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Abstract: In recent years, the unmanned aerial vehicle (UAV) synthetic aperture radar (SAR) has

become a highly sought-after topic for its wide applications in the field of target recognition, detection,

and tracking. However, SAR automatic target recognition (ATR) models based on deep neural

networks (DNN) are suffering from adversarial examples. Generally, non-cooperators rarely disclose

any information about SAR-ATR models, making adversarial attacks challenging. In this situation,

we propose Transferable Adversarial Network (TAN) to attack these models with highly transferable

adversarial examples. The proposed method improves the transferability via a two-player game,

in which we simultaneously train two encoder-decoder models: a generator that crafts malicious

samples through a one-step forward mapping from original data, and an attenuator that weakens

the effectiveness of malicious samples by capturing the most harmful deformations. In particular,

compared to traditional iterative methods, our approach is able to one-step map original samples

to adversarial examples, thus enabling real-time attacks. Experimental results indicate that the

proposed approach achieves state-of-the-art transferability with acceptable adversarial perturbations

and minimum time costs compared to existing attack methods, i.e., it excellently realizes real-time

transferable adversarial attacks.

Keywords: unmanned aerial vehicle (UAV); synthetic aperture radar (SAR); automatic

target recognition (ATR); deep neural network (DNN); adversarial example; transferability;

encoder-decoder; real-time attack

1. Introduction

The ongoing advances in unmanned aerial vehicle (UAV) and synthetic aperture radar (SAR)

technologies have enabled the acquisition of high-resolution SAR images through UAVs. However,

unlike visible light imaging, SAR images reflect the reflection intensity of imaging targets to radar

signals, making it difficult for humans to extract effective semantic information from SAR images

without the aid of interpretation tools. Currently, deep learning has achieved excellent performance

in various scenarios [1–3], and SAR automatic target recognition (SAR-ATR) models based on deep

neural networks (DNN) [4–8] have become one of the most popular interpretation methods. With their

powerful representation capabilities, DNNs outperform traditional approaches in image classification

tasks. Yet, recent studies have shown that DNN-based SAR-ATR models are susceptible to adversarial

examples [9].

The concept of adversarial examples was first proposed by Szegedy et al. [10], which suggests

that a carefully designed tiny perturbation can cause a well-trained DNN model to misclassify. This

finding has made adversarial attacks one of the most serious threats to artificial intelligence (AI)

security. To date, researchers have proposed a variety of adversarial attack methods, which can be

mainly divided into two categories from the perspective of prior knowledge: the white-box and
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black-box attacks. In the first case, attackers can utilize a large amount of prior knowledge, such as

the model structure and gradient information, etc., to craft adversarial examples for victim models.

Examples of white-box methods include gradient-based attacks [11,12], boundary-based attacks [13],

and saliency map-based attacks [14], etc. While in the second case, attackers can only access the output

information or even less, making adversarial attacks much more difficult. Examples of black-box

methods include probability label-based attacks [15,16] and decision-based attacks [17], etc. We now

consider an extreme situation, where attackers have no access to any feedback from victim models,

such that existing attack methods are unable to craft adversarial examples until researchers discover

that adversarial examples can transfer among DNN models. Liu et al. [18] proposed an ensemble-based

approach to generating transferable adversarial examples for the non-targeted and targeted attacks.

Subsequent studies focused on improving the basic FGSM [11] method to enhance the transferability of

adversarial examples, such as gradient-based methods [19,20], transformation-based methods [20,21],

and variance-based methods [22], etc. However, the transferability and real-time performance of the

above approaches are still insufficient to meet realistic attack requirements. Consequently, further

improvements in the adversarial attack are pending to be solved in the future.

With the wide application of DNNs in the field of remote sensing, researchers have embarked

on investigating the adversarial examples of remote sensing images. Xu et al. [23] first investigated

the adversarial attack and defense in safety-critical remote sensing tasks, and proposed the mixup

attack [24] to generate universal adversarial examples for remote sensing images. However, the

research on the adversarial example of SAR images is still in its infancy. Li et al. [25] generated

abundant adversarial examples for CNN-based SAR image classifiers through the basic FGSM method

and systematically evaluated critical factors affecting the attack performance. Du et al. [26] designed

a Fast C&W algorithm to improve the efficiency of generating adversarial examples by introducing

an encoder-decoder model. To enhance the universality and feasibility of adversarial perturbations,

the work in [27] presented a universal local adversarial network to generate universal adversarial

perturbations for the target region of SAR images. Furthermore, the latest research [28] has broken

through the limitations of the digital domain and implemented the adversarial example of SAR images

in the signal domain by transmitting a two-dimensional jamming signal. Despite the high attack

success rates achieved by the above methods, the problem of transferable adversarial examples in the

field of SAR-ATR has yet to be addressed.

In this paper, a transferable adversarial network (TAN) is proposed to improve the transferability

and real-time performance of adversarial examples in SAR images. Specifically, during the training

phase of TAN, we simultaneously train two encoder-decoder models: a generator that crafts malicious

samples through a one-step forward mapping from original data, and an attenuator that weakens

the effectiveness of malicious samples by capturing the most harmful deformations. We argue that

if the adversarial examples crafted by the generator are robust to the deformations produced by

the attenuator, i.e., the attenuated adversarial examples remain effective to DNN models, then they

are capable of transferring to other victim models. Moreover, unlike traditional iterative methods,

our approach can one-step map original samples to adversarial examples, thus enabling real-time

attacks. In other words, we realize real-time transferable adversarial attacks through a two-player

game between the generator and attenuator.

The main contributions of this paper are summarized as follows.

(1) For the first time, this paper systematically evaluates the transferability of adversarial examples

among DNN-based SAR-ATR models. Meanwhile, our research reveals that there may be potential

common vulnerabilities among DNN models performing the same task.
(2) We propose a novel network to enable real-time transferable adversarial attacks. Once the proposed

network is well-trained, it can real-time craft adversarial examples with high transferability, thus

attacking black-box victim models without resorting to any prior knowledge. As such, our approach

possesses promising applications in AI security.
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(3) The proposed method is evaluated on the most authoritative SAR-ATR dataset. Experimental results

indicate that our approach achieves state-of-the-art transferability with acceptable adversarial

perturbations and minimum time costs compared to existing attack methods, i.e., it excellently

realizes real-time transferable adversarial attacks.

The rest parts of this paper are arranged as follows. Section 2 introduces the relevant preparation

knowledge, and Section 3 describes the proposed method in detail. The experimental results and

conclusions are given in Sections 4 and 5, respectively.

2. Preliminaries

2.1. Adversarial Attacks for DNN-Based SAR-ATR Models

Suppose xn∈[0, 255]W×H is a single channel SAR image from the dataset X and f (·) is a

DNN-based K-class SAR-ATR model. Given a sample xn as input to f (·), the output is a K-dimensional

vector f (xn)=[ f (xn)1, f (xn)2, · · · , f (xn)K], where f (xn)i∈R denotes the score of xn belonging to class

i. Let Cp = arg maxi( f (xn)i) represent the predicted class of f (·) for xn. The adversarial attack is to

fool f (·) with an adversarial example x̃n that only has a minor perturbation on xn. The detail process

can be expressed as follows:

arg max
i

f (x̃n)i 6= Cp, s.t. ‖x̃n − xn‖p ≤ ξ (1)

where the Lp-norm is defined as ‖v‖p =(∑i |vi|
p)

1
p , and ξ controls the magnitude of adversarial

perturbations.

Meanwhile, adversarial attacks can be mainly divided into two modes. The first basic mode is

called the non-targeted attack, making DNN models misclassify. The second one is more stringent,

called the targeted attack, which induces models to output specified results. There is no doubt that the

latter poses a higher level of threat to AI security. In other words, the non-targeted attack is to minimize

the probability of models correctly recognize samples; conversely, the targeted attack maximizes the

probability of models identifying samples as target classes. Thus, (1) can be transformed into the

following optimization problems:

• For the non-targeted attack:

minimize(
1

N

N

∑
n=1

D(arg max
i

f (x̃n)i == Ctr)), s.t. ‖x̃n − xn‖p ≤ ξ (2)

• For the targeted attack:

maximize(
1

N

N

∑
n=1

D(arg max
i

f (x̃n)i == Cta)), s.t. ‖x̃n − xn‖p ≤ ξ (3)

where the discriminant function D(·) equals one if the equation holds; otherwise, it equals zero. Ctr

and Cta represent the true and target classes of the input. N is the number of samples in the dataset.

Obviously, the above optimization problems are exactly the opposite of a DNN’s training process, and

the corresponding loss functions will be given in the next chapter.

2.2. Transferability of Adversarial Examples

We consider an extreme situation where attackers have no access to any feedback from victim

models, such that existing white-box and black-box attacks are unable to craft adversarial examples. In

this case, attackers can utilize the transferability of adversarial examples to attack models. Specifically,
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due to the similarity between models, adversarial examples generated for a certain model can also

successfully attack other models performing the same task [18]. Details are shown in Figure 1.

Figure 1. Transferability of adversarial examples.

As shown in Figure 1, for an image classification task, we have trained three recognition models.

Suppose that only the surrogate model fs(·) is a white-box model, and victim models fv1(·), fv2(·) are

black-box models. Undoubtedly, given an sample x, attackers can craft an adversarial example x̃ to fool

fs(·) through attack algorithms. Meanwhile, since the transferability of adversarial examples, x̃ can

also fool fv1(·) and fv2(·) successfully. However, the transferability generated by existing algorithms

is very weak, so this paper is dedicated to crafting highly transferable adversarial examples.

3. The Proposed Transferable Adversarial Network (TAN)

In this paper, the proposed Transferable Adversarial Network (TAN) utilizes the encoder-decoder

model and data augmentation technology to improve the transferability and real-time performance of

adversarial examples. The framework of our network is shown in Figure 2. As we can see, compared to

traditional iterative methods, TAN introduces a generator G(·) to learn the one-step forward mapping

from the clean sample x to the adversarial example x̃, thus enabling real-time attacks. Meanwhile,

to improve the transferability of x̃, we simultaneously train an attenuator A(·) to capture the most

harmful deformations, which are supposed to weaken the effectiveness of x̃ while still preserving

the semantic meaning of x. We argue that if x̃ is robust to the deformations produced by A(·), i.e.,

x̃∗ remains effective to DNN models, then x̃ is capable of transferring to the black-box victim model

fv(·). In other words, we achieve real-time transferable adversarial attacks through a two-player game

between G(·) and A(·). This chapter will introduce our method in detail.

Figure 2. Framework of TAN.

3.1. Training Process of the Generator

For easy understanding, Figure 3 shows the detailed training process of the generator. Note that a

white-box model is selected as the surrogate model fs(·) during the training phase.
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Figure 3. Training process of the generator.

As we can see, given a clean sample x, the generator G(·) crafts the adversarial example x̃ through

a one-step forward mapping, as follows:

x̃ = G(x) (4)

Meanwhile, the attenuator A(·) takes x̃ as input and outputs the attenuated adversarial example x̃∗:

x̃∗ = A(x̃) (5)

Since x̃ has to fool fs(·) with a minor perturbation, and x̃∗ needs to remain effective against

fs(·), the loss function of G(·) consists of three parts. Next, we will give the generator loss LG of

non-targeted and targeted attacks, respectively.

For the non-targeted attack: First, according to (2), x̃ is to minimize the classification accuracy of

fs(·), which means that it has to decrease the confidence of being recognized as the true class Ctr, i.e.,

to increase the confidence of being identified as others. Thus, the first part of LG can be expressed as:

LG1( fs(x̃), Ctr) = − log

(

∑i 6=Ctr
exp( fs(x̃)i)

∑i exp( fs(x̃)i)

)

= − log

(

1 −
exp( fs(x̃)Ctr

)

∑i exp( fs(x̃)i)

)
(6)

Second, to improve the transferability of x̃, we expect that x̃∗ remains effective to fs(·), so the second

part of LG can be derived as:

LG2( fs(x̃∗), Ctr) = − log

(

∑i 6=Ctr
exp( fs(x̃∗)i)

∑i exp( fs(x̃∗)i)

)

= − log

(

1 −
exp( fs(x̃∗)Ctr

)

∑i exp( fs(x̃∗)i)

)
(7)

Finally, the last part of LG is used to limit the perturbation magnitude. We introduce the traditional

Lp-norm to measure the degree of image distortion as follows:

LG3(x, x̃) = ‖x̃ − x‖p

= (∑
i

|∆xi|
p)

1
p

(8)

In summary, we apply the linear weighted sum method to balance the relationship between LG1,

LG2, and LG3. As such, the complete generator loss for the non-targeted attack can be represented as:

LG = ωG1 · LG1( fs(x̃), Ctr) + ωG2 · LG2( fs(x̃∗), Ctr) + ωG3 · LG3(x, x̃) (9)

where ωG1 + ωG2 + ωG3 = 1. ωG1, ωG2, ωG3∈[0, 1] are the weight coefficients of LG1, LG2, and LG3,

respectively.
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For the targeted attack: According to (3), x̃ is to maximize the probability of being recognized as

the target class Cta, i.e., to increase the confidence of Cta. Thus, LG1 here can be expressed as:

LG1( fs(x̃), Cta) = − log

(

exp( fs(x̃)Cta
)

∑i exp( fs(x̃)i)

)

(10)

To maintain the effectiveness of x̃∗ against fs(·), LG2 here is derived as:

LG2( fs(x̃∗), Cta) = − log

(

exp( fs(x̃∗)Cta
)

∑i exp( fs(x̃∗)i)

)

(11)

The perturbation magnitude is still limited by the LG3 shown in (8). Therefore, the complete generator

loss for the targeted attack can be represented as:

LG = ωG1 · LG1( fs(x̃), Cta) + ωG2 · LG2( fs(x̃∗), Cta) + ωG3 · LG3(x, x̃) (12)

3.2. Training Process of the Attenuator

According to Figure 2, during the training phase of TAN, an attenuator A(·) is introduced to

weaken the effectiveness of x̃ while still preserving the semantic meaning of x. We show the detailed

training process of A(·) in Figure 4.

Figure 4. Training process of the attenuator.

As we can see, the attenuator loss LA also consists of three parts. First, to preserve the semantic

meaning of x, fs(·) has to keep a basic classification accuracy on the following attenuated sample x∗:

x∗ = A(x) (13)

It means that the first part of LA should increase the confidence of x∗ being recognized as the true

class Ctr, as follows:

LA1( fs(x∗), Ctr) = − log

(

exp( fs(x∗)Ctr
)

∑i exp( fs(x∗)i)

)

(14)

Meanwhile, to weaken the effectiveness of x̃, A(·) also need to improve the confidence of the attenuated

adversarial example x̃∗ being identified as Ctr, so the second part of LA can be expressed as:

LA2( fs(x̃∗), Ctr) = − log

(

exp( fs(x̃∗)Ctr
)

∑i exp( fs(x̃∗)i)

)

(15)
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Finally, to avoid excessive image distortion caused by A(·), the third part of LA is used to limit the

deformation magnitude, which can be expressed by the traditional Lp-norm, as follows:

LA3(x, x∗) = ‖x∗ − x‖p

= (∑
i

|∆xi|
p)

1
p

(16)

As with the generator loss, we utilize the linear weighted sum method to derive the complete

attenuator loss as follows:

LA = ωA1 · LA1( fs(x∗), Ctr) + ωA2 · LA2( fs(x̃∗), Ctr) + ωA3 · LA3(x, x∗) (17)

where ωA1 + ωA2 + ωA3 = 1. ωA1, ωA2, ωA3∈[0, 1] are the weight coefficients of LA1, LA2, and LA3,

respectively.

3.3. Network Structure of the Generator and Attenuator

According to Sections 3.1 and 3.2, the generator and attenuator are essentially two

encoder-decoder models, so the choice of a suitable model structure is necessary. We mainly consider

two factors. First, as the size of original samples and adversarial examples should be the same, the

model has to keep the input and output sizes identical. Second, to prevent our network from overfitting

while saving computational resources, a lightweight model will be a better choice. In summary, we

apply ResNet Generator proposed in [29] as the encoder-decoder model of TAN. The structure of

ResNet Generator is shown in Figure 5.

Figure 5. Structure of ResNet Generator.

As we can see, ResNet Generator mainly consists of downsampling, residual, and upsampling

modules. For a visual understanding, given an input data of size 1 × 128 × 128, the input and output

sizes of each module are listed in Table 1.

Obviously, the input and output sizes of ResNet Generator are the same. Meanwhile, to ensure

the validity of the generated data, we add a tanh function after the output module, which restricts the

generated data to the interval [0, 1]. The total number of parameters in ResNet Generator has been

calculated to be approximately 7.83M, which is a fairly lightweight network. For more details, please

refer to literature [29].
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Table 1. Input-output relationships for each module of ResNet Generator.

Module Input size Output Size

Input 1 × 128 × 128 64 × 128 × 128
Downsampling_1 64 × 128 × 128 128 × 64 × 64
Downsampling_2 128 × 64 × 64 256 × 32 × 32

Residual_1 ∼ 6 256 × 32 × 32 256 × 32 × 32
Upsampling_1 256 × 32 × 32 128 × 64 × 64
Upsampling_2 128 × 64 × 64 64 × 128 × 128

Output 64 × 128 × 128 1 × 128 × 128

3.4. Complete Training Process of TAN

As we described earlier, TAN improves the transferability of adversarial examples through a

two-player game between the generator and attenuator, which is quite similar to the working principle

of generative adversarial networks (GAN) [30]. Therefore, we also adopt an alternating training

scheme to train our network. Specifically, given the dataset X and batch size S, we first randomly

divide X into M batches {b1, b2, · · · , bM} at the beginning of each training iteration. Second, we set a

training ratio R∈N∗, which means that TAN trains the generator R times and then trains the attenuator

once, i.e., once per batch for the former and only once per R batches for the latter. In this way, we can

prevent the attenuator from being so strong that the generator cannot be optimized. Meanwhile, to

shorten training time, we set an early stop condition ESC so that training can be ended early when

certain indicators meet the condition. Note that the generator and attenuator are trained alternately,

i.e., the attenuator’s parameters are fixed when the generator is trained, and vice versa. More details

of the complete training process for TAN are shown in Algorithm 1.

Algorithm 1 Transferable Adversarial Network Training.

Input: Dataset X ; batch size S; surrogate model fs; target class Cta; training loss function of the
generator LG; training loss function of the attenuator LA; number of training iterations T; learning
rate η; training ratio of the generator and attenuator R; early stop condition ESC.

Output: The parameter θG of the well-trained generator.
1: Randomly initialize θG and θA
2: for t = 1 to T do
3: According to S, randomly divide X into M batches {b1, b2, · · · , bM}
4: for m = 1 to M do
5: Calculate LG(θG, θA, fs, bm, Cta)
6: Update θG = θG − η · ∂

∂θG
LG

7: if m%R == 0 then
8: Calculate LA(θG, θA, fs, bm)
9: Update θA = θA − η · ∂

∂θA
LA

10: else
11: θA = θA
12: end if
13: end for
14: if ESC == True then
15: Break
16: else
17: Continue
18: end if
19: end for

4. Experiments

4.1. Data Descriptions

To date, there is no publicly available dataset for UAV SAR-ATR, thus this paper experiments

on the most authoritative SAR-ATR dataset, i.e., the moving and stationary target acquisition and

recognition (MSTAR) dataset [31]. MSTAR is collected by a high-resolution spotlight SAR and

published by the U.S. Defense Advanced Research Projects Agency (DARPA) in 1996, which contains

SAR images of Soviet military vehicle targets at different azimuth and depression angles. In standard

operating conditions (SOC), MSTAR includes ten classes of targets, such as self-propelled howitzers

(2S1); infantry fighting vehicles (BMP2); armored reconnaissance vehicles (BRDM2); wheeled armored
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transport vehicles (BTR60, BTR70); bulldozers (D7); main battle tanks (T62, T72); cargo trucks (ZIL131);

and self-propelled artillery (ZSU234). The training dataset contains 2747 images collected at a

depression angle of 17◦, and the testing dataset contains 2426 images captured at a depression angle of

15◦. More details about the dataset are given in Table 2, and Figure 6 shows the optical images and

corresponding SAR images of each class.

Table 2. Details of the MSTAR dataset under SOC, including target class, serial, depression angle, and

sample numbers.

Target Class Serial
Training Data Testing Data

Depression Angle Number Depression Angle Number

2S1 b01 17◦ 299 15◦ 274
BMP2 9566 17◦ 233 15◦ 196

BRDM2 E-71 17◦ 298 15◦ 274
BTR60 k10yt7532 17◦ 256 15◦ 195
BTR70 c71 17◦ 233 15◦ 196

D7 92v13015 17◦ 299 15◦ 274
T62 A51 17◦ 299 15◦ 273
T72 132 17◦ 232 15◦ 196

ZIL131 E12 17◦ 299 15◦ 274
ZSU234 d08 17◦ 299 15◦ 274

Figure 6. Optical images (top) and SAR images (bottom) of the MSTAR dataset.

4.2. Implementation Details

We evaluate the attack performance of our approach on the following six common DNN models:

DenseNet121 [32], GoogLeNet [33], InceptionV3 [34], Mobilenet [35], ResNet50 [36], and Shufflenet [37].

To uniform image sizes, we resize all the images in MSTAR to 128 × 128. As for the dataset processing,

we uniformly sample 10% of data from the training dataset to form the validation dataset. During

the training phase of recognition models, we set the training epoch and batch size to 100 and 32,

respectively. For the training parameters of TAN, we set the generator loss weights [ωG1, ωG2, ωG3]

to [0.25, 0.25, 0.5], the attenuator loss weights [ωA1, ωA2, ωA3] to [0.25, 0.25, 0.5], the training ratio to 3,

the training epoch to 50, the batch size to 8, and the norm type to the L2-norm. For above models, we

optimize them through an Adam optimizer [38] with the learning rate of 0.001. When evaluating the

transferability of adversarial examples, we first take each network as the surrogate model in turn and

craft adversarial examples for them, respectively. Then, we assess the transferability by testing the

recognition results of victim models on corresponding adversarial examples. Detailed experimental

results will be given later.

For baseline methods, we adopt the following six attack algorithms from the Torchattacks [39]

toolbox to compare with TAN: MIFGSM [19], DIFGSM [21], NIFGSM [20], SINIFGSM [20],

VMIFGSM [22], and VNIFGSM [22]. All codes were written in Pytorch, and the experimental

environment consisted of Windows 10 with an NVIDIA GeForce RTX 2080 Ti GPU and a 3.6 GHz Intel

Core i9-9900K CPU).

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 March 2023                   doi:10.20944/preprints202303.0034.v1

https://doi.org/10.20944/preprints202303.0034.v1


10 of 21

4.3. Evaluation Metrics

We mainly consider two factors to comprehensively evaluate the performance of adversarial

attacks: the effectiveness and stealthiness, which are directly related to the classification accuracy

Ãcc of victim models on adversarial examples and the norm value L̃p of adversarial perturbations,

respectively. For the Ãcc metric, the formula is as follows:

Ãcc =















1
N ∑

N
n=1 D(arg maxi( fv(x̃n)i)==Ctr) for the non-targeted attack

1
K×N ∑

K
Cta=1 ∑

N
n=1 D(arg maxi( fv(x̃n)i)==Cta) for the targeted attack

(18)

where Ctr and Cta represent the true and target classes of the input data, K is the number of target

classes, and D(·) is a discriminant function. In the non-targeted attack, the Ãcc metric reflects the

probability that the victim model fv(·) identifies the adversarial example x̃n as Ctr, while in the targeted

attack it indicates the probability that fv(·) recognizes x̃n as Cta. Obviously, in the non-targeted attack,

the lower the Ãcc metric, the better the attack. Conversely, in the targeted attack, a higher Ãcc

metric represents fv(·) is more likely to recognize x̃n as Cta, and thus the attack is more effective. In

conclusion, the effectiveness of non-targeted attacks is inversely proportional to the Ãcc metric, and

the effectiveness of targeted attacks is proportional to this metric. Additionally, there are other three

similar indicators Acc, Acc∗, and Ãcc
∗

that represent the classification accuracy of fv(·) for the original

sample xn, the attenuated sample x∗n, and the attenuated adversarial example x̃∗n, respectively. Note

that whether it is a non-targeted or targeted attack, Acc∗ always represents the accuracy with which

fv(·) identifies x∗n as Ctr, while the other three accuracy indicators need to be calculated via (18) based

on the attack mode. In particular, Ãcc
∗

represents the recognition result of fv(·) on x̃∗n, which indirectly

reflects the strength of the transferability possessed by x̃n.

Meanwhile, we apply the following Lp-norm values to measure the attack stealthiness:















L̃p = 1
N ∑

N
n=1 ‖x̃n − xn‖p for the generator

L∗
p = 1

N ∑
N
n=1 ‖x∗n − xn‖p for the attenuator

(19)

where L̃p and L∗
p represent the image distortion caused by the generator and attenuator, respectively.

In our experiments, the Lp-norm defaults to L2-norm. In summary, we can set the early stop condition

ESC mentioned in Section 3.4 with the above indicators, as follows:

ESC =















Ãcc ≤ 0.05, Acc∗ ≥ 0.9, Ãcc
∗
≤ 0.1, L̃p ≤ 4, L∗

p ≤ 4 for the non-targeted attack

Ãcc ≥ 0.95, Acc∗ ≥ 0.9, Ãcc
∗
≥ 0.9, L̃p ≤ 4, L∗

p ≤ 4 for the targeted attack

(20)

Furthermore, to evaluate the real-time performance of adversarial attacks, we introduce the Tc

metric to denote the time cost of generating a single adversarial example, as follows:

Tc =
Time

N
(21)

where Time is the total time consumed to generate N adversarial examples.

4.4. DNN-Based SAR-ATR Models

A well-trained recognition model is a prerequisite for effective adversarial attacks, so we

have trained six SAR-ATR models on the MSTAR dataset: DenseNet121, GoogLeNet, InceptionV3,

Mobilenet, ResNet50, Shufflenet. All of them achieve outstanding recognition performance, with the
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classification accuracy of 98.72%, 98.06%, 96.17%, 96.91%, 97.98%, and 96.66% on the testing dataset,

respectively. In addition, we show the confusion matrix of each model in Figure 7.

Figure 7. Confusion matrixes of DNN-based SAR-ATR models on the MSTAR dataset. (a) DenseNet121.

(b) GoogLeNet. (c) InceptionV3. (d) Mobilenet. (e) ResNet50. (f) Shufflenet.

4.5. Comparison of Attack Performance

In this section, we first evaluated the attack performance of the proposed method against

DNN-based SAR-ATR models on the MSTAR dataset. Specifically, during the training phase of

TAN, we took each network as the surrogate model in turn and assessed the recognition results of

corresponding models on the outputs of TAN at each stage. The results of non-targeted and targeted

attacks are detailed in Tables 3 and 4, respectively.

In non-targeted attacks, the Acc metric of each model on the MSTAR dataset exceeds 95%.

However, after the non-targeted attack, the classification accuracy of all models on the generated

adversarial examples, i.e., the Ãcc metric, is below 5%, and the L̃2 indicator is less than 3.7. It means

that adversarial examples deteriorate the recognition performance of models rapidly through minor

adversarial perturbations. Meanwhile, during the training phase of TAN, we evaluate the performance

of the attenuator. According to the Ãcc
∗

metric, the attenuator leads to an average improvement of

about 25% in the classification accuracy of models on adversarial examples, that is, it indeed weakens

the effectiveness of adversarial examples. We also should pay attention to the metrics Acc∗ and L∗
2 , i.e.,

the recognition accuracy of models on the attenuated samples, and the deformation distortion caused

by the attenuator. The fact is that the Acc∗ indicator of each model exceeds 80%, and the average value

of the L∗
2 metric is about 4. It means that the attenuator retains most semantic information of original

samples without causing excessive deformation distortion, which is in line with our requirements.
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Table 3. Non-targeted attack results of our method against DNN-based SAR-ATR models on the

MSTAR dataset.

Surrogate Acc ˜Acc Acc
∗ ˜Acc

∗

L̃2 L
∗

2

DenseNet121 98.72% 1.90% 81.53% 24.03% 3.595 4.959
GoogLeNet 98.06% 3.83% 89.78% 36.11% 2.884 3.305
InceptionV3 96.17% 0.82% 89.41% 19.62% 3.552 4.181
Mobilenet 96.91% 2.72% 87.88% 36.81% 3.218 4.083
ResNet50 97.98% 3.34% 83.80% 28.65% 3.684 4.568
Shufflenet 96.66% 3.46% 84.30% 23.66% 3.331 3.286

Mean 97.42% 2.68% 86.12% 28.15% 3.377 4.064

In targeted attacks, the Acc metric represents the probability that models identify original samples

as target classes, so it can reflect the dataset distribution, i.e., each category accounts for about 10% of

the total dataset. While after the targeted attack, the probability of each model recognizing adversarial

examples as target classes, i.e., the Ãcc metric, is over 97%, and the L̃2 indicator shows that the image

distortion caused by adversarial perturbations is less than 3.5. It means that the adversarial examples

crafted by the generator can induce models to output specified results with high probability through

minor perturbations. As with the non-targeted attack, we evaluate the performance of the attenuator.

The Ãcc
∗

metric shows that the attenuator results in an average decrease of about 17% in the probability

of adversarial examples being identified as target classes. Meanwhile, the Acc∗ metric of each model

exceeds 85%, and the average value of the L∗
2 indicator is about 3.7. That is, the attenuator weakens

the effectiveness of adversarial examples through slight deformations, while preserving the semantic

meaning of original samples well.

Table 4. Targeted attack results of our method against DNN-based SAR-ATR models on the MSTAR

dataset.

Surrogate Acc ˜Acc Acc
∗ ˜Acc

∗

L̃2 L
∗

2

DenseNet121 10.00% 98.08% 88.47% 78.09% 3.086 3.587
GoogLeNet 10.00% 99.09% 89.25% 85.90% 3.377 4.289
InceptionV3 10.00% 98.81% 86.87% 78.97% 3.453 3.495
Mobilenet 10.00% 97.40% 88.38% 81.37% 3.257 3.553
ResNet50 10.00% 97.69% 87.29% 82.10% 3.408 3.490
Shufflenet 10.00% 98.36% 86.85% 83.11% 3.345 3.874

Mean 10.00% 98.24% 87.85% 81.59% 3.321 3.714

In summary, for both non-targeted and targeted attacks, the adversarial examples crafted by the

generator can fool models with high success rates, and the attenuator is able to weaken the effectiveness

of adversarial examples with slight deformations while retaining the semantic meaning of original

samples. Moreover, we ensure that the generator always outperforms the attenuator by adjusting the

training ratio between the two models. To visualize the attack results of TAN, we take ResNet50 as the

surrogate model and display the outputs of TAN at each stage in Figure 8.
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Figure 8. Visualization of attack results against ResNet50. (a) Original samples. (b) Adversarial

examples. (c) Adversarial perturbations. (d) Attenuated samples. (e) Deformation distortion. (f)

Attenuated adversarial examples. From top to bottom, the corresponding target classes are None, 2S1,

and D7, respectively.

Finally, we compared the non-targeted and targeted attack performance of different methods

against DNN-based SAR-ATR models on the MSTAR dataset, as detailed in Table 5. Obviously, for the

same image distortion, the attack effectiveness of the proposed method against a single model may

not be the best. Nevertheless, we focus more on the transferability of adversarial examples, which will

be the main topic of the following section.

Table 5. Attack performance of different methods against DNN-based SAR-ATR models on the MSTAR

dataset.

Surrogate Method
Non-targeted Targeted

˜Acc L̃2 ˜Acc L̃2

DenseNet121

TAN 1.90% 3.595 98.08% 3.086
MIFGSM 0.00% 3.555 98.61% 3.613
DIFGSM 0.00% 3.116 95.39% 2.816
NIFGSM 0.21% 3.719 68.72% 3.550

SINIFGSM 1.15% 3.676 82.32% 3.648
VMIFGSM 0.00% 3.665 98.14% 3.602
VNIFGSM 0.08% 3.691 96.89% 3.635

GoogLeNet

TAN 3.83% 2.884 99.09% 3.377
MIFGSM 0.04% 3.615 98.36% 3.601
DIFGSM 0.04% 3.090 94.47% 2.830
NIFGSM 0.41% 3.674 64.32% 3.520

SINIFGSM 4.04% 3.647 69.79% 3.615
VMIFGSM 0.04% 3.587 97.84% 3.601
VNIFGSM 0.37% 3.588 95.74% 3.636
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Table 5. Cont.

Surrogate Method
Non-targeted Targeted

˜Acc L̃2 ˜Acc L̃2

InceptionV3

TAN 0.82% 3.552 98.81% 3.453
MIFGSM 0.00% 3.599 96.00% 3.563
DIFGSM 0.04% 3.010 86.72% 2.811
NIFGSM 0.21% 3.671 51.66% 3.397

SINIFGSM 2.93% 3.689 62.46% 3.593
VMIFGSM 0.00% 3.614 91.54% 3.577
VNIFGSM 0.00% 3.632 84.02% 3.605

Mobilenet

TAN 2.72% 3.218 97.40% 3.257
MIFGSM 8.29% 3.557 99.86% 3.538
DIFGSM 6.64% 2.821 91.64% 2.610
NIFGSM 6.88% 3.575 80.05% 3.519

SINIFGSM 1.77% 3.664 85.14% 3.662
VMIFGSM 2.35% 3.572 99.40% 3.499
VNIFGSM 1.32% 3.635 95.58% 3.582

ResNet50

TAN 3.34% 3.684 97.69% 3.408
MIFGSM 0.95% 3.659 97.08% 3.613
DIFGSM 0.33% 3.141 90.35% 2.824
NIFGSM 0.33% 3.710 45.34% 3.501

SINIFGSM 3.96% 3.720 71.64% 3.652
VMIFGSM 0.87% 3.644 96.17% 3.618
VNIFGSM 0.25% 3.692 94.17% 3.632

Shufflenet

TAN 3.46% 3.331 98.36% 3.345
MIFGSM 0.00% 3.567 100.00% 3.518
DIFGSM 0.00% 2.790 97.54% 2.599
NIFGSM 0.16% 3.632 91.77% 3.455

SINIFGSM 0.00% 3.660 95.79% 3.568
VMIFGSM 0.00% 3.617 100.00% 3.511
VNIFGSM 0.04% 3.654 99.73% 3.568

4.6. Comparison of Transferability

In this section, we evaluated the transferability of adversarial examples among DNN-based

SAR-ATR models on the MSTAR dataset. Specifically, we first took each network as the surrogate model

in turn and crafted adversarial examples for them, respectively. Then, we assessed the transferability

by testing the recognition results of victim models on corresponding adversarial examples. The

transferability in non-targeted and targeted attacks are shown in Tables 6 and 7, respectively.

In non-targeted attacks, when the proposed method sequentially takes DenseNet121, GoogLeNet,

InceptionV3, Mobilenet, ResNet50, and Shufflenet as the surrogate model, the highest recognition

accuracy of victim models on the generated adversarial examples are 12.90%, 26.88%, 23.45%, 18.59%,

11.01%, and 23.54%, respectively. Equivalently, the highest recognition accuracy of victim models on

the adversarial examples produced by baseline methods are 36.11%, 44.44%, 56.06%, 65.99%, 33.84%,

and 68.51%, respectively. Meanwhile, for each surrogate model, victim models always have the lowest

recognition accuracy on the adversarial examples crafted by our approach. Obviously, compared with

baseline methods, the proposed method slightly sacrifices the performance on attacking surrogate

models, but achieves state-of-the-art transferability among victim models in non-targeted attacks.

Detailed results are shown in Table 6.
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Table 6. Transferability of adversarial examples generated by different attack algorithms in non-targeted

attacks.

Surrogate Method DenseNet121 GoogLeNet InceptionV3 Mobilenet ResNet50 Shufflenet

DenseNet121

TAN 1.90% 4.25% 7.46% 9.93% 9.11% 12.90%
MIFGSM 0.00% 10.10% 12.82% 26.46% 16.32% 28.65%
DIFGSM 0.00% 8.16% 11.46% 26.01% 19.17% 30.83%
NIFGSM 0.21% 14.67% 14.67% 26.75% 20.07% 30.67%

SINIFGSM 1.15% 16.69% 19.29% 35.66% 17.64% 36.11%
VMIFGSM 0.00% 8.86% 11.62% 24.40% 15.13% 25.89%
VNIFGSM 0.08% 8.04% 11.62% 22.38% 13.60% 23.54%

GoogLeNet

TAN 6.88% 3.83% 8.16% 23.62% 10.51% 26.88%
MIFGSM 10.18% 0.04% 17.72% 32.36% 27.66% 42.13%
DIFGSM 8.33% 0.04% 14.47% 32.52% 24.73% 38.66%
NIFGSM 22.88% 0.41% 24.28% 32.32% 35.16% 44.44%

SINIFGSM 7.96% 4.04% 13.15% 33.22% 15.09% 28.07%
VMIFGSM 8.57% 0.04% 16.32% 29.72% 25.64% 38.58%
VNIFGSM 10.02% 0.37% 15.50% 27.99% 26.30% 36.93%

InceptionV3

TAN 8.20% 9.60% 0.82% 21.43% 14.67% 23.45%
MIFGSM 19.25% 35.00% 0.00% 39.45% 33.14% 42.54%
DIFGSM 16.86% 33.22% 0.04% 43.69% 33.76% 47.07%
NIFGSM 32.11% 34.46% 0.21% 42.09% 43.08% 44.89%

SINIFGSM 27.37% 38.05% 2.93% 49.22% 41.18% 56.06%
VMIFGSM 18.51% 26.92% 0.00% 34.46% 31.04% 37.18%
VNIFGSM 21.68% 26.38% 0.00% 33.80% 34.50% 37.63%

Mobilenet

TAN 14.34% 15.83% 13.56% 2.72% 14.18% 18.59%
MIFGSM 65.99% 59.32% 53.59% 8.29% 55.56% 59.77%
DIFGSM 51.28% 53.34% 49.34% 6.64% 49.34% 52.18%
NIFGSM 65.75% 58.66% 51.85% 6.88% 52.31% 55.56%

SINIFGSM 64.67% 45.14% 49.01% 1.77% 51.81% 58.37%
VMIFGSM 62.49% 52.10% 50.45% 2.35% 49.63% 52.84%
VNIFGSM 56.27% 50.04% 43.61% 1.32% 43.82% 48.19%

ResNet50

TAN 5.94% 9.27% 10.14% 12.94% 3.34% 11.01%
MIFGSM 14.59% 24.15% 17.72% 16.90% 0.95% 26.42%
DIFGSM 11.13% 17.07% 15.09% 20.45% 0.33% 26.59%
NIFGSM 21.72% 28.19% 20.28% 19.74% 0.33% 29.43%

SINIFGSM 26.50% 24.15% 22.59% 30.50% 3.96% 33.84%
VMIFGSM 13.31% 22.42% 16.36% 15.95% 0.87% 23.33%
VNIFGSM 15.00% 22.67% 16.45% 14.47% 0.25% 22.63%

Shufflenet

TAN 17.72% 23.54% 16.49% 22.22% 17.85% 3.46%
MIFGSM 66.69% 70.03% 65.00% 55.81% 65.00% 0.00%
DIFGSM 53.46% 57.58% 55.32% 51.44% 55.44% 0.00%
NIFGSM 67.23% 61.58% 58.62% 48.35% 61.62% 0.16%

SINIFGSM 68.51% 58.33% 60.92% 50.41% 56.64% 0.00%
VMIFGSM 57.25% 55.32% 54.29% 40.23% 53.34% 0.00%
VNIFGSM 56.68% 54.25% 51.57% 37.30% 52.14% 0.04%

In targeted attacks, the proposed method still takes DenseNet121, GoogLeNet,

InceptionV3, Mobilenet, ResNet50, and Shufflenet as the surrogate model in turn, and the

minimum probability that victim models identify the generated adversarial examples as target classes

are 52.39%, 55.02%, 54.57%, 57.66%, 66.26%, and 47.78%, respectively. Correspondingly, the minimum

probability that victim models recognize the adversarial examples produced by baseline methods as

target classes are 22.18%, 19.63%, 19.49%, 15.52%, 19.36%, and 13.06%, respectively. Moreover, for each

surrogate model, victim models always identify the adversarial examples crafted by our approach as

target classes with the maximum probability. Thus, the proposed method also achieves state-of-the-art

transferability among victim models in targeted attacks. Detailed results are shown in Table 7.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 March 2023                   doi:10.20944/preprints202303.0034.v1

https://doi.org/10.20944/preprints202303.0034.v1


16 of 21

Table 7. Transferability of adversarial examples generated by different attack algorithms in targeted

attacks.

Surrogate Method DenseNet121 GoogLeNet InceptionV3 Mobilenet ResNet50 Shufflenet

DenseNet121

TAN 98.08% 79.12% 70.71% 59.03% 62.31% 52.39%
MIFGSM 98.61% 52.47% 49.05% 39.47% 43.78% 37.62%
DIFGSM 95.39% 51.08% 46.62% 35.02% 39.51% 32.29%
NIFGSM 68.72% 33.06% 27.61% 22.18% 25.78% 22.92%

SINIFGSM 82.32% 40.62% 33.17% 29.95% 31.93% 30.59%
VMIFGSM 98.14% 48.94% 44.10% 33.56% 39.29% 34.06%
VNIFGSM 96.89% 48.78% 46.03% 34.70% 39.80% 35.52%

GoogLeNet

TAN 81.04% 99.09% 66.59% 56.72% 63.86% 55.02%
MIFGSM 61.56% 98.36% 47.57% 34.16% 37.57% 29.75%
DIFGSM 58.81% 94.47% 47.91% 32.17% 36.20% 26.88%
NIFGSM 31.46% 64.32% 25.34% 19.85% 23.14% 19.63%

SINIFGSM 41.97% 69.79% 34.39% 28.21% 29.77% 25.48%
VMIFGSM 53.37% 97.84% 42.19% 30.67% 34.94% 26.36%
VNIFGSM 56.26% 95.74% 43.96% 32.31% 36.11% 29.49%

InceptionV3

TAN 75.11% 71.56% 98.81% 67.23% 63.62% 54.57%
MIFGSM 42.64% 35.92% 96.00% 32.49% 35.00% 29.51%
DIFGSM 42.99% 33.70% 86.72% 31.16% 34.13% 28.20%
NIFGSM 27.12% 24.67% 51.66% 19.49% 23.76% 22.45%

SINIFGSM 26.76% 25.23% 62.46% 21.90% 24.36% 22.59%
VMIFGSM 36.38% 34.05% 91.54% 30.15% 31.43% 28.52%
VNIFGSM 37.82% 33.55% 84.02% 31.44% 32.28% 28.58%

Mobilenet

TAN 61.30% 57.66% 61.53% 97.40% 60.97% 63.11%
MIFGSM 19.98% 18.66% 22.87% 99.86% 23.55% 20.31%
DIFGSM 23.96% 21.92% 23.79% 91.64% 24.51% 22.65%
NIFGSM 15.76% 15.58% 16.85% 80.05% 18.06% 15.91%

SINIFGSM 16.81% 15.52% 18.96% 85.14% 21.20% 16.63%
VMIFGSM 18.46% 17.84% 18.70% 99.40% 21.49% 19.61%
VNIFGSM 21.60% 18.41% 22.34% 95.58% 24.67% 21.96%

ResNet50

TAN 71.39% 71.54% 71.02% 73.68% 97.69% 66.26%
MIFGSM 43.23% 30.51% 41.57% 42.41% 97.08% 36.29%
DIFGSM 45.18% 34.25% 42.37% 39.40% 90.35% 34.36%
NIFGSM 22.07% 20.45% 20.33% 19.36% 45.34% 19.75%

SINIFGSM 25.81% 21.38% 27.15% 31.01% 71.64% 26.02%
VMIFGSM 36.44% 26.33% 35.75% 38.61% 96.17% 32.79%
VNIFGSM 40.80% 27.10% 38.26% 38.87% 94.17% 36.49%

Shufflenet

TAN 53.91% 47.78% 51.69% 60.35% 58.78% 98.36%
MIFGSM 18.29% 16.43% 17.06% 19.46% 17.20% 100.00%
DIFGSM 23.55% 20.36% 20.80% 22.55% 21.35% 97.54%
NIFGSM 13.96% 13.06% 13.14% 14.47% 13.66% 91.77%

SINIFGSM 15.83% 15.23% 15.34% 19.42% 16.05% 95.79%
VMIFGSM 17.58% 16.34% 17.09% 21.65% 18.46% 99.94%
VNIFGSM 19.43% 17.97% 18.68% 22.87% 19.98% 99.73%

In conclusion, for both non-targeted and targeted attacks, our approach generates adversarial

examples with the strongest transferability. In other words, it performs better on exploring the common

vulnerability of DNN models. We attribute this to the adversarial training between the generator and

attenuator. Figuratively speaking, it is because the attenuator constantly creating obstacles for the

generator that the attack capability of the generator is continuously enhanced and completed.

4.7. Comparison of Real-Time Performance

To evaluate the real-time performance of adversarial attacks, we calculated the time cost of

generating a single adversarial example through different attack algorithms. We show the time

consumption of non-targeted and targeted attacks in Tables 8 and 9, respectively.

As we can see, there is almost no difference in the time cost of crafting a single adversarial

example in non-targeted and targeted attacks. Meanwhile, for all the victim models, the time cost of

generating a single adversarial example through the proposed method is stable around 2ms. As for
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baseline methods, it depends on the complexity of victim models, the more complex the model, the

longer the time cost. However, even for the simplest victim model, the minimum time cost of baseline

methods is about 4.5ms, consuming twice as much time as our approach. Thus, there is no doubt that

the proposed method achieves the most superior and stable real-time performance.

Table 8. Time cost of generating a single adversarial example through different attack algorithms in

non-targeted attacks.

Method DenseNet121 GoogLeNet InceptionV3 Mobilenet ResNet50 Shufflenet Mean

TAN 0.002029 0.002201 0.002039 0.002218 0.002031 0.002045 0.002094
MIFGSM 0.018285 0.006351 0.012636 0.005093 0.013445 0.004451 0.010044
DIFGSM 0.018276 0.006363 0.012653 0.005103 0.013468 0.004488 0.010059
NIFGSM 0.018312 0.006354 0.012646 0.005111 0.013477 0.004456 0.010059

SINIFGSM 0.091032 0.031499 0.063015 0.024865 0.067202 0.021676 0.049882
VMIFGSM 0.109252 0.037827 0.075580 0.029803 0.080479 0.025968 0.059818
VNIFGSM 0.109184 0.037804 0.075483 0.029776 0.080560 0.025907 0.059786

Table 9. Time cost of generating a single adversarial example through different attack algorithms in

targeted attacks.

Method DenseNet121 GoogLeNet InceptionV3 Mobilenet ResNet50 Shufflenet Mean

TAN 0.002070 0.002069 0.002036 0.002055 0.002087 0.002097 0.002069
MIFGSM 0.018281 0.006353 0.012634 0.005088 0.013451 0.004446 0.010042
DIFGSM 0.018291 0.006369 0.012652 0.005104 0.013490 0.004488 0.010065
NIFGSM 0.018306 0.006358 0.012661 0.005105 0.013486 0.004460 0.010063

SINIFGSM 0.091064 0.031539 0.063066 0.024871 0.067216 0.021664 0.049903
VMIFGSM 0.109262 0.037860 0.075579 0.029776 0.080481 0.025984 0.059823
VNIFGSM 0.109176 0.037819 0.075502 0.029798 0.080546 0.025923 0.059794

4.8. Visualization of Adversarial Examples

In this section, we take ResNet50 as the surrogate model and visualize the adversarial examples

crafted by different methods in Figure 9. Obviously, the adversarial perturbations generated by

our method are continuous, and mainly focus on the target region of SAR images. In contrast, the

perturbations produced by baseline methods are quite discrete, and almost cover the global area of

SAR images. First, from the perspective of feature extraction, since the features that have a greater

impact on recognition results are mainly concentrated in the target region rather than the background

clutter area, a focused disruption of key features is certainly a more efficient attack strategy. Second,

from the perspective of physical feasibility, the fewer pixels modified in adversarial examples, the

smaller range perturbed in reality, so localized perturbations are more feasible than global ones.

In summary, the proposed method improves the efficiency and feasibility of adversarial attacks by

focusing perturbations on the target region of SAR images.
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Figure 9. Visualization of adversarial examples against ResNet50. (a) TAN. (b) MIFGSM. (c) DIFGSM.

(d) NIFGSM. (e) SINIFGSM. (f) VMIFGSM. (g) VNIFGSM. From top to bottom, the corresponding

target classes are None, BMP2, BTR60, D7, T72, and ZSU234, respectively. For each attack, the first row

shows adversarial examples, and the second row shows corresponding adversarial perturbations.

5. Conclusions

This paper proposed a transferable adversarial network (TAN) to generate adversarial examples

for DNN-based SAR-ATR models, with the benefit that not only the transferability but also the real-time

performance of adversarial examples is significantly improved. In the proposed method, a generator
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was designed to craft malicious samples through a one-step forward mapping from original data,

and an attenuator was introduced to weaken the effectiveness of malicious samples by capturing

the most harmful deformations. Our motivation is to enable real-time attacks by one-step mapping

original samples to adversarial examples, and enhance the transferability through a two-player game

between the generator and attenuator. Experimental results demonstrated that our approach achieves

state-of-the-art transferability with acceptable adversarial perturbations and minimum time costs

compared to existing attack methods, i.e., it excellently realizes real-time transferable adversarial

attacks. Potential future work could consider attacking DNN-based SAR-ATR models under small

sample conditions. It is also of great interest to real-world achieve the adversarial example of SAR

images in addition to improving the performance of attack algorithms.
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