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Abstract: The present study illustrates a brain-computer interface designed and developed to be 1

wearable, portable, and user-friendly. Eight dry electroencephalographic sensors were adopted to 2

acquire the brain activity associated with motor imagery. Multimodal feedback in extended reality 3

was exploited to improve the detection of neurological phenomena. Twenty-seven healthy subjects 4

used the proposed system in five sessions to investigate the effects of feedback on motor imagery. 5

The sample was divided into two equal-sized groups: the "neurofeedback" group, which performed 6

motor imagery while receiving feedback, and the "control" group, which performed motor imagery 7

with no feedback. Several questionnaires were administrated to participants aiming to investigate 8

the usability of the proposed system and individual’s ability to imagine movements. The highest 9

mean classification accuracy across subjects of control group was about 62 % with 3 % associated 10

type A uncertainty, and 69 % with 3 % uncertainty for neurofeedback group. Moreover, in some 11

cases the results were significantly higher for the neurofeedback group. The perceived usability by 12

all participants was high. Overall, the study highlights the advantages and the pitfalls of using a 13

wearable brain-computer interface with dry sensors. Notably, the results and the perceived usability 14

pave the way for the employment of the proposed system in tele-rehabilitation. 15

Keywords: electroencephalography; dry sensors; motor imagery; brain-computer interfaces; ex- 16

tended reality; tele-rehabilitation 17

1. Introduction 18

Tele-rehabilitation has long been considered a promising way of providing rehabilita- 19

tive therapies "at distance" [1–3]. Digital sensing and artificial intelligence solutions enable 20

patient-centred treatment by continuously monitoring and evaluating patient performances 21

[4,5]. Over the past few years, the COVID-19 pandemic has accelerated this transition to a 22

new era known as health 5.0 [6,7]. In this context, extended reality helped to provide an 23

alternative therapy at a distance for a wide range of people. Notably, different solutions 24

were proposed for older adults with neurodegenerative diseases [8–10]. 25

Brain-computer interfaces (BCIs) based on the motor imagery paradigm have been 26

extensively studied for human patients with a variety of neuromuscular disorders in order 27

to facilitate recovery of neural functions. Its effectiveness is confirmed especially for stroke 28

patients [11–13]. The combination of BCIs and extended reality can provide patients with 29

neurofeedback on their mental tasks [14]. In particular, sensory feedback helps them in the 30

self-regulation of brain rhythms and promotes neural plasticity. 31

To be involved in tele-rehabilitation, a system including BCI and extended reality must 32

be non-invasive, wearable, portable, comfortable, and generally ready for getting out of 33

controlled lab environments [15,16]. These requirements are often fulfilled by exploiting 34
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electroencephalography (EEG) to acquire brain signals [17]. EEG systems for "out-of-lab" 35

acquisitions are increasingly being developed [18]. These are mainly wireless devices with a 36

reduced number of sensors that allow freedom of movement and improve usability [19,20]. 37

Moreover, instead of the standard wet sensors, dry sensing could be used to increase user 38

comfort while attempting to keep high metrological performance [21–23]. 39

Previous studies already proposed EEG devices relying on dry sensors. For example, 40

new systems were either proposed in [24–26] or evaluated consumer-grade dry electrodes 41

[27,28]. For instance, a BCI with a soft robotic glove was proposed in [29] for stroke 42

rehabilitation, and it adopted a medical EEG device with 24 wet sensors. Moreover, in 43

[30], classification was attempted in different dry sensing setups (from 8 to 32 sensors) 44

and with different signal processing approaches. A wireless high-density EEG medical 45

grade system was used and a drop in performance was observed when 8 channels were 46

used. However, neurofeedback was not investigated in trying to enhance motor imagery 47

detection. Recently, the feasibility of a wearable BCI for neurorehabilitation at home was 48

proposed in [31]. Healthy participants received remote instructions on the use of an EEG 49

device with 16 dry sensors. Visual feedback consisted of a bar fluctuating vertically up or 50

down from the midline. Half of the participants succeeded in controlling the BCI during 51

six sessions. 52

On the contrary, in a previous related work [32], the authors investigated a motor 53

imagery-based BCI with only three EEG acquisition channels. Three feedback modalities 54

were compared to improve motor imagery detection namely visual, haptic and, visual- 55

haptic, and results highlighted a statistically significant improvement when using neu- 56

rofeedback. In there, participants generally preferred visual and visual-haptic feedback 57

modalities. Nonetheless, wet sensors were used and the number of participants to the 58

experiments was limited. The present study tries to overcome the discussed limitations 59

by also adopting a new system version. A ready-to-use medical device was particularly 60

adopted, so that the final system can be included in tele-rehabilitation programs. 61

Therefore, a fully-wearable motor imagery-based BCI was implemented by relying on 62

a Class IIA EEG device with 8 dry sensors and certified according to the Medical Device 63

Regulation. The effectiveness of visual-haptic neurofeedback in discriminating between 64

left hand and right hand motor imagery was also investigated over 5 experimental sessions 65

for each of the 27 enrolled subjects. To this aim, the subjects were divided into a control 66

group and a neurofeedback group. Preliminary results were presented in [33], but extended 67

here by considering a large subject cohort and results of questionnaires administered to 68

evaluate usability. The remainder of the paper is organised as follows: Section 2 presents an 69

overview of the proposed system, with a focus on the experimental protocol and outcome 70

measures; Section 3 shows system performance in experiments; Section 4 concludes the 71

manuscript by discussing the results. 72

2. Materials and methods 73

This section discusses the design, the implementation, and the validation methods for 74

a wearable BCI relying on motor imagery, EEG with dry sensors, and online neurofeedback. 75

An overview of the system is given together with the adopted hardware. Then, EEG 76

processing is focused in association with the experimental protocol. Questionnaires will 77

be also introduced. They were adopted to assess the usability of the system and the 78

imaginative abilities of its users. Finally, the tests considered within the statistical analysis 79

are recalled. 80

2.1. System overview 81

The present study proposes a new system integrating a BCI with neurofeedback in 82

extended reality (Figure 1). This could be addressed to daily-life applications, and notably 83

used for tele-rehabilitation purposes. 84
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EEG ONLINE PROCESSING

FEEDBACK DELIVERING

visual

haptic

Figure 1. A subject using the proposed BCI system with neurofeedback in extended reality. The
system involves EEG acquisition with the Helmate device, online processing, and actuators for
visual-haptic feedback delivering.

In the system, brain signals were acquired by using the Helmate EEG device by ab 85

medica®1. This is a Class IIA device certified according to the Medical Device Regulation 86

(EU) 2017/745. It has eight measuring channels plus one reference channel and one bias 87

channel. Ten dry sensors with different shapes can be chosen according to the zone of 88

the scalp to reach. Moreover, different configurations for the channels’ location could be 89

exploited. In this study, the eight measuring channels were located at FP1, FP2, Fz, Cz, C3, 90

C4, O1, and O2, while the reference and bias sensors were placed in the frontal region at 91

AFz and FPz, respectively (Figure 2). 92

Data were collected at a sampling rate of 512 Sa/s and transmitted via Bluetooth to 93

a custom Simulink model for EEG processing. In Simulink, features from the EEG signal 94

were extracted by means of the Filter Bank Common Spatial Pattern (FBCSP) [34] and 95

classified by means of the Naive Bayesian Parzen Window (NBPW). The latter returns two 96

outputs: the class to which the multi-channel EEG signal is assigned (right or left), and the 97

probability associated with that class.

Fp1 Fp2

Fz

CzC3 C4

O1 O2

Figure 2. Position on the scalp of the sensors adopted in this study. Locations are identified by the
10-20 standard system for EEG.

98

1 https://www.abmedica.it/
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The classification outputs were used to drive multimodal feedback through a custom 99

Unity application. The neurofeedback consisted of a combination of visual and haptic 100

feedback. For the visual feedback, a virtual ball was shown on a display (Figure 3). This 101

could roll to the left or to the right of the virtual environment according to the EEG 102

classification. In detail, while the assigned class determined the direction, the related score 103

determined its velocity. The TactSuit X40 from bHaptics Inc was instead used for the haptic 104

feedback. This is a wearable and portable vest equipped with 40 individually controllable 105

vibrotactile motors. The vibration was again modulated by classification outputs. More 106

specifically, the pattern could move from the centre of the torso (front side) to the right or to 107

the left in accordance with the assigned class. Meanwhile, the related score determined the 108

vibration intensity. It is worth noting that the only bottom motors were used to minimize 109

vibration artifacts on the EEG signals. 110

GO! RELAX

0.00 s 2.00 s 3.00 s 6.00 s

Figure 3. Timing of a single trials of the experimental sessions for the control group. The same timing
was also used for the neurofeedback group during the only first phase of an experimental session.
Notably, there was an overlap of 0.25 s between the cue and the word "GO!".

2.2. Experimental protocol 111

The described BCI was exploited within a cue-based (synchronous) paradigm. This 112

implied that the user had to imagine a movement or be relaxed in accordance with given 113

indications (the cues). The indications were delivered visually by means of the Unity3D 114

platform. Two motor imagery tasks were possible, namely imagining the movement of 115

the left hand or imagining the movement of the right hand. In case of neurofeedback, 116

multimodal feedback was delivered to the user in response to the ongoing mental task. 117

However, pure motor imagery (no feedback) was required to train the classifier adopted 118

for the online processing. 119

In the experimental protocol, subjects were divided into two groups and involved in 120

five one-hour experimental sessions over five weeks. The subjects assigned to a control 121

group never received feedback. Instead, for the subjects of the neurofeedback group, pure 122

motor imagery was recorded at the beginning of each session, and then neurofeedback was 123

provided thanks to trained EEG classifier. The protocol for the two groups is described in 124

details in the following. 125

2.2.1. Control group 126

The Unity application dictated the timing within the experimental session. A total of 127

six runs were recorded, and each run consisted of 30 trials. Each trial consisted of a fixation 128

cross visualized from 0.00 s to 2.00 s, a cue (left or right arrow) visualized from 2.00 s to 129

3.25 s, the word "GO!" visualized from 3.00 s to 6.00 s, and the word "RELAX" visualized 130

for a random time window of 1.00 s to 2.00 s (Figure 3). The sequence of left and right cues 131

and the duration of the final "RELAX" were randomized across trials to avoid biases. The 132

EEG was acquired as a continuous stream during each run, but never processed online and 133

thus the control group did not received any feedback. The runs were separated by short 134

breaks, with a longer time break between the first three runs (phase 1) and the last three 135

runs (phase 2) of a session. 136
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2.2.2. Neurofeedback group 137

The first three runs of each session (phase 1) were carried out as done for the control 138

group. However, during the time break between the phases, the EEG data from phase 1 139

were used to train the online classifier. This classifier was trained from scratch for each 140

subject and for each session. Subsequently, participants of this group performed three 141

further runs (phase 2) during which they received online multimodal feedback in response 142

to motor imagery. The goal of the participants in the neurofeedback group was to move 143

the visual feedback ball over the white lines of the game environment and to maximally 144

activate the motors of the vest on the back of the respective side (i.e., left or right). In this 145

case, the timing was slightly changed because participants were asked to start imagining 146

from the appearance of the cue at t = 2.00 s. Then, they received the feedback from 4.50 s to 147

6.00 s (Figure 4). The instant t = 4.50 s depended on the fact that the system actually started 148

to classify at t = 2.50 s, and the time window for online processing was 2.00 s wide. Finally, 149

the feedback could only move if the label obtained from the online classifier matched the 150

assigned task (positive bias). Otherwise, no feedback was provided and the virtual ball 151

was dragged towards the centre of the screen while the intensity of the vibration was 152

interrupted. Further details on that are discussed in the next subsection.

RELAX

0.00 s 2.00 s 4.50 s 6.00 s

Figure 4. Timing of a single trial of the experimental sessions for phase 2 of the neurofeedback group.
Instead, the same timing of the control group was used for phase 1.

153

2.3. EEG processing 154

The FBCSP with the NBPW classifier were used not only for online processing, but 155

also for offline processing of EEG data. With reference to the neurofeedback group, after 156

acquiring the EEG in a first half-session, data processing was needed to train the online 157

classification algorithm. Details on the processing pipeline can be found in [32–34]. Specifi- 158

cally for online processing, the FBCSP-based approach was adapted so that the EEG stream 159

was processed with a sliding window covering the motor imagery period. 160

By exploiting the results of previous studies [32,33], the time-width for the sliding 161

windows was fixed at 2.00 s, and this was used to span the interval from 0.00 s to 7.00 s with 162

a 0.25 s shift. A five-folds cross validation with five repetitions was used to identify the 163

best portion of the EEG trials for training the algorithm. This best 2.00 s-wide window was 164

selected as the one associated with the highest mean classification accuracy and the lowest 165

difference between classification accuracies per class. Possible windows were extracted 166

from the motor imagery window by considering all trials of phase 1. 167

Finally, at the end of the experiments, all data were processed offline to classify 168

all data and assess the related accuracy. Differently from above, the Artifact Subspace 169

Reconstruction (ASR) technique was also applied in post-processing [35]. This is a relatively 170

recent technique for artifact removal exploited here before to prepare data prior to features 171

extraction and classification. ASR uses an artefact-free data segment as a baseline and then 172

corrects the original data by calculating a covariance matrix and retrieving statistics to 173

identify and remove artefacts. Notably, its usefulness for an eight EEG channels setup is 174

supported by previous studies [36]. 175
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2.4. Outcome measures 176

To evaluate the usability of the proposed system and the participants’ imaginative 177

abilities, the following questionnaires were administered to participants of both groups: 178

• MIQ-3 [37]: this is the most recent version of the Movement Imagery Questionnaire 179

[38] and of the Movement Imagery Questionnaire-Revised [39]. It is a 12-item ques- 180

tionnaire to assess an individual’s ability to imagine four movements using internal 181

visual imagery, external visual imagery, and kinaesthetic imagery. The rating scales 182

range from 1 (very difficult to see/feel) to 7 (very easy to see/feel). The MIQ-3 has 183

good psychometric properties, internal reliability and predictive validity. 184

• SUS (System Usability Scale) [40]: this is one of the most robust and tested psycho- 185

metric tool for user-perceived usability. The SUS score consists of a value between 186

0 and 100, with high values indicating better usability. According to Bargor et al. 187

[41], it is possible to adopt a 7-point adjectival scale (from "worst imaginable" to "best 188

imaginable") for the SUS score. Another variation, proposed in [42], is to consider the 189

score in terms of "acceptable" (value above 70) or "not acceptable" (value below 50). 190

The range from 50 to 70 is instead "marginally acceptable". 191

• NASA-TLX (acronym for NASA Task Load Index) [43]: it is a subjective, multidi- 192

mensional evaluation tool that assesses perceived workload while performing a task 193

or an activity. The original version also includes a weighting scheme to account for 194

individual differences. However, the most common change made to the questionnaire 195

is the elimination of these weights in order to simplify its application [44]. In this 196

work, it was administered without weights. 197

• UEQ-S (User Experience Questionnaire-short form) [45]: a standardised questionnaire 198

to measure the User Experience of interactive products. It distinguishes between 199

pragmatic and hedonic quality aspects. The first describes interaction qualities that 200

relate to the tasks or goals the user wants to achieve when using the product. The 201

second describes aspects related to pleasure or enjoyment while using the product. 202

Values between −0.8 and +0.8 represent a neutral evaluation of the corresponding 203

scale, values greater than +0.8 represent a positive evaluation, while values lower than 204

−0.8 represent a negative evaluation. 205

The MIQ-3 was administered twice: before the first experimental session and at 206

the end of the last experimental session. On the contrary, the other questionnaires were 207

administered only at the end of the experimental sessions. In addition, during each 208

experimental session, the participants were also given a short interview to assess their 209

physical and mental state. This interview was adapted from the questionnaire proposed in 210

[46], with some modifications needed to introduce aspects associated with neurofeedback 211

[32]. 212

2.5. Statistical Analysis 213

To compare classification accuracies between sessions and groups, a repeated-measures 214

ANOVA test was used under the assumption of normally distributed data and homoscedas- 215

ticity. The Jarque-Bera test was exploited to check for the normality assumption. Instead, 216

the homoscedasticity was tested by means of the Bartlett’s test. In case of a violation for the 217

assumption of homoscedasticity, it was possible to apply a Welch’s correction before apply- 218

ing the ANOVA. Meanwhile, when data were not normally distributed, the Kruskal-Wallis 219

non-parametric test was used instead of the ANOVA. 220

The comparison of MIQ-3 scores between the two groups and the two endpoints 221

(before starting and at the end of the sessions) was conducted via the Mann-Whitney-U- 222

Test [47]. In addition, a Wilcoxon signed-rank test was used to compare paired data of 223

the MIQ-3 scale within each group (control and neurofeedback). Similarly, a comparison 224

between the two groups was carried on in terms of SUS, NASA-TLX, and UEQ-S scores 225

at the end of the sessions. In each case, test-specific assumptions were checked before 226

applying the test. 227
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Table 1. Summary of participants information for control and neurofeedback groups. BCI experi-
ence: experience with brain-computer interfaces in active paradigms, passive paradigms, reactive
paradigms, multiple paradigms, or no experience. NF experience: previous experience with neuro-
feedback, no experience.

Control Neurofeedback

sex male: 31 %, female: 69 % male: 57 %, female: 42 %
handedness right: 85 %, left: 15 %, both: 0 % right: 79 %, left: 14 %, both: 7 %
practicing sport yes: 38 %, no: 62 %, professional: 0 % yes: 64 %, no: 36 %, professional: 0 %
BCI experience no: 38.5 %, active: 8 %, passive: 15 %, no: 43 %, active: 7 %, passive: 21 %,

reactive: 0 %, multiple: 38.5 % reactive: 0 %, multiple: 29 %
NF experience yes: 46 %, no: 54 % yes: 36 %, no: 64 %

The statistical analyses were performed by using MATLAB (version 2021b) and the 228

significance level for them was set by α = 5 % (probability of a false negative, or type-I 229

error). 230

3. Results 231

Results are reported in this section after commenting on the sample of participants 232

to the experimental campaign. Experimental data were analysed in accordance with 233

the methods of Section 2. Then, classification accuracies were exploited to assess the 234

performance of the system and to describe its limits. The results are discussed in conjunction 235

with answers to the questionnaires especially to address the usability of the system in tele- 236

rehabilitation. 237

3.1. Participants 238

A sample of 27 healthy volunteers were enrolled in the study (mean age: 26, standard 239

deviation: 2). The study was approved by the Ethical Committee of Psychological Research 240

of the Department of Humanities of the University of Naples Federico II, and all the 241

participants provided a written informed consent before starting the experiments. 242

To investigate multimodal feedback, roughly half of the participants were assigned to 243

the "control group" and half to the "neurofeedback group". The two groups were balanced 244

by age. In the control group, four subjects were males and nine were females. Meanwhile, 245

in the neurofeedback group, eight subjects were males and six were females. All participant 246

used the wearable system with dry sensors while seated in front of a display for visual 247

indications and eventual feedback. Participants with affected motor and/or cognitive 248

functions were excluded. However, it is worth mentioning that a subject (C08) reported of 249

past epileptic seizures during childhood. 250

Most subjects were right-handed with the exception of two left-handed subjects per 251

each group and one ambidextrous subject in the neurofeedback group. More than 60 % of 252

participants for the neurofeedback group practised sport, while participants to the control 253

group practicing sport were less than 40 %. No participant played sport at a professional 254

level. 255

More than 50 % of participant already had experienced some BCI paradigms, and some 256

subjects also had previous experience with neurofeedback. Such information is detailed in 257

Table 1 along with a summary of previous information about sex, handedness, and sport 258

practicing. 259

3.2. System performance 260

Classification results are shown in Figure 5 for the control group. The matrix on the left 261

reports the classification accuracy obtained on the first three runs of pure motor imagery 262

(phase 1) across the five sessions (x-axis) and for the 13 subjects (y-axis). The matrix on the 263

right reports the analogous results for the last three runs of pure motor imagery (phase 2). 264
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Higher classification accuracy is indicated by red colour. Meanwhile, a white space refers 265

to a missing result caused by corrupted data or skipped session. 266
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Figure 5. Control Group: mean classification accuracy using the best 2-seconds window.

Given that 90 trials were used for each classification result, the classification accuracy 267

of a random classifier would be modeled by a binomial distribution with mean equal to 50 % 268

(the well-known chance level) and a 95 % coverage interval spanning from 40 % to 59 % 269

(related to the number of trials) [48]. Notably, this implies that only classification accuracy 270

values above 59 % can be considered non-random with an α = 5 %. Therefore, for subjects in 271

the control group, the classification accuracy resulted compatible with randomness except 272

few cases. Overall, the highest mean classification accuracy across subjects was about 62 % 273

with 3 % associated type A uncertainty and it was obtained either in phase 2 of session 2 274

and phase 1 of session 3. 275

Only subjects C07 and C08 do not belong to the general trend. Notably, the clas- 276

sification accuracies exceed 70 % in several cases, an empirical threshold for acceptable 277

performance in motor imagery. Interestingly, C08 was the participant reporting past epilep- 278

tic seizures. 279

On the other hand, Figure 6 shows the classification results for the neurofeedback 280

group. The matrix on the right refers to three runs with neurofeedback (phase 2 for the 281

neurofeedback group). 282

1 2 3 4 5

Session

N01

N02

N03

N04

N05

N06

N07

N08

N09

N10

N11

N12

N13

N14

S
u

b
je

c
t

Phase 1

63

60

67

61

74

58

61

59

62

59

61

62

60

68

64

59

58

64

62

63

69

60

75

60

75

59

61

52

49

51

56

55

53

54

56

56

51

57

53

54

55

52

54

53

50

51

57

55

56

53

51

54

53

56

48

42

56

56

52

55

52

56

57

50

54

54

54
40

50

60

70

80

90

100

missing

1 2 3 4 5

Session

N01

N02

N03

N04

N05

N06

N07

N08

N09

N10

N11

N12

N13

N14

S
u

b
je

c
t

Phase 2

60

63

75

58

60

59

73

66

63

69

68

59

75

60

64

69

73

61

58

68

82

62

62

69

64

66

79

79

68

82

62

86

64

64

67

58

58

86

78

58

58

70

66

58

74

70

58

82

49

57

54

89

54

56

53

96

48

95

56

45

50

90

55

56

57

53

41

40

50

60

70

80

90

100

missing

Figure 6. Neurofeedback Group: mean classification accuracy using the best 2-seconds window.
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The results of phase 1 for the neurofeedback group appear similar to those of the 283

control group, with classification accuracies close to the chance level. Nonetheless, during 284

phase 2, eight subjects out of 14 exceeded the 70 % accuracy threshold at least once. The 285

subjects reached the respective peak accuracy in different sessions. This led to a maximum 286

average classification accuracy among subjects of 69 % with 3 % uncertainty. 287

Statistical testing suggested that the highest classification performance of the neuro- 288

feedback group in phase 2 does not differs significantly from the highest of the control 289

group, though it is 7 % higher on average. Instead, a statistically significant difference 290

between the two groups was found when focusing on the third session of phase 2 (p < 0.05). 291

Moreover, classification accuracy in phase 2 resulted significantly higher than that of phase 292

1 in the fourth session of the neurofeedback group (p < 0.005). Finally, when comparing 293

all the classification accuracies (all subjects and all sessions) of the neurofeedback group 294

with those of the control group, the improvement given by neurofeedback in phase 2 is 295

statistically significant (p < 0.005). 296

3.3. Questionnaires 297

As mentioned in Section 2, the MIQ-3 was administered twice to each subject, i.e., 298

before the first and at the end of the experimental sessions. In the scale from 1 to 7, the 299

mean scores resulted above 5 already at the first endpoint, with the only exception of 300

kinesthetic imagery, whose mean score equaled 4 for both groups. This implies that subjects 301

generally considered easy, or at least not difficult, to see/feel the involved movements. 302

The Wilcoxon signed-rank test did not produce statistically significant variations in MIQ-3 303

paired scores, within each group. The same applies to the Mann-Whitney-U-Test when 304

considering differences between the two groups before and after the experiments. 305

On the other hand, the SUS scores suggest that the system was considered acceptable 306

by both groups (above 70). Specifically, the results are equal to 78 ± 10 and 75 ± 11 for 307

control and neurofeedback groups, respectively. In addition, the overall results of the 308

UEQ-s equaled 1.60 ± 0.64 for the control group and 1.70 ± 0.80 for the neurofeedback 309

group. No statistically significant differences between the groups were detected (p = 0.40 310

for SUS and p = 0.98 for UEQ-s). 311

Finally, the NASA-TLX results are reported in Figure 7. This shows similar subscales 312

results for both groups with the exception of the effort. In particular, for the latter dimension, 313

the Mann-Whitney-U-Test found statistically significant differences between the two groups 314

(p < 0.05) indicating that neurofeedback group perceived that there was more effort required 315

than the control group which was anticipated due to the need to engage with neurofeedback. 316

The mental demand was high (around 75 for both groups), while the frustration level, the 317

performance, as well as temporal and physical demand resulted low. 318

4. Discussion 319

Motor imagery-based BCIs present the possibility of novel rehabilitation paradigms, 320

either substituting or supplementing current therapy protocols. However, several training 321

sessions are typically required to successfully control a BCI based on motor imagery. 322

Moreover, BCI illiteracy is a well-known problem in literature, which specifically prevents 323

a widespread employment of such a system. In such a framework, this study investigated 324

the use of neurofeedback to help a user to successfully control the system even with only 325

a few sessions. The feedback was implemented in extended reality, and the aim was to 326

develop a BCI suitable for daily-life and tele-rehabilitation. Such motivations led to the 327

adoption of a wearable and portable EEG exploiting dry sensors, as well as employing 328

a wearable and portable actuator for haptic feedback. Although only 8 dry sensors were 329

employed, the use of multimodal feedback led to an increase in system performance. In 330

comparison, the subjects of the control group showed no significant improvement across 331

the sessions, with the only exception of subjects C07 and C08, who achieved good results 332

even without any feedback. 333
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Figure 7. NASA-TLX results for both control and neurofeedback groups.

With the short interview administered during each experimental session, it was also 334

possible to monitor the subjects’ mental and physical state during the sessions, as well 335

as the type of imagined movement. In general, the most common imagined movements 336

were squeezing a ball, moving the arm, tapping, grasping an object, dribble, or play piano. 337

Nonetheless, it is worth noting that six out of 13 subjects in the control group changed 338

the type of movement imagined during the sessions and, among these, three subjects also 339

switched between internal, external, and kinaesthetic imagery. Seven out of 14 subjects 340

in the neurofeedback group changed the type of imagined movement during the sessions 341

and, also among these, four subjects changed between internal, external, and kinaesthetic 342

imagery. According to the results, one can suspect that low-performance levels would also 343

be also caused by changes in the imagined movement during the sessions, especially when 344

feedback was not provided. Therefore, such an aspect should be more rigorously kept 345

under control in future protocols. 346

Overall, SUS and UEQ-s questionnaires showed that the system is user-friendly and 347

subjects of both groups had a positive experience. Contrary to expectations, the MIQ-3 did 348

not show differences between groups and sessions as the imagination scores reported by 349

the participants were high both before and after the experiments. A possible explanation 350

would be that such a questionnaire is not directly linked to left/right hand movements, 351

which are instead common motor imagery tasks. Therefore, its scale may be not sensitive 352

enough for the tasks of this work, although no other standard scale exists for this purpose. 353

Finally, the NASA-TLX effort was statistically higher for the neurofeedback group. This 354

result may be explained by the constant demand required by these subjects, who received a 355

response to their mental state during the online experiment. 356

With respect to the feedback, a different bias type could be also proposed. Notably, 357

instead of providing the feedback only in case of correct classification (the positively biased 358

feedback of the current proposal), an adaptive bias could maximise system performance 359

and subject learning [49]. On the other hand, providing a negative feedback could also 360

increase the effort or the frustration for the subject. In association with the feedback, further 361

future development could also consider an improvement of the classification algorithm, so 362

as to enhance performance across sessions [50] and hence provide a better feedback. 363

Finally, using dry sensors indeed increased the comfort for the participants. However, 364

as a drawback, EEG signals resulted more greatly affected by artifacts. The main artifacts su- 365
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perimposed on the EEG signal were heartbeats (especially at O1 and O2), breathing, ocular 366

artifacts, and sweat artifacts (especially at F1 and F2). Moreover, vibration-induced artifacts 367

occasionally appeared when the feedback was provided with the haptic suit. Although 368

ASR applied offline removed most artifacts, suit vibration can be a limitation when using 369

dry sensors and a different type of haptic feedback could be explored in the future. Given 370

the possible improvements, its full wearability and the rehabilitation benefits of motor 371

imagery, the investigated system will be addressed tele-rehabilitation purposes because of 372

the perceived usability and the substantial improvement in classification accuracy revealed 373

in the neurofeedback group with respect to the control group. 374

5. Supplementary material 375

The dataset is available at https://metroxraine.org/contest-dataset. Moreover, the 376

results presented here can be reproduced by exploiting the code published at https:// 377

github.com/anthonyesp/neurofeedback. 378
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