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Abstract: The present study illustrates a brain-computer interface designed and developed to be 1
wearable, portable, and user-friendly. Eight dry electroencephalographic sensors were adopted to 2
acquire the brain activity associated with motor imagery. Multimodal feedback in extended reality = s
was exploited to improve the detection of neurological phenomena. Twenty-seven healthy subjects 4
used the proposed system in five sessions to investigate the effects of feedback on motor imagery. s
The sample was divided into two equal-sized groups: the "neurofeedback” group, which performed
motor imagery while receiving feedback, and the "control" group, which performed motor imagery -
with no feedback. Several questionnaires were administrated to participants aiming to investigate
the usability of the proposed system and individual’s ability to imagine movements. The highest  »
mean classification accuracy across subjects of control group was about 62 % with 3 % associated 1o
type A uncertainty, and 69 % with 3 % uncertainty for neurofeedback group. Moreover, in some 11
cases the results were significantly higher for the neurofeedback group. The perceived usability by 12
all participants was high. Overall, the study highlights the advantages and the pitfalls of usinga 13
wearable brain-computer interface with dry sensors. Notably, the results and the perceived usability = 14
pave the way for the employment of the proposed system in tele-rehabilitation. 15

Keywords: electroencephalography; dry sensors; motor imagery; brain-computer interfaces; ex- 16
tended reality; tele-rehabilitation 17

1. Introduction 18

Tele-rehabilitation has long been considered a promising way of providing rehabilita- 1o
tive therapies "at distance" [1-3]. Digital sensing and artificial intelligence solutions enable 20
patient-centred treatment by continuously monitoring and evaluating patient performances =
[4,5]. Over the past few years, the COVID-19 pandemic has accelerated this transitiontoa 22
new era known as health 5.0 [6,7]. In this context, extended reality helped to providean =
alternative therapy at a distance for a wide range of people. Notably, different solutions 24
were proposed for older adults with neurodegenerative diseases [8-10]. 25

Brain-computer interfaces (BCls) based on the motor imagery paradigm have been 26
extensively studied for human patients with a variety of neuromuscular disorders in order 27
to facilitate recovery of neural functions. Its effectiveness is confirmed especially for stroke  2s
patients [11-13]. The combination of BCIs and extended reality can provide patients with 2o
neurofeedback on their mental tasks [14]. In particular, sensory feedback helps them in the  so
self-regulation of brain rhythms and promotes neural plasticity. a1

To be involved in tele-rehabilitation, a system including BCI and extended reality must a2
be non-invasive, wearable, portable, comfortable, and generally ready for getting out of s
controlled lab environments [15,16]. These requirements are often fulfilled by exploiting  za
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electroencephalography (EEG) to acquire brain signals [17]. EEG systems for "out-of-lab" s
acquisitions are increasingly being developed [18]. These are mainly wireless devices witha 36
reduced number of sensors that allow freedom of movement and improve usability [19,20]. a7
Moreover, instead of the standard wet sensors, dry sensing could be used to increase user s
comfort while attempting to keep high metrological performance [21-23]. 30

Previous studies already proposed EEG devices relying on dry sensors. For example, 4o
new systems were either proposed in [24-26] or evaluated consumer-grade dry electrodes 4
[27,28]. For instance, a BCI with a soft robotic glove was proposed in [29] for stroke
rehabilitation, and it adopted a medical EEG device with 24 wet sensors. Moreover, in 43
[30], classification was attempted in different dry sensing setups (from 8 to 32 sensors) s
and with different signal processing approaches. A wireless high-density EEG medical s
grade system was used and a drop in performance was observed when 8 channels were 46
used. However, neurofeedback was not investigated in trying to enhance motor imagery 47
detection. Recently, the feasibility of a wearable BCI for neurorehabilitation at home was s
proposed in [31]. Healthy participants received remote instructions on the use of an EEG 4
device with 16 dry sensors. Visual feedback consisted of a bar fluctuating vertically up or  so
down from the midline. Half of the participants succeeded in controlling the BCI during =
six sessions. 52

On the contrary, in a previous related work [32], the authors investigated a motor s
imagery-based BCI with only three EEG acquisition channels. Three feedback modalities  sa
were compared to improve motor imagery detection namely visual, haptic and, visual- s
haptic, and results highlighted a statistically significant improvement when using neu- e
rofeedback. In there, participants generally preferred visual and visual-haptic feedback -
modalities. Nonetheless, wet sensors were used and the number of participants to the s
experiments was limited. The present study tries to overcome the discussed limitations  se
by also adopting a new system version. A ready-to-use medical device was particularly o
adopted, so that the final system can be included in tele-rehabilitation programs. o1

Therefore, a fully-wearable motor imagery-based BCI was implemented by relying on o2
a Class IIA EEG device with 8 dry sensors and certified according to the Medical Device s
Regulation. The effectiveness of visual-haptic neurofeedback in discriminating between s
left hand and right hand motor imagery was also investigated over 5 experimental sessions  es
for each of the 27 enrolled subjects. To this aim, the subjects were divided into a control s
group and a neurofeedback group. Preliminary results were presented in [33], but extended &7
here by considering a large subject cohort and results of questionnaires administered to s
evaluate usability. The remainder of the paper is organised as follows: Section 2 presents an  es
overview of the proposed system, with a focus on the experimental protocol and outcome 7
measures; Section 3 shows system performance in experiments; Section 4 concludes the 7
manuscript by discussing the results. 72

2. Materials and methods 73

This section discusses the design, the implementation, and the validation methods for 74
a wearable BCI relying on motor imagery, EEG with dry sensors, and online neurofeedback. s
An overview of the system is given together with the adopted hardware. Then, EEG 7
processing is focused in association with the experimental protocol. Questionnaires will 7
be also introduced. They were adopted to assess the usability of the system and the 7
imaginative abilities of its users. Finally, the tests considered within the statistical analysis 7
are recalled. 80

2.1. System overview a1

The present study proposes a new system integrating a BCI with neurofeedback in e
extended reality (Figure 1). This could be addressed to daily-life applications, and notably s
used for tele-rehabilitation purposes. se
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FEEDBACK DELIVERING

EEG ONLINE PROCESSING

visual
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Figure 1. A subject using the proposed BCI system with neurofeedback in extended reality. The
system involves EEG acquisition with the Helmate device, online processing, and actuators for
visual-haptic feedback delivering.

In the system, brain signals were acquired by using the Helmate EEG device by ab  es
medica®'. This is a Class IIA device certified according to the Medical Device Regulation s
(EU) 2017 /745. It has eight measuring channels plus one reference channel and one bias &7
channel. Ten dry sensors with different shapes can be chosen according to the zone of s
the scalp to reach. Moreover, different configurations for the channels’ location could be &
exploited. In this study, the eight measuring channels were located at FP1, FP2, Fz, Cz, C3, o
C4, O1, and O2, while the reference and bias sensors were placed in the frontal region at o
AFz and FPz, respectively (Figure 2). 92

Data were collected at a sampling rate of 512 5a/s and transmitted via Bluetooth to e
a custom Simulink model for EEG processing. In Simulink, features from the EEG signal s
were extracted by means of the Filter Bank Common Spatial Pattern (FBCSP) [34] and s
classified by means of the Naive Bayesian Parzen Window (NBPW). The latter returns two o6
outputs: the class to which the multi-channel EEG signal is assigned (right or left), and the o7
probability associated with that class.

Figure 2. Position on the scalp of the sensors adopted in this study. Locations are identified by the
10-20 standard system for EEG.

98

1 https:/ /www.abmedica.it/
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The classification outputs were used to drive multimodal feedback through a custom o
Unity application. The neurofeedback consisted of a combination of visual and haptic 100
feedback. For the visual feedback, a virtual ball was shown on a display (Figure 3). This 10
could roll to the left or to the right of the virtual environment according to the EEG 102
classification. In detail, while the assigned class determined the direction, the related score 1os
determined its velocity. The TactSuit X40 from bHaptics Inc was instead used for the haptic 104
feedback. This is a wearable and portable vest equipped with 40 individually controllable 105
vibrotactile motors. The vibration was again modulated by classification outputs. More 106
specifically, the pattern could move from the centre of the torso (front side) to the right or to 107
the left in accordance with the assigned class. Meanwhile, the related score determined the  10s
vibration intensity. It is worth noting that the only bottom motors were used to minimize 100

vibration artifacts on the EEG signals. 110
0.00s 2.00s 3.00s 6.00s

Figure 3. Timing of a single trials of the experimental sessions for the control group. The same timing
was also used for the neurofeedback group during the only first phase of an experimental session.
Notably, there was an overlap of 0.25s between the cue and the word "GO!".

2.2. Experimental protocol 11

The described BCI was exploited within a cue-based (synchronous) paradigm. This 12
implied that the user had to imagine a movement or be relaxed in accordance with given 113
indications (the cues). The indications were delivered visually by means of the Unity3D 114
platform. Two motor imagery tasks were possible, namely imagining the movement of s
the left hand or imagining the movement of the right hand. In case of neurofeedback, 116
multimodal feedback was delivered to the user in response to the ongoing mental task. 117
However, pure motor imagery (no feedback) was required to train the classifier adopted 11e
for the online processing. 119

In the experimental protocol, subjects were divided into two groups and involved in 120
five one-hour experimental sessions over five weeks. The subjects assigned to a control 121
group never received feedback. Instead, for the subjects of the neurofeedback group, pure 122
motor imagery was recorded at the beginning of each session, and then neurofeedback was 123
provided thanks to trained EEG classifier. The protocol for the two groups is described in 124
details in the following. 126

2.2.1. Control group 126

The Unity application dictated the timing within the experimental session. A total of 127
six runs were recorded, and each run consisted of 30 trials. Each trial consisted of a fixation 1zs
cross visualized from 0.00s to 2.00s, a cue (left or right arrow) visualized from 2.00s to 120
3.25s, the word "GO!" visualized from 3.00s to 6.00s, and the word "RELAX" visualized 130
for a random time window of 1.00's to 2.00 s (Figure 3). The sequence of left and right cues = 1:
and the duration of the final "RELAX" were randomized across trials to avoid biases. The 13
EEG was acquired as a continuous stream during each run, but never processed online and  1s»
thus the control group did not received any feedback. The runs were separated by short s
breaks, with a longer time break between the first three runs (phase 1) and the last three 135
runs (phase 2) of a session. 136
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2.2.2. Neurofeedback group 137

The first three runs of each session (phase 1) were carried out as done for the control 13s
group. However, during the time break between the phases, the EEG data from phase 1 130
were used to train the online classifier. This classifier was trained from scratch for each 140
subject and for each session. Subsequently, participants of this group performed three 1s
further runs (phase 2) during which they received online multimodal feedback in response  1a2
to motor imagery. The goal of the participants in the neurofeedback group was to move s
the visual feedback ball over the white lines of the game environment and to maximally 14
activate the motors of the vest on the back of the respective side (i.e., left or right). In this 145
case, the timing was slightly changed because participants were asked to start imagining 14
from the appearance of the cue at t = 2.00s. Then, they received the feedback from 4.50s to 147
6.00 s (Figure 4). The instant ¢ = 4.50 s depended on the fact that the system actually started = 1ss
to classify at t = 2.50s, and the time window for online processing was 2.00s wide. Finally, 1as
the feedback could only move if the label obtained from the online classifier matched the 1so
assigned task (positive bias). Otherwise, no feedback was provided and the virtual ball s
was dragged towards the centre of the screen while the intensity of the vibration was s
interrupted. Further details on that are discussed in the next subsection.

- L.

0.00's 2.00s 4.50s 6.00's

Figure 4. Timing of a single trial of the experimental sessions for phase 2 of the neurofeedback group.
Instead, the same timing of the control group was used for phase 1.

2.3. EEG processing 154

The FBCSP with the NBPW classifier were used not only for online processing, but 1ss
also for offline processing of EEG data. With reference to the neurofeedback group, after 1se
acquiring the EEG in a first half-session, data processing was needed to train the online s
classification algorithm. Details on the processing pipeline can be found in [32-34]. Specifi- 1ss
cally for online processing, the FBCSP-based approach was adapted so that the EEG stream  1so
was processed with a sliding window covering the motor imagery period. 160

By exploiting the results of previous studies [32,33], the time-width for the sliding e
windows was fixed at 2.00 s, and this was used to span the interval from 0.00s to 7.00 s with 12
a 0.25s shift. A five-folds cross validation with five repetitions was used to identify the 1es
best portion of the EEG trials for training the algorithm. This best 2.00 s-wide window was 16
selected as the one associated with the highest mean classification accuracy and the lowest 1es
difference between classification accuracies per class. Possible windows were extracted 1ee
from the motor imagery window by considering all trials of phase 1. 167

Finally, at the end of the experiments, all data were processed offline to classify 1es
all data and assess the related accuracy. Differently from above, the Artifact Subspace 1eo
Reconstruction (ASR) technique was also applied in post-processing [35]. This is a relatively 170
recent technique for artifact removal exploited here before to prepare data prior to features 17
extraction and classification. ASR uses an artefact-free data segment as a baseline and then 172
corrects the original data by calculating a covariance matrix and retrieving statistics to 17
identify and remove artefacts. Notably, its usefulness for an eight EEG channels setup is 17
supported by previous studies [36]. 175
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2.4. Outcome measures 176

To evaluate the usability of the proposed system and the participants’ imaginative 17
abilities, the following questionnaires were administered to participants of both groups: 17

e MIQ-3 [37]: this is the most recent version of the Movement Imagery Questionnaire 17
[38] and of the Movement Imagery Questionnaire-Revised [39]. It is a 12-item ques- 1s0
tionnaire to assess an individual’s ability to imagine four movements using internal 1e:
visual imagery, external visual imagery, and kinaesthetic imagery. The rating scales sz
range from 1 (very difficult to see/feel) to 7 (very easy to see/feel). The MIQ-3 has 1.
good psychometric properties, internal reliability and predictive validity. 184

e SUS (System Usability Scale) [40]: this is one of the most robust and tested psycho- 1es
metric tool for user-perceived usability. The SUS score consists of a value between  1s6
0 and 100, with high values indicating better usability. According to Bargor et al. 1
[41], it is possible to adopt a 7-point adjectival scale (from "worst imaginable" to "best 1es
imaginable") for the SUS score. Another variation, proposed in [42], is to consider the  1s
score in terms of "acceptable" (value above 70) or "not acceptable” (value below 50). 100
The range from 50 to 70 is instead "marginally acceptable". 101

e NASA-TLX (acronym for NASA Task Load Index) [43]: it is a subjective, multidi- 102
mensional evaluation tool that assesses perceived workload while performing a task 103
or an activity. The original version also includes a weighting scheme to account for 1.
individual differences. However, the most common change made to the questionnaire 105
is the elimination of these weights in order to simplify its application [44]. In this 1e6
work, it was administered without weights. 107

e UEQ-S (User Experience Questionnaire-short form) [45]: a standardised questionnaire 1ss
to measure the User Experience of interactive products. It distinguishes between 190
pragmatic and hedonic quality aspects. The first describes interaction qualities that 200
relate to the tasks or goals the user wants to achieve when using the product. The 2o
second describes aspects related to pleasure or enjoyment while using the product. 2o
Values between —0.8 and +0.8 represent a neutral evaluation of the corresponding 20
scale, values greater than +0.8 represent a positive evaluation, while values lower than  zos
—0.8 represent a negative evaluation. 208

The MIQ-3 was administered twice: before the first experimental session and at 206
the end of the last experimental session. On the contrary, the other questionnaires were 207
administered only at the end of the experimental sessions. In addition, during each 208
experimental session, the participants were also given a short interview to assess their 2o
physical and mental state. This interview was adapted from the questionnaire proposed in 210
[46], with some modifications needed to introduce aspects associated with neurofeedback 211
[32] 212

2.5. Statistical Analysis 213

To compare classification accuracies between sessions and groups, a repeated-measures  21a
ANOVA test was used under the assumption of normally distributed data and homoscedas- =15
ticity. The Jarque-Bera test was exploited to check for the normality assumption. Instead, =216
the homoscedasticity was tested by means of the Bartlett’s test. In case of a violation for the 217
assumption of homoscedasticity, it was possible to apply a Welch's correction before apply- 21s
ing the ANOVA. Meanwhile, when data were not normally distributed, the Kruskal-Wallis 210
non-parametric test was used instead of the ANOVA. 220

The comparison of MIQ-3 scores between the two groups and the two endpoints 222
(before starting and at the end of the sessions) was conducted via the Mann-Whitney-U- 2z
Test [47]. In addition, a Wilcoxon signed-rank test was used to compare paired data of 22
the MIQ-3 scale within each group (control and neurofeedback). Similarly, a comparison 224
between the two groups was carried on in terms of SUS, NASA-TLX, and UEQ-S scores  zzs
at the end of the sessions. In each case, test-specific assumptions were checked before 226
applying the test. 227
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Table 1. Summary of participants information for control and neurofeedback groups. BCI experi-
ence: experience with brain-computer interfaces in active paradigms, passive paradigms, reactive
paradigms, multiple paradigms, or no experience. NF experience: previous experience with neuro-
feedback, no experience.

Control Neurofeedback
sex male: 31 %, female: 69 % male: 57 %, female: 42 %
handedness right: 85 %, left: 15 %, both: 0 % right: 79 %, left: 14 %, both: 7 %

practicing sport  yes: 38 %, no: 62 %, professional: 0 % yes: 64 %, no: 36 %, professional: 0 %
BCI experience  no: 38.5 %, active: 8 %, passive: 15 %, no: 43 %, active: 7 %, passive: 21 %,

reactive: 0 %, multiple: 38.5 % reactive: 0 %, multiple: 29 %
NF experience  yes: 46 %, no: 54 % yes: 36 %, no: 64 %

The statistical analyses were performed by using MATLAB (version 2021b) and the = 22s
significance level for them was set by a = 5% (probability of a false negative, or type-I =2z
error). 230

3. Results 231

Results are reported in this section after commenting on the sample of participants zs:
to the experimental campaign. Experimental data were analysed in accordance with =2ss
the methods of Section 2. Then, classification accuracies were exploited to assess the 2:s
performance of the system and to describe its limits. The results are discussed in conjunction  2ss
with answers to the questionnaires especially to address the usability of the system in tele- 236
rehabilitation. 237

3.1. Participants 238

A sample of 27 healthy volunteers were enrolled in the study (mean age: 26, standard  =23s
deviation: 2). The study was approved by the Ethical Committee of Psychological Research 240
of the Department of Humanities of the University of Naples Federico II, and all the e
participants provided a written informed consent before starting the experiments. 242

To investigate multimodal feedback, roughly half of the participants were assigned to 24
the "control group" and half to the "neurofeedback group". The two groups were balanced  24a
by age. In the control group, four subjects were males and nine were females. Meanwhile, 245
in the neurofeedback group, eight subjects were males and six were females. All participant 246
used the wearable system with dry sensors while seated in front of a display for visual 247
indications and eventual feedback. Participants with affected motor and/or cognitive 245
functions were excluded. However, it is worth mentioning that a subject (C08) reported of 249
past epileptic seizures during childhood. 250

Most subjects were right-handed with the exception of two left-handed subjects per s
each group and one ambidextrous subject in the neurofeedback group. More than 60 % of 252
participants for the neurofeedback group practised sport, while participants to the control 2ss
group practicing sport were less than 40 %. No participant played sport at a professional  2sa
level. 255

More than 50 % of participant already had experienced some BCI paradigms, and some  2s6
subjects also had previous experience with neurofeedback. Such information is detailed in ~ 2s7
Table 1 along with a summary of previous information about sex, handedness, and sport  zss
practicing. 250

3.2. System performance 260

Classification results are shown in Figure 5 for the control group. The matrix on the left 26
reports the classification accuracy obtained on the first three runs of pure motor imagery ze:
(phase 1) across the five sessions (x-axis) and for the 13 subjects (y-axis). The matrix on the zes
right reports the analogous results for the last three runs of pure motor imagery (phase 2). zes
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Higher classification accuracy is indicated by red colour. Meanwhile, a white space refers zes
to a missing result caused by corrupted data or skipped session. 266

Phase 1 Phase 2
100

1 2 3 4 5
Session Session

Figure 5. Control Group: mean classification accuracy using the best 2-seconds window.

Given that 90 trials were used for each classification result, the classification accuracy zez
of a random classifier would be modeled by a binomial distribution with mean equal to 50 %  zes
(the well-known chance level) and a 95 % coverage interval spanning from 40 % to 59 %  zes
(related to the number of trials) [48]. Notably, this implies that only classification accuracy 27
values above 59 % can be considered non-random with an « = 5 %. Therefore, for subjects in 21
the control group, the classification accuracy resulted compatible with randomness except 27
few cases. Overall, the highest mean classification accuracy across subjects was about 62 % 273
with 3 % associated type A uncertainty and it was obtained either in phase 2 of session 2 274
and phase 1 of session 3. 275

Only subjects C07 and C08 do not belong to the general trend. Notably, the clas- 27
sification accuracies exceed 70 % in several cases, an empirical threshold for acceptable 277
performance in motor imagery. Interestingly, C08 was the participant reporting past epilep- 27
tic seizures. 279

On the other hand, Figure 6 shows the classification results for the neurofeedback 2e0
group. The matrix on the right refers to three runs with neurofeedback (phase 2 for the 26

neurofeedback group). 282
Phase 1 Phase 2
Not | 63 | 56 55 1% 1%
No2 7 55 53
NO3 56 51 52 % m %
NO4 75 QENCEON 70
NO5 80 57 s IERIR
No6 8 64 | 66 | 64 |
8 No7 70 g ss 4 50 B
3 Nos E]
) )
NO9 60 60
N10
N11 50 50
N12
N13 54 55 56 54 20 "
N14 m 52 D missing D missing
1t 2 3 4 5 1 2 3 4 5
Session Session

Figure 6. Neurofeedback Group: mean classification accuracy using the best 2-seconds window.
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The results of phase 1 for the neurofeedback group appear similar to those of the zes
control group, with classification accuracies close to the chance level. Nonetheless, during  2es
phase 2, eight subjects out of 14 exceeded the 70 % accuracy threshold at least once. The 2es
subjects reached the respective peak accuracy in different sessions. This led to a maximum  2es
average classification accuracy among subjects of 69 % with 3 % uncertainty. 267

Statistical testing suggested that the highest classification performance of the neuro- s
feedback group in phase 2 does not differs significantly from the highest of the control s
group, though it is 7 % higher on average. Instead, a statistically significant difference 200
between the two groups was found when focusing on the third session of phase 2 (p < 0.05). 2o
Moreover, classification accuracy in phase 2 resulted significantly higher than that of phase 202
1 in the fourth session of the neurofeedback group (p < 0.005). Finally, when comparing 203
all the classification accuracies (all subjects and all sessions) of the neurofeedback group 204
with those of the control group, the improvement given by neurofeedback in phase 2 is 25
statistically significant (p < 0.005). 296

3.3. Questionnaires 207

As mentioned in Section 2, the MIQ-3 was administered twice to each subject, i.e., 208
before the first and at the end of the experimental sessions. In the scale from 1 to 7, the 200
mean scores resulted above 5 already at the first endpoint, with the only exception of 00
kinesthetic imagery, whose mean score equaled 4 for both groups. This implies that subjects  so:
generally considered easy, or at least not difficult, to see/feel the involved movements. o2
The Wilcoxon signed-rank test did not produce statistically significant variations in MIQ-3 303
paired scores, within each group. The same applies to the Mann-Whitney-U-Test when  soa
considering differences between the two groups before and after the experiments. 205

On the other hand, the SUS scores suggest that the system was considered acceptable 306
by both groups (above 70). Specifically, the results are equal to 78 £ 10 and 75 £ 11 for sor
control and neurofeedback groups, respectively. In addition, the overall results of the o
UEQ-s equaled 1.60 * 0.64 for the control group and 1.70 = 0.80 for the neurofeedback o
group. No statistically significant differences between the groups were detected (p =0.40 10
for SUS and p = 0.98 for UEQ-s). a1

Finally, the NASA-TLX results are reported in Figure 7. This shows similar subscales 2
results for both groups with the exception of the effort. In particular, for the latter dimension, 13
the Mann-Whitney-U-Test found statistically significant differences between the two groups s
(p <0.05) indicating that neurofeedback group perceived that there was more effort required  s1s
than the control group which was anticipated due to the need to engage with neurofeedback. 16
The mental demand was high (around 75 for both groups), while the frustration level, the s17
performance, as well as temporal and physical demand resulted low. a1

4. Discussion 310

Motor imagery-based BCls present the possibility of novel rehabilitation paradigms, 320
either substituting or supplementing current therapy protocols. However, several training  sz:
sessions are typically required to successfully control a BCI based on motor imagery. s22
Moreover, BCl illiteracy is a well-known problem in literature, which specifically prevents szs
a widespread employment of such a system. In such a framework, this study investigated sza
the use of neurofeedback to help a user to successfully control the system even with only 325
a few sessions. The feedback was implemented in extended reality, and the aim was to 326
develop a BCI suitable for daily-life and tele-rehabilitation. Such motivations led to the 327
adoption of a wearable and portable EEG exploiting dry sensors, as well as employing szs
a wearable and portable actuator for haptic feedback. Although only 8 dry sensors were 320
employed, the use of multimodal feedback led to an increase in system performance. In 330
comparison, the subjects of the control group showed no significant improvement across s
the sessions, with the only exception of subjects C07 and C08, who achieved good results 32
even without any feedback. 333
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Figure 7. NASA-TLX results for both control and neurofeedback groups.

With the short interview administered during each experimental session, it was also  s3a
possible to monitor the subjects’ mental and physical state during the sessions, as well  sss
as the type of imagined movement. In general, the most common imagined movements 36
were squeezing a ball, moving the arm, tapping, grasping an object, dribble, or play piano. s
Nonetheless, it is worth noting that six out of 13 subjects in the control group changed sss
the type of movement imagined during the sessions and, among these, three subjects also s
switched between internal, external, and kinaesthetic imagery. Seven out of 14 subjects a0
in the neurofeedback group changed the type of imagined movement during the sessions s
and, also among these, four subjects changed between internal, external, and kinaesthetic = ss2
imagery. According to the results, one can suspect that low-performance levels would also 4
be also caused by changes in the imagined movement during the sessions, especially when s
feedback was not provided. Therefore, such an aspect should be more rigorously kept sas
under control in future protocols. 346

Overall, SUS and UEQ-s questionnaires showed that the system is user-friendly and a7
subjects of both groups had a positive experience. Contrary to expectations, the MIQ-3 did 348
not show differences between groups and sessions as the imagination scores reported by s
the participants were high both before and after the experiments. A possible explanation =
would be that such a questionnaire is not directly linked to left/right hand movements, ss:
which are instead common motor imagery tasks. Therefore, its scale may be not sensitive  ss2
enough for the tasks of this work, although no other standard scale exists for this purpose. ss
Finally, the NASA-TLX effort was statistically higher for the neurofeedback group. This s
result may be explained by the constant demand required by these subjects, who received a  sss
response to their mental state during the online experiment. 356

With respect to the feedback, a different bias type could be also proposed. Notably, sz
instead of providing the feedback only in case of correct classification (the positively biased  sss
feedback of the current proposal), an adaptive bias could maximise system performance s
and subject learning [49]. On the other hand, providing a negative feedback could also s
increase the effort or the frustration for the subject. In association with the feedback, further e
future development could also consider an improvement of the classification algorithm, so e
as to enhance performance across sessions [50] and hence provide a better feedback. 363

Finally, using dry sensors indeed increased the comfort for the participants. However, ses
as a drawback, EEG signals resulted more greatly affected by artifacts. The main artifacts su- ses

w
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perimposed on the EEG signal were heartbeats (especially at O1 and O2), breathing, ocular  ses
artifacts, and sweat artifacts (especially at F1 and F2). Moreover, vibration-induced artifacts ez
occasionally appeared when the feedback was provided with the haptic suit. Although ses
ASR applied offline removed most artifacts, suit vibration can be a limitation when using  ses
dry sensors and a different type of haptic feedback could be explored in the future. Given 37
the possible improvements, its full wearability and the rehabilitation benefits of motor sz
imagery, the investigated system will be addressed tele-rehabilitation purposes because of 372
the perceived usability and the substantial improvement in classification accuracy revealed s7s
in the neurofeedback group with respect to the control group. 374

5. Supplementary material 375

The dataset is available at https:/ /metroxraine.org/contest-dataset. Moreover, the sz
results presented here can be reproduced by exploiting the code published at https:// a7
github.com/anthonyesp /neurofeedback. 378
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