97.40% 60.97% 63.11%

MIFGSM 19.98% 18.66% 22.87% 99.86% 23.55% 20.31%

DIFGSM 23.96% 21.92% 23.79% 91.64% 24.51% 22.65%

Mobilenet NIFGSM 15.76% 15.58% 16.85% 80.05% 18.06% 15.91%

SINIFGSM 16.81% 15.52% 18.96% 85.14% 21.20% 16.63%

VMIFGSM 18.46% 17.84% 18.70% 99.40% 21.49% 19.61%

VNIFGSM 21.60% 18.41% 22.34% 95.58% 24.67% 21.96%

TAN 71.39% 71.54% 71.02% 73.68% 97.69% 66.26%

MIEFGSM 43.23% 30.51% 41.57% 42.41% 97.08% 36.29%

DIFGSM 45.18% 34.25% 42.37% 39.40% 90.35% 34.36%

ResNet50 NIFGSM 22.07% 20.45% 20.33% 19.36% 45.34% 19.75%

SINIFGSM 25.81% 21.38% 27.15% 31.01% 71.64% 26.02%

VMIFGSM 36.44% 26.33% 35.75% 38.61% 96.17% 32.79%

VNIFGSM 40.80% 27.10% 38.26% 38.87% 94.17% 36.49%

TAN 53.91% 47.78% 51.69% 60.35% 58.78% 98.36%

MIFGSM 18.29% 16.43% 17.06% 19.46% 17.20% 100.00%

DIFGSM 23.55% 20.36% 20.80% 22.55% 21.35% 97.54%

Shufflenet NIFGSM 13.96% 13.06% 13.14% 14.47% 13.66% 91.77%

SINIFGSM 15.83% 15.23% 15.34% 19.42% 16.05% 95.79%

VMIFGSM 17.58% 16.34% 17.09% 21.65% 18.46% 99.94%

VNIFGSM 19.43% 17.97% 18.68% 22.87% 19.98% 99.73%

In conclusion, for both non-targeted and targeted attacks, our approach generates adversarial
examples with the strongest transferability. In other words, it performs better on exploring the common
vulnerability of DNN models. We attribute this to the adversarial training between the generator and
attenuator. Figuratively speaking, it is because the attenuator constantly creating obstacles for the
generator that the attack capability of the generator is continuously enhanced and completed.

4.7. Comparison of Real-Time Performance

To evaluate the real-time performance of adversarial attacks, we calculated the time cost of
generating a single adversarial example through different attack algorithms. We show the time
consumption of non-targeted and targeted attacks in Tables 8 and 9, respectively.

As we can see, there is almost no difference in the time cost of crafting a single adversarial
example in non-targeted and targeted attacks. Meanwhile, for all the victim models, the time cost of
generating a single adversarial example through the proposed method is stable around 2ms. As for
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baseline methods, it depends on the complexity of victim models, the more complex the model, the
longer the time cost. However, even for the simplest victim model, the minimum time cost of baseline
methods is about 4.5ms, consuming twice as much time as our approach. Thus, there is no doubt that
the proposed method achieves the most superior and stable real-time performance.

Table 8. Time cost of generating a single adversarial example through different attack algorithms in
non-targeted attacks.

Method DenseNet121 GoogLeNet InceptionV3 Mobilenet ResNet50 Shufflenet Mean

TAN 0.002029 0.002201 0.002039 0.002218 0.002031 0.002045  0.002094
MIFGSM 0.018285 0.006351 0.012636 0.005093 0.013445 0.004451 0.010044
DIFGSM 0.018276 0.006363 0.012653 0.005103 0.013468 0.004488  0.010059
NIFGSM 0.018312 0.006354 0.012646 0.005111 0.013477 0.004456  0.010059

SINIFGSM 0.091032 0.031499 0.063015 0.024865 0.067202 0.021676  0.049882
VMIFGSM 0.109252 0.037827 0.075580 0.029803 0.080479 0.025968  0.059818
VNIFGSM 0.109184 0.037804 0.075483 0.029776 0.080560 0.025907  0.059786

Table 9. Time cost of generating a single adversarial example through different attack algorithms in
targeted attacks.

Method DenseNet121 GoogLeNet InceptionV3 Mobilenet ResNet50 Shufflenet Mean

TAN 0.002070 0.002069 0.002036 0.002055 0.002087 0.002097  0.002069
MIFGSM 0.018281 0.006353 0.012634 0.005088 0.013451 0.004446  0.010042
DIFGSM 0.018291 0.006369 0.012652 0.005104 0.013490 0.004488  0.010065
NIFGSM 0.018306 0.006358 0.012661 0.005105 0.013486 0.004460  0.010063

SINIFGSM 0.091064 0.031539 0.063066 0.024871 0.067216 0.021664  0.049903
VMIFGSM 0.109262 0.037860 0.075579 0.029776 0.080481 0.025984  0.059823
VNIFGSM 0.109176 0.037819 0.075502 0.029798 0.080546 0.025923  0.059794

4.8. Visualization of Adversarial Examples

In this section, we take ResNet50 as the surrogate model and visualize the adversarial examples
crafted by different methods in Figure 9. Obviously, the adversarial perturbations generated by
our method are continuous, and mainly focus on the target region of SAR images. In contrast, the
perturbations produced by baseline methods are quite discrete, and almost cover the global area of
SAR images. First, from the perspective of feature extraction, since the features that have a greater
impact on recognition results are mainly concentrated in the target region rather than the background
clutter area, a focused disruption of key features is certainly a more efficient attack strategy. Second,
from the perspective of physical feasibility, the fewer pixels modified in adversarial examples, the
smaller range perturbed in reality, so localized perturbations are more feasible than global ones.
In summary, the proposed method improves the efficiency and feasibility of adversarial attacks by
focusing perturbations on the target region of SAR images.
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Non-targeted

Targeted: BMP2

Targeted: BTR60

Targeted: D7

Targeted: T72

Targeted: ZSU234

Figure 9. Visualization of adversarial examples against ResNet50. (a) TAN. (b) MIFGSM. (c) DIFGSM.
(d) NIFGSM. (e) SINIFGSM. (f) VMIFGSM. (g) VNIFGSM. From top to bottom, the corresponding
target classes are None, BMP2, BTR60, D7, T72, and ZSU234, respectively. For each attack, the first row
shows adversarial examples, and the second row shows corresponding adversarial perturbations.

5. Conclusions

This paper proposed a transferable adversarial network (TAN) to generate adversarial examples
for DNN-based SAR-ATR models, with the benefit that not only the transferability but also the real-time
performance of adversarial examples is significantly improved. In the proposed method, a generator
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was designed to craft malicious samples through a one-step forward mapping from original data,
and an attenuator was introduced to weaken the effectiveness of malicious samples by capturing
the most harmful deformations. Our motivation is to enable real-time attacks by one-step mapping
original samples to adversarial examples, and enhance the transferability through a two-player game
between the generator and attenuator. Experimental results demonstrated that our approach achieves
state-of-the-art transferability with acceptable adversarial perturbations and minimum time costs
compared to existing attack methods, i.e., it excellently realizes real-time transferable adversarial
attacks. Potential future work could consider attacking DNN-based SAR-ATR models under small
sample conditions. It is also of great interest to real-world achieve the adversarial example of SAR
images in addition to improving the performance of attack algorithms.
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