Preprint
Article

Ensembles of Convolutional Neural Networks and Transformers for Polyp Segmentation

Altmetrics

Downloads

165

Views

67

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

13 March 2023

Posted:

13 March 2023

You are already at the latest version

Alerts
Abstract
In the realm of computer vision, semantic segmentation is the task of recognizing objects in images at the pixel level. This is done by performing a classification of each pixel. The task is complex and requires sophisticated skills and knowledge about the context to identify objects’ boundaries. The importance of semantic segmentation in many domains is undisputed. In medical diagnostics, it simplifies the early detection of pathologies, thus mitigating the possible consequences. In this work, we provide a review of the literature on deep ensemble learning models for polyp segmentation and we develop new ensembles based on convolutional neural networks and transformers. The development of an effective ensemble entails ensuring diversity between its components. To this end, we combine different models (HarDNet-MSEG, Polyp-PVT, and HSNet) trained with different data augmentation techniques, optimization methods, and learning rates, which we experimentally demonstrate to be useful to form a better ensemble. Most importantly, we introduce a new method to obtain the segmentation mask which is more suitable for combining transformers in an ensemble. In our extensive experimental evaluation, the proposed ensembles exhibit state-of-the-art performance.
Keywords: 
Subject: Computer Science and Mathematics  -   Computer Networks and Communications
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated