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Abstract: The performance of modern wireless communication systems is highly dependent on
the adoption of multiple antennas and the associated signal processing. In 5G and 6G networks,
beamforming and beam management become challenging tasks due to aspects such as user mobility,
increased number of antennas, and the adoption of higher frequencies. Artificial intelligence,
and more specifically, machine learning, are efficient tools to reduce the complexity involved in
generating beams and the overhead associated with beam management without sacrificing system
performance. Therefore, AI-aided beamforming and beam management have received a lot of
attention recently. This article presents a complete survey on this topic, emphasizing open problems
and promising directions. The discussion includes architectural and signal processing aspects of
modern beamforming and beam management. The article presents communication problems and
respective solutions using centralized/decentralized, supervised/unsupervised, semi-supervised,
active, federated, and reinforcement learning.
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1. Introduction

Artificial Intelligence (AI) comes in handy when the configuration of a communication
link becomes complex, such as when the number of antennas increases considerably. The
use of Multiple-Input and Multiple-Output (MIMO) antenna systems in wireless networks is
becoming increasingly typical as the number of users and frequency bandwidth increases each year
significantly [1]. When employed, MIMO techniques provide spatial reuse (i.e., multiplexing), increase
the gain of the received signal and decrease co-channel interference. Such factors increase the sum-rate
spectral efficiency of the whole network [2,3].

A challenge of utmost importance in MIMO antenna arrays is directional beamforming (BF).
Beamforming is performed through the interaction of the signals radiated by each antenna element of
the antenna array to, through constructive and destructive interference, modify the radiation pattern
for a certain purpose. Changing the gain and phase of the signals transmitted in each element of the
antenna array makes it possible to change the direction and shape of the array’s radiation pattern.
For example, a transmitter can increment by a constant factor the phase of the transmitted signal at
each element of its antenna array and thus direct the antenna’s main beam towards a single receiving
device, increasing the directivity and reducing the multipath effect [4].
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A beamforming system can assume three types of architectures: analog, digital, and hybrid. In
analog beamforming, phase adjustments are applied to the signal in the Radio Frequency (RF) chain to
steer the resulting beam towards the receiver and/or transmitter [5]. The phase adjustment is applied
to the digital baseband signal in digital beamforming architectures [6]. Finally, hybrid beamforming
combines digital and analog beamforming architectures [7].

However, finding the optimal direction to perform transmission or reception in a MIMO system
is a complex problem, especially to achieve the maximum performance of a MIMO system. To do so, it
is necessary to estimate the channels for each pair of antennas between the receiver and transmitter to
increase the system gain and circumvent the adverse effects of the channel. The channel estimation
process becomes more expensive and may become unfeasible as the number of antennas increases [8].
In addition, steering the beams of a MIMO system also depends on the hardware limitations of the
transceiver and the scenario and application these devices are intended for [9]. Therefore, it is common
to use codebook mechanisms that pre-define which radiation patterns can be used by an antenna
array [10]. The codebooks are matrices, and each column of these matrices, also called codewords, has
a different radiation pattern.

Although the space of possibilities is reduced when adopting a codebook, the process of selecting
codewords or beams, as it is commonly adopted in the literature, is still considered costly. Let’s take as
an example the naive method of beam selection, also called Exhaustive Search (ES). The exhaustive
method searches each beam, one by one, for the combination between transmitter and receiver that
will result in the maximum value of a given criterion, such as the transmitter/receiver channel gain.
Assuming that the transmitter and receiver have the same number of antennas, N, the complexity of
selecting beams with the ES method is on the order of N2. Although the ES method always guarantees
the optimal result, it becomes impractical due to both the exponentially increasing search time as the
number of beams or radiation patterns increases [11] and the ultra-low latency requirements, which are
forecast to be around 1− 10µs for the Sixth-Generation of Mobile Telecommunications Technology (6G)
[12,13].

The MIMO problems reported above become even more noticeable in millimeter Wave (mmWave)
and terahertz (THz) bands. These two bands are located in the frequency spectrum ranging from
30 to 300 GHz and from 0.1 to 100 THz, respectively. They are considered promising technologies
due to the expressive amount of frequency spectrum barely used in these bands [14]. However, the
benefit of occupying a large and still unexplored part of the spectrum comes with a high attenuation
cost in free space. To address the high attenuation, some literature approaches use highly directional
MIMO antennas, whose gain compensates for the path loss. Nevertheless, it demands precise and
efficient beam selection methods to ensure the required application data rate and demanded delay
requirements [15]. Another challenge such bands pose is the low diffraction capacity and severe
blocking caused by most materials. Measurements in [16] showed that the attenuation in stained
glass could reach 40.1 dB and in bricks 28.3 dB. Furthermore, blocking caused by human bodies can
cause attenuation between 30 and 40 dB and reduce the data rate on mobile networks in outdoor
environments by up to 32% [17,18].

Currently, Machine Learning (ML) algorithms allow wireless networks to learn how to extract
information when interacting with large amounts of data. These algorithms become a potential tool
in cases where there is no known solution through the traditional analytical approach or where the
solution requires the manual configuration of many parameters, allowing some of the ML techniques
to contribute to the estimation of these parameters. Academy and industry consider these algorithms
essential for communication networks, applying them to detect anomalies and failures in the network
and predict unseen scenarios. In addition, these algorithms allow the network to: adapt itself to
environments that vary frequently, gain insights into complex problems with large amounts of data,
and generally discover hidden (or latent) patterns [19]. ML techniques are often studied in MIMO
applications [20,21] which, as already mentioned, are of fundamental importance for modern wireless
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communications and demand a lot of network resources (time and bandwidth) that must be used
efficiently.

Beam management is an essential aspect of 5G networks that enables the steering of directional
beams to improve the efficiency and reliability of wireless communication. It is achieved through a
combination of techniques such as beamforming, beam tracking, and beam selection and is critical
to achieving the high data rates, low latency, and high reliability that 5G promises to deliver [22].
Thus, guided by AI techniques, beam management can work based on context information, which
is obtained as an alternative to the conventional use of pilot signals for channel estimation. Images,
geopositioning coordinates, and data from other users are examples of context information that can be
used to manage beams [23,24]. Simply put, for a given input dataset, AI models map this information
into the beam domain; that is, they map several input pieces of information into the most appropriate
beam. The availability of information to be used with such AI models can be questioned. However,
the network itself already has several indicators, such as Key Performance Indicators (KPIs), that can
be analyzed together instead of using only link-level data. Other information formats, such as user
location and images, are becoming increasingly plausible despite user privacy concerns. The junction
between AI and beam management allows a potential reduction in the time to perform the operations
related to the selection of beams and the optimization of the mechanisms of beamforming according to
the scenario [25].

6G brings a promising scenario for both AI and beamforming technology exploitation. Due
to the high dynamics and flexibility foreseen for 6G, the existing beamforming and beam selection
techniques still have not achieved the requirements of agile response, adaptability, and modeling
of the environment. With the help of ML techniques, beam management acquires more dynamic
characteristics, such as online adaptation of codebooks, and effective ones, such as beam selection
performed in a fraction of the time taken by the ES and with performance comparable to that technique.

Therefore, the literature requires in-depth studies on how AI techniques shorten edges in
beamforming management. To fill this gap, we raised research questions and conducted a
systematic review to understand taxonomically how AI techniques support beamforming and are
promising towards 6G network realization. Our systematic review allowed us to delve into relevant
state-of-the-art approaches surveying themselves in tracking answers to the Research Questions raised.
Figure 1 depicts a tree diagram summarizing the detected problems and the most used AI techniques
to tackle each one.

Figure 1. Detected beamforming and beam management problems and related AI techniques.

The remainder of this paper is organized as follows: Section 2 presents a background of
beamforming architectures, followed by Section 3, where we present the rationale for the systematic
review that guided our survey. In Section 4, we contrast our survey with those found in the literature.
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Later, Section 5 brings the efforts towards beam selection in MIMO Systems. Section 6 brings mobility
and handover state-of-the-art review. Section 7 delves into codebook design, and Section 8 details
precoding and combining in MIMO with hybrid or digital architectures. In Section 9, we present
the security of AI models issues, and in Section 11, we present open problems and future research
directions, closing with Section 12, where we draw some concluding remarks.

2. Beamforming Architectures

The evolution of mobile networks usually arises from the demand for higher transmission rates,
lower energy consumption, massive connection of devices, low latency, and communication with
high reliability [26]. In 2010, with the arrival of the Fourth-Generation of Mobile Telecommunications
Technology (4G), it became possible to have systems capable of supporting MIMO communication,
enabling multiple antennas at the transmission and reception chains [27]. By using MIMO technology,
multiplexing and diversity gains can be provided, further improving the capacity and quality of the
wireless links [28].

With the growing demand for even higher data rates, mmWave and THz frequency bands have
emerged, along with MIMO technology, as potential candidates for future wireless communication
systems [29]. In contrast with systems operating at frequencies below 6 GHz, these bands offer large
available bandwidths, allowing for high data rates, but their propagation characteristics (i.e., high
attenuation in free space, absorption by atmospheric gases, and blockages) pose significant challenges
[30]. To overcome these challenges, highly directional antennas must be employed, and beamforming
techniques become essential. Beamforming allows for the creation of highly focused beams, enabling
communication between devices even in the presence of obstacles [31]. With the development of
beamforming techniques, it is now possible to exploit the potential of mmWave and THz frequencies,
leading to the emergence of 5G and beyond wireless communication systems [32].

Beamforming is a technology capable of modifying the radiation pattern of an antenna array,
making it more directive if necessary or modifying the direction of the main beam [33]. To maximize
the Signal-to-Noise Ratio (SNR), beamforming technology modifies the beam by controlling the power
and phase of each element of the antenna array.

In massive MIMO systems, unlike the traditional way (i.e., Single-input Single-output (SISO)),
beamforming might provide spatial multiplexing depending on the implemented architecture, as we
discuss next. As shown in Figure 2, the spatial multiplexing technique aims to increase the transmission
capacity of the channel, transmitting different signals in different antennas or groups of antennas.
These signals can be transmitted simultaneously and on the same frequency, thus multiplying the
number of bits transmitted over the channel per second [33,34]. This technique imposes a high
complexity on the receivers due to its need to separate multipath components and the need to know
the channel [35,36].

Beamforming can be performed at either baseband frequencies or at Intermediate Frequencys (IFs),
and its implementation is accomplished by analog, digital, or hybrid architectures [37].
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Figure 2. Beamforming system.

2.1. Analog Beamforming

The main idea of analog beamforming is to use low-cost phase shifters to control the transmitted
signal’s phase at each element of the antenna array [38].

The block diagram of the analog beamforming system architecture is shown in Figure 3 subfigure
(a). The system comprises only one set of baseband processing, Analog to Digital Converter (ADC),
RF chain connected to phase shifters and antennas. In this architecture, the same signal is fed (through
the RF chain) to each antenna after having its phase adjusted by analog phase shifters that are used to
steer the signal emitted by the array of antennas.

In this architecture, each antenna array element is connected to a phase shifter. The purpose of
this phase shifter is to control the phase of each element of the antenna array so that the transmitted
signal is constructively added to the receiver. Adjusting these phase shifters makes it possible to
modify the beam pattern shape and direction.

One can also control the amplitude of the input RF signal using an Variable Gain Amplifier (VGA)
[39], for instance. As main advantages, this architecture consumes less energy than the others, and the
beam benefits from the antenna array’s total gain, obtaining greater coverage [40,41].
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(a) Analog Beamforming (b) Digital Beamforming

(c) Hybrid Beamforming

Figure 3. Beamforming architectures.

However, for applications that employ high frequencies or broadband operation, these
architectures, in addition to being bulky, have high costs and are not capable of transmitting multiple
streams simultaneously to achieve spatial multiplexing diversity. Limiting the transmission rate and
flexibility of the system.

To mitigate these limitations, other architectures with digital generation of the transmission signal
are sought.

2.2. Digital Beamforming

In the 1980s, Barton proposed Digital Beamforming (DBF) [42]. This system is based on
transmitting digitally generated signals in each antenna array element. With this, the shape of the
beams is controlled in the digital domain [43].

In this architecture, each antenna element has a dedicated ADC and RF chain, and the signal
feeding it suffers independent baseband processing [44]. DBF can be divided into fixed and
adaptive [45]. In fixed DBF, each amplitude and phase control is predefined and cannot be changed
during communication. However, in adaptive DBF, the control changes according to the system’s
needs, such as increasing SNR and directivity at certain positions, modifying the beam shape due to
obstacles, etc.

To obtain the appropriate beam pattern for communication, the amplitude and phase of each
element is digitally controlled by the signal processor in the baseband before the conversion into
pass-band [46].

Because the control is performed in baseband through digital signal processing, this architecture
allows the implementation of beamforming algorithms with greater flexibility than analog ones. One
of the advantages of DBF over its analog counterpart is the possibility of having several simultaneous
beams, which allows spatial multiplexing. Moreover, this architecture allows adaptive beamforming
with digital control [44]. However, as shown in Figure 3 subfigure (b), this architecture has the
disadvantage of increased energy consumption and high cost due to the need to have an RF chain for
each element of the antenna array [31].
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2.3. Hybrid Beamforming

Hybrid beamforming is based on a combination of analog and digital beamforming to overcome
their disadvantages [47]. Its objective is to improve the performance of the analog beamforming
technique by allowing more streams and to decrease the complexity presented by the digital one in the
form of several independent ADCs and RF chains.

The block diagram of a typical hybrid beamforming architecture is shown in Figure 3 (c). The
architecture consists of a digital precoder, ADCs, RF chains, phase shifters, and N elements. The
figure shows that each RF chain is connected to a set of antenna elements, making it less costly and
complex than the fully digital architecture [10]. In addition, each user’s data is pre-encoded and
fed into a dedicated RF chain. Thus, the signal is transmitted using a set of antenna elements with
individual phase-shifters [31,48]. Hybrid beamforming also allows the implementation of spatial
multiplexing [41].

Concerning the digital architecture, hybrid beamforming has the advantage of a lower hardware
cost, reducing the number of RF chains. Furthermore, compared to the analog architecture, it does
not interfere between users, as it has several beams and is able to obtain greater precision in beam
formation [41]. Moreover, hybrid beamforming also allows spatial multiplexing if the system is
equipped with distinct ADC and RF chains, and the feeding signal suffers independent baseband
preprocessing.

3. Systematic Review

In this paper, we proposed and followed a consistent and systematic review protocol according
to Figure 4. This systematic review aims to survey the works that tackle beamforming and beam
management problems using ML and AI solutions. This section describes the steps taken in searching
and selecting these papers.

RESULT REVIEW
 The papers review, organised by 
the relevant challenges found, 
open problems, and the authors' 
directions for future research

FINAL 
SELECTION
Selection of the 125 
studies to be reviewed

INCLUSION 
CRITERIA 

Specify the criteria for 
paper inclusion or 

PRIMARY 
STUDIES

Identification of the 
181 preliminary 

DATA 
BASES

Determining the relevant and 
well-accepted digital libraries 

for article collection

SEARCH 
STRINGS

Appointing the search 
queries

RESEARCH 
QUESTIONS

 Definition of the questions 
that guided the central theme 
investigation and the 
reviewing process

NEED OF 
THE REVIEW

Describing the aspects that 
motivated this review

START

END

Figure 4. Process of the systematic review.

3.1. The Need of this Review

Beamforming is in the spotlight of current and future communication standards, although it is still
a work in progress. In fact, how beamforming will be implemented and massively deployed is not yet
completely defined. Exhaustive search and Discrete Fourier Transform (DFT)-based codebooks have
been playing this role until nowadays, working well for small antenna arrays. However, it is common
sense that the number of antennas is about to scale up. This increase in the number of antennas is
why the exhaustive search cannot be the straightforward choice regarding the beamforming algorithm.
Likewise, DFT codebooks are limited, considering the numerous applications and environments where
antenna arrays will be deployed.

In the literature, we found some surveys and reviews on beamforming, beam management, and AI
algorithms for wireless network applications, such as [49–51]. Although, to the best of our knowledge,
there are no works that combine both themes together and consider a wide range of aspects, for instance,
mobility, different beamforming architectures, and Radio Access Technology (RAT). Furthermore, ML
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and AI emerged as enabling technologies for many fields in telecommunications. Thus, beamforming
and beam management can significantly benefit from ML generalizing capabilities. In this survey, we
point out several beamforming and beam management AI-aided applications, use cases, and future
directions.

Also, we aim at the modern and future generations of communication standards, e.g.,
Fifth-Generation of Mobile Telecommunications Technology (5G) and 6G. Although we included some
papers focusing on other wireless communications technologies, we dive into 5G and beyond and
the full support to the cloud, which will lead to AI full integration. For 6G, AI will play a key role,
enabling a myriad of applications and ambitious performance indicators, such as augmented reality,
Industrial Internet of Things (IoT) with 10−7 reliability and 1 Gbps user perceived data rate on dense
urban scenarios [52,53].

3.2. Research Question

Our research question stems from the main challenge of beamforming and beam management,
which is to realize beamforming with the highest accuracy and lowest complexity possible. This
challenge involves generating the beams and associating the best pairs for the communication between
Base Stations (BSs) and users. As a tool, AI techniques show potential to solve many problems in the
wide wireless networks field of research, with promising integration with the network in the 6G. Thus,
combining beamforming and beam management challenges with AI became a popular trend in the
academy and industry, confirmed by the number of works published recently. Below, we enumerate
the Research QuestionsRQ that guided our study:

RQ 1: What are beamforming and beam management challenges to face, and which are susceptible to
AI solutions?

RQ 2: What ML techniques are adequate and often applied for beam-related problems?
RQ 3: What are the benefits and downsides of applying ML algorithms to beamforming and beam

management problems?
RQ 4: How were the datasets composed and used for ML training and simulation?
RQ 5: Which are the future directions of research for AI-based beamforming and beam management?

3.3. Search String Definition

We searched digital libraries using the search strings according to Table 1. The queries were
repeated throughout the surveying process to include recently published papers. The chosen strings
are reflected in the outline of this survey such that beamforming and beam management challenges,
such as beam selection, codebook design, and mobility, were covered. It is important to point out that
papers returned by queries were just the starting point of our literature survey. Papers mentioned in
those articles and not in the set of papers returned by our search were also added to our surveyed list
of works.

Table 1. Database and search string table.

Database Date of Search Search Strings Number of Selected Papers

Google Scholar

March 2021 “machine learning”, “beam selection” 36
April 2021 “machine learning”, “codebook”, “mimo” 21

April 2022

“beamforming”, “machine learning” 7
“beamforming”, “artificial intelligence” 5
“beam selection”, “machine learning” 6

“machine learning”, “beam selection”, “mmwave” 16
“machine learning”, “handover”, “mmwave” 29

December 2022 “Beamforming”, “Beam-selection”, “machine learning”, “artificial intelligence” 25
IEEE Explore April 2021 “Beam selection”, “machine learning”, “artificial intelligence” 36

3.4. Criteria for Inclusion and Exclusion

The first criterion for including or excluding a paper is the year of publishing. We included
papers published from 2017 to the end of 2022 that encompass the seminal and most popular works
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on beamforming, beam management, and AI, also guaranteeing that this survey is aligned with the
state-of-the-art. Also, by the abstract and title, we excluded the papers that do not explicitly mention
one of the challenges listed, machine learning or artificial intelligence. In order to exemplify, we
considered some papers outside the criteria to exemplify concepts.

3.5. Identify Primary Studies

We consider papers with a two-year window behind the current state of the art. The number
of selected papers on each search and the date of search are summarized in Table 1, totalizing 181
papers in this preliminary stage. We first organized the papers by title, author, and year of publishing.
Finally, after the entire read, the papers out of the already mentioned criteria or lacking quality were
eliminated, narrowing down the paper compilation to 137 papers.

Then, after reading the articles, we also identified some remarkable works and research groups
which led us to investigate the bibliography they produced. Additionally, some articles that were well
criticized in one of the surveys listed in Section 4 or a related article were included in this survey to
provide completeness and enrich the discussions. Therefore, we summed up 125 articles matching the
criteria mentioned in this section.

3.6. Review Results and Contributions

From Section 5 to Section 9, we classify and summarize the key contributions of the included
papers. In addition, in each section, we include a table with overviews of the cited papers to guide
the reader and to address the raised research questions. Thus, we attempt to indicate for each added
paper which type of dataset was used, how data was interpreted, what ML technique was applied,
how the technique was assessed and compared with other techniques and available ground truths,
and how it is related to real applications. Finally, we would like to highlight Sections 11 and 12, where
we draw our outcomes and conclusions about the state-of-the-art, previous research, and what we
think are the future research directions for AI-aided beamforming and beam management.

4. Related Works

In recent years, beamforming techniques have received a lot of attention due to their important
role in establishing and maintaining communication links. Many studies have organized these efforts
to shed light on how these methods are evolving, being used, and how other technologies such as AI
and combinatorial methods play a pivotal role in this trend [54,55]. There are approaches to organizing
these efforts in a binary way considering digital and hybrid beamforming techniques, and others that
take into account energy efficiency maximization [41,56]. Recently, some works surveyed beamforming
technologies for 5G networks [47,57]. Our survey organized the beamforming technologies considering
emerging technologies such as machine learning, frequency, antenna, radio transmission paradigm,
mobility support, and antenna array type. Hence, we highlight some of those efforts that shed light on
beamforming technologies.

Araujo et al. [49] survey new topics that have gained attention recently in the research community,
such as hybrid beamforming, ADCs with low resolution, signal detection complexity in massive
arrays, and deeper discussions on the Time Division Duplexing (TDD) and Frequency Division
Duplexing (FDD) paradigm. Our contribution relies on organizing the beamforming technology
considering the AI methods.

Zardi et al. [58] overview AI applications in adaptive and reconfigurable antenna arrays. They
present five AI applications: adaptive nulling, wireless localization, MIMO communications, element
failures, and array calibration. Their work relates to ours as it deals specifically with antenna arrays.
However, they do not address the use of ML algorithms to configure the antenna array and to ensure
reliable communication over mmWave.

Pham et al. [50] bring an overview regarding intelligent processing signal radio, wireless
physical layer, modulation classification, signal detection, beamforming, and channel estimation.
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Furthermore, they dive into the theme of AI applied to MIMO systems and channel estimation
concerning beamforming contribution. Moreover, the authors provide a consistent comparison of
beamforming techniques and how they are used to tackle beamforming challenges. Differently,
we take an approach to the matter in this work by surveying the beamforming state-of-the-art
considering different approaches such as applications, beamforming architectures, and machine
learning paradigms.

Murray et al. [46] present a survey of various cognitive techniques for beamforming. They
organize and categorize techniques based on their application in Multiple-Input and Single-Output
(MISO) and MIMO systems. The survey treats the problem of defining the antenna array coefficients as
an ML problem. Additionally, it reports using neural networks, Genetic Algorithms (GAs), and game
theory in issues like interference reduction, noise suppression, power allocation, capacity, etc. Unlike
our work, they do not discuss challenges like beam selection, codebook design, channel estimation,
and the use of ML to tackle them.

Naeem et al. [51] survey the integration of Reinforcement Learning (RL) and Deep Learning (DL)
techniques into MIMO systems. They present RL and DL applications for different MIMO problems:
detection; classification, compression; channel estimation, positioning; detection and location; Channel
State Information (CSI) acquisition and feedback, security and robustness; mmWave communication,
and resource allocation. It addresses the use of AI for beamforming in mmWave bands and its use for
managing and allocating resources. However, our paper goes beyond that, providing a classification
taxonomy in how AI-based solutions enhance beamforming techniques and architectures.

Considering the MIMO system’s challenges, Rajarajeswarie et. al. [59] bring a short survey and
discuss the main issues present in these systems, namely, pilot contamination, channel estimation,
modeling, beamforming, and precoding. Furthermore, they present the main challenges and some
solutions for MIMO but do not consider mmWave bands. Our paper thoroughly reviews the
state-of-the-art contributions considering the frequency bands at which the beamforming systems
operate.

ElHalawany et al. [60] propose a taxonomy based on the availability of CSI for beamforming and
the application of ML techniques. Their work reviews the use of beamforming for Non-Orthogonal
Multiple Access (NOMA), energy transfer, coordinated beamforming, and beam tracking and presents
a case study using Multi-Armed Bandit (MAB) for beamforming training. Our work fills the gap left by
their work by organizing and classifying state-of-the-art beamforming algorithms into ML technique,
frequency, mobility, and antenna array type.

Wu et al. [61] discuss adaptive antennas and survey AI methods applied to antenna arrays and
beamforming systems. Their paper compares the configurations carried out by adaptive intelligent
antenna arrays and those carried out by traditional methods. Furthermore, they show how ML
algorithms can enhance the performance of this technology. Moreover, the paper surveys antenna
selection strategies, categorizing the adopted ML approaches into different learning paradigms.
However, their work briefly discusses and compares the different works found in the literature,
presenting a short table comparing works. On the other hand, our paper provides extensive analysis
and comparisons of different works, diving into how ML algorithms and different learning paradigms
are applied to support mobility, different frequencies, and codebook design.

The article [62] provides a comprehensive and detailed analysis of the recent state-of-the-art
AI applications in beamforming. First, the paper briefly overviews beamforming techniques and
Direction of Arrival (DOA) estimation methods. Then it explores the most essential and efficient
Deep Neural Network (DNN) topologies in depth. Next, the authors provide several examples of
how DNNs can be used as standalone beamforming and DOA estimation techniques or combined
with other implementations, such as ultrasound imaging, MIMO structures, and intelligent reflecting
surfaces. The article also highlights the realization of beamforming or DOA estimation via DNNs
topologies. Finally, the authors conclude with significant findings and an exciting discussion on
potential future aspects and promising research challenges. However, one limitation of this article,
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Figure 5. Illustration of a codebook-assisted beam sweeping and the further beam selection.

covered by our work, is that it primarily focuses on DNN-based beamforming and does not provide
a comprehensive overview of other ML techniques that can be used in beamforming. Additionally,
differently from what we present in this survey, the article does not provide a critical analysis of the
limitations and challenges of DNN-based beamforming, which could limit the practical application of
these techniques.

5. Beam Selection in MIMO Systems

The beam selection problem consists of finding the best pair of beams so that the transmitter and
receiver can communicate, exploring the best possible antenna configuration for a given scenario. For
this, one possible approach is to use pre-defined codebooks on the transmitter and receiver sides. From
these codebooks, the codewords that lead to the most significant gain for the existing channel between
transmitter and receiver should be selected. Figure 5 illustrates the process of beam sweeping from a
predefined codebook and the selection of the beam that attained the highest Reference Signal Received
Power (RSRP). As mentioned before, this problem becomes unfeasible to be addressed exhaustively,
requiring a long time of beam training, consequently delaying the communication of valuable data.
Other approaches besides the exhaustive one were raised in the literature, such as the hierarchical one,
as well as several heuristics and those using AI.

In 5G New Radio (5G NR), there is a period for transmitting control messages in the downlink.
During this period, training sequences are sent on each one of the beams, and the mobile station decides
which beam should be used for the communication between them based on received power [63]. This
procedure gets more complex if the receiver also employs beamforming, meaning it also has to select
the best beam. With an ML approach, once the model was trained in the BS, the optimal transmission
beam can be chosen faster than the exhaustive approach while optimizing different parameters, as we
will see later.

In 6G, with the significant increase in the number of connected devices and the even greater
demand for capacity and low latency, MIMO systems should present efficient solutions to meet this
new demand. From 4G to 5G, there was an increase in the maximum number of antennas from 4 to 64
ones, which will enable up to 1000× increase in data transmission capability [64]. Given the greater
dynamism and stricter requirements in terms of performance, the 5G New Radio (NR) exhaustive
approach will become inapplicable to the 6G. Then, the 6G will depend even more on the union
between MIMO and ML.

The AI-based approaches for the beam selection problem categorize it as a classification problem.
Supervised learning approaches predominate for this kind of problem. In supervised learning, several

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 15 March 2023                   doi:10.20944/preprints202303.0282.v1

https://doi.org/10.20944/preprints202303.0282.v1


12 of 53

instances of a data vector x are associated with a known output y (also called a label), and the adopted
ML model is trained to determine a general rule that maps the inputs and outputs of a training dataset.
Later, in the testing phase, the ML model must predict the outputs for unseen inputs, estimating the
probability p(y|x) or particular properties of the probability distribution existing between these two
vectors [65].

In the beam selection problem, the input vector, x, is usually composed of data such as the user
position, environment configuration, and network situation, to name just a few. From the input dataset,
which is composed of several instances of the input vector x, the ML algorithms estimate a set of
beams for the transmitter or receiver in order to optimize some parameters. Traditional approaches to
the problem are limited to received power or Signal-to-Interference plus Noise Ratio (SINR), such as
the initial access procedure of 5G NR or the hierarchical beamforming of Institute of Electrical and
Electronics Engineers (IEEE) 802.11ad.

For instance, in [66], the authors approach the beam selection problem in vehicular networks
by exploring variations in a data set containing context information. Context information can be
position coordinates or geolocation of the mobile station, its displacement, and information about the
environment in which the station is located, among others. In this work, the set of context information
has different types of coordinates and noise insertion in the location of vehicles. They have tested
different antenna array sizes and the number of recommended pairs of beams. In that case, the
proposed RF-based method can reach up to 99% of the maximum throughput. Even with arrays
equipped with 16× 16 antennas, if compared to other ML methods, such as Gradient Boosting (GB),
DL, and Support Vector Machine (SVM), it achieves an accuracy of 95% in recommending the three
best transmitter/receiver beam pairs for all tested antenna arrays.

The selection of beams from context information is a highly non-linear classification problem.
DNN can handle this problem adequately because their multiple layers are composed of highly
non-linear neurons. Rezaie et al. [67] use this technique, where the beam selection problem is treated
as a multi-label classification problem. The authors trained a deep neural network using receiver
position and orientation for beam selection. Other types of context information that can be exploited by
ML methods for the beam selection problem are the received power, the Angle of Arrival (AoA) [68],
the Direction of Arrival (DoA) [69], the gains of the multiple paths that reach the mobile station [70],
context and social preference information of vehicles and passengers [71], and images [72].

The most popular approach to deal with the beam selection problem is to exploit location and
positioning information, which has become widely available in recent mobile devices through Global
Positioning System (GPS) systems. For example, the fingerprint technique associates beamforming
related data, such as beam index, SNR, and AoA, are associated with user coordinates forming a
database, which is queried with the User Equipment (UE) every time a new UE needs to beamforming
with an Access Point (AP). In [73], the training dataset is generated using the fingerprint technique
for each AP deployed in a city area. Besides, location information can also leverage knowledge
about the environment and surrounding users using prior information about building and vehicles’
positions and dimensions [74,75] and also use historical data as a first estimation of the beam to
be used [76]. However, GPS coordinates from domestic devices have inherent inaccuracies due to
the limited implementation. For example, in [77], authors consider errors in the GPS coordinates,
preventing severe beam selection inaccuracies during the learning process. Besides, shortcomings of
fingerprinting techniques are the database information out-dating in an intensive dynamic context and
the time to query the database in a user-dense urban scenario.

ML methods are also very efficient and widely used for processing and extracting information
from images. In [78], context information, such as the shape, position, and even the materials of
surrounding buildings, cars, and trees around, is used. These data are obtained by multiple images
taken by offline cameras in order to build a 3D image. This image is the input of a deep neural network,
which aims to adapt itself to different environments. The network outputs vectors with the optimal
beamforming indices of the transmitter/receiver. Another approach presented in [79] uses two cameras
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in two stages. In the first stage, the camera images are used to reconstruct a 3D image and locate the
transmitter and receiver. In the second stage, a one-channel image derived from the first stage is given
as input to a Convolutional Neural Network (CNN) to predict the best communication beam. In [80]
and [81], images are formed from the power received by the different beams and treated as a problem
of searching for peak heat in an image. The image is created from the reception power matrices, which
are transformed into a power heat map. Therefore, each matrix associated with different received
beams has a unique power map. In [82], the user positioning is converted into a 96× 96 low-resolution
image. Once a CNN analyzes the images, the available best beams are given as the output of this
neural network.

Another possible strategy that can be employed is the generation of training data at frequencies
below 6 GHz, known as sub-6 GHz bands. Due to the multi-path effect, the sub-6 GHz bands are
not often explored in channel probes and massive MIMO systems, but knowledge about the network
can be established even in these bands. Jagyasi et al. [83] consider a heterogeneous communication
network, where small BS operating at mmWave coexist with sub-6 GHz macro-cell BSs. Through basic
signals extracted from the sub-6 GHz channel, a deep neural network model is applied in order to
divide the problem into two sub-problems, one for BS selection and another for beam selection. In
[84], the Power Delay Profile (PDP) of the sub-6 GHz channel was used for beam selection estimation
in indoor and outdoor scenarios. BS selection was treated as a classification problem, while beam
selection was mapped into a regression problem. Alrabeiah et al. [85] used a deep neural to estimate
the occurrence of blockages in the mmWave band and determine which pairs of beams would optimize
communication between devices. Similarly, but also using images from cameras close to the BSs,
Alrabeiah et al. [86] applied a neural network with the same objective of detecting blockages and
estimating the best beam pairs for transmission between BSs, also for users spread in an urban scenario.

In addition to supervised learning, beam selection is also often modelled using RL algorithms. RL
comprises an agent interacting with an environment and receiving positive or negative reinforcement
responses, called rewards, from the environment due to its experiences. These algorithms are composed
of two phases. In the first phase, the agent explores the environment by taking actions and receiving
rewards obtained from these interactions. In the second phase, the agent creates a strategy based on the
rewards collected in the previous phase to maximize the upcoming rewards. In [87], authors describe a
framework for reinforcement learning applications on user scheduling and beam selection, integrating
virtual world components with mobile elements including Unmanned Aerial Vehicle (UAV), and
ray-tracing generated channels samples. This framework offers some possible agent inputs, like
3D coordinates and orientation, packets and buffer information, bit rate, and channel magnitude,
composing a thorough environment for experiments on reinforcement learning. In [88], a Q-learning
agent has to learn the optimal beam, i.e., the action, that maximizes the overall system throughput, i.e.,
the reward, based on channel, user, and buffer states in a massive MIMO system where RF slices with
the help of subsets of antennas are subleased for Mobile Virtual Network Operators (MVNOs). Shafik
et al. [89] applied this same approach in selecting 3D beams for UAV using traffic data from Google
Maps. The results show that the proposed approaches outperform the classical ones.

An emerging technology that is strongly reported by the literature as a beamforming enabler is
Light Detection and Ranging (LiDAR) sensor. LiDAR sensors use a laser for scanning the surrounding
area, and by the delay of the reflections, it can measure the distances to each surface and re-construct
the points in a three-dimensional image. In [90], emulated LiDAR data and mmWave signals via
ray-tracing feed a DNN combined with vehicles’ positioning information, achieving 91% accuracy for
a LiDAR-aided distributed architecture. Similar joint applications of LiDAR and GPS coordinates are
found in [91] and [92], in the latter Line-of-Sight (LoS) and Non-Line-of-Sight (NLoS) link identification
through LiDAR aided the beam selection, and in the former, LiDAR proved to improve the accuracy
of beam prediction when compared with GPS-only beam selection. Likewise, an autonomous vehicle
measurement campaign conducted in [93], exploited the use of camera images, LiDAR, and GPS on a
vehicle achieving 99% top-1 beam accuracy with 54% drop in latency if compared to IEEE 802.11ad
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beam selection. The challenge is the price of LiDAR sensors, which are very expensive and with very
restricted implementation nowadays but sound very promising in the near future with the evolution
of self-driving cars.

Although the high accuracy achieved by the ML algorithms, the beam selection performance is
arguably tied to the overhead of the beam-sweeping process. Indeed, it is crucial for beam selection
algorithms to focus on reducing overhead, and, in terms of ML algorithms, the result of the online
training or the online learning process must reduce the complexity of the beam sweeping compared
to the other approaches. The training phase of the ML algorithms is usually executed offline, where
the results of an analytical optimal solution [94] or exhaustive search [95] are used as the training
dataset. After the training, in the testing phase, the ML algorithm reduces the complexity compared
with the former solutions. For example, in [96], the authors achieved lower overall complexity using
a biased version of the Single Value Decomposition (SVD) compared to a sub-optimal method for
analog beam selection. Then, compared to the exhaustive search, its goal is to have comparable beam
accuracy or SNR and reduce computational complexity, as in [97,98], which significantly reduces the
complexity even for a large number of UE. In the same way, a prediction method analyzes a sample of
the available beam pairs, so reducing the overhead compared with an exhaustive search, and a DL
predicts the RSRP of all beam pairs to choose the best one [99].

To increase the algorithm’s accuracy, some approaches estimate a set of m beams instead of a
single best beam [100]. However, such an approach reduces the efficiency, as the m beams need to
be tested via beam sweeping, though with less overhead than the exhaustive search, since a smaller
number of beams need to be verified. In [101], when compared to an optimal solution, the time of
the running solution of the learning algorithm is less 10%, while the traditional Zero-Forcing (ZF)
beamforming is 80%.

The input data and extra information required by some ML algorithms may cause overhead in the
network or sometimes be unavailable due to connection restrictions or privacy matters. For example,
an UE with a lack of power might not have the GPS system running to save battery. Consequently,
the location information would not be available to aid the ML algorithm. In this way, some authors
consider the use of ML methods with constrained input data availability, for example, the KPI already
available at the UE device or at the BS, such as RSRP, Receive Signal Strength Indicator (RSSI) or
SINR. In [102] and [103], authors used only the received signal to infer the better beam to align
and also LoS/NLoS status. In [104], a limited feedback channel is assumed in order to reproduce
real-world scenarios, so a limited CSI is used by a DNN regression for beam allocation, resulting in
near-optimal performance in the −10 up to 20 dB SNR regimen. The authors in [105] propose the use
of standard ACK/NACK messages transmitted by the UE to the BS during the Hybrid Automatic
Repeat Request (HARQ) procedure as input to an online RL scheme to lower the signaling overhead
required for beam tracking and rate adaptation. In [106], the RSRP reported by the UE is used to
feed a ML assisted beam change prediction scheme based on Long Short-Term Memory (LSTM), and
helps saving more than half the power used by the UE for Beam Management (BM) compared to other
methods.

ML versatility is highlighted by the myriad of scenarios and architectures that can be benefited
from ML. For example, in [107], a human pose dataset is used for beamforming on Wireless Body
Area Networks (WBAN), relying on an external camera, Generative adversarial networks (GAN), for
generating additional data, and deep-learning for beam prediction. As mobility is an important feature
of wireless networks, it is of utmost significance to invest in architectures that can support proper user
mobility, as proposed in [108]. In the urban canyon scenario, with lamp-post mounted BS and blockage
caused to the moving UE by elements also traveling in the scenario, the deep learning algorithm
showed robustness to the intermittent blockages. Also, cloud-based architectures are necessary for
data and computational offloading, and also for centralizing decisions, having a bigger comprehension
of the network status as proposed in [109]. Another possible architecture is to apply dual connection
schemes, which can increase data rate and provide transparent handover. In dual connection schemes,
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the UE stays connected to two BSs simultaneously, reducing the overhead when a context transfer is
needed and increasing the data rate. However, dual connection also increases overhead and complexity,
which is tackled in [110] using a SVM classifier for codeword selection from the available CSI samples.

The authors of [111] propose a method to enhance the performance of classification algorithms
such as K-Nearest Neighbors (KNN) and RF by increasing the quantity of data used during their
training. The lack of datasets with a wide variety of scenarios motivates this work. Furthermore,
the need for extensive and assorted datasets hinders training more complex algorithms such as deep
learning. Their method applies an algorithm based on the Synthetic Minority Over-sampling Technique
(SMOTE) to generate synthetic data, augmenting the training dataset. The proposed method increases
the dataset used for training classification models for beam selection. Their results show that the
proposed method confers higher F1 scores to the classification algorithms compared to the same
algorithms using the original data only.

In [112], the authors propose a computer vision-aided beam selection algorithm for mmWave
indoor multi-user communications. The motivation for their work is the significant overhead in
selecting very narrow beams in a multi-user environment. Therefore, they propose equipping a BS
with a camera, which is used to predict the angles to the users, facilitating the beam selection process.
Their algorithm, based on the predicted angles and the number of available RF chains at the BS, employ
two Neural Networks (NNs) for joint beam and user selection. Their numeral simulations show that
the proposed algorithm outperforms conventional beam selection techniques regarding multi-user
angle prediction, achievable sum rate, and computational complexity.

The article [113] proposes a novel method for optimizing flight trajectory and power allocation
in UAV communication systems using Computer Vision (CV). In addition, the paper addresses
the challenge of accurately localizing the UAV and grounded receivers in complex scenarios where
mmWave communication is used. The proposed scheme relies on cameras equipped at the UAV
to capture visual information for accurate target localization, eliminating the need for costly radio
frequency transmissions, i.e., pilot transmissions. Moreover, the authors propose a joint optimization
scheme for flight trajectory and power allocation. Finally, the paper presents simulation results that
demonstrate the efficiency of the proposed schemes, showing promising performance improvements
compared to traditional approaches.

In [114], the authors propose a DL-based approach for beam selection and power control in
mmWave massive MIMO communication systems, where obtaining accurate CSI is challenging. The
proposed framework leverages the beam-steering technique to estimate the signal strength from the
BS to the user. Furthermore, it employs a novel learning approach to determine the suitable beam for
a specific user and the transmit power to minimize the cost, including the transmit power and the
unsatisfied rate when the channel is unknown. The article also addresses the missing data problem
and employs LSTM to select the suitable beam. The proposed learning framework is validated using
the Deep MIMO dataset, constructed based on accurate ray-tracing channels. Numerical results show
that the proposed framework outperforms state-of-the-art prediction strategies and approximates the
best performance when the CSI is available.

In [115], the authors used an approach of deep learning for beam selection. Theirs used contextual
information (location and orientation user) to select pair beams. The authors propose the use of neural
networks with three different structures: single-task (DNN-ST), multi-task (DNN-MT), and extended
multi-task (DNN-EMT). In this work, were considered 8, 8 and 4, 4 Uniform Planar Array (UPA) at
the TX and the RX, respectively. The transceivers sense and select the pair of beams that provides the
highest RSS, from the candidate list. For data collection was used ray-tracing (Altair Feko-Winprop
software) an indoor environment. The authors compare the performance between strategies proposed
against baseline strategies (Generalized Inverse Fingerprinting Method and Hierarchical Beam Search),
and the results were present in terms of misalignment probability. Their results show that DNN-ST
method has less misalignment probability with both LOS blockage probability (0.5 and 0.2) followed
by DNN-MT and DNN-EMT. However, the DNN-ST had the best performance but was necessarily
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the largest dataset. On the other hand, the DNN-MT and DNN-EMT networks had much less
computational complexity.

The beam selection problem is relevant for the evolution of wireless networks, especially in terms
of mobility, as in vehicular networks and networks for UAVs that will be even more common in 6G.
The beam selection mechanism must adapt to these networks’ dynamic blocking and traffic patterns,
as in [69]. Despite the significant number of works dedicated to this topic, the selection of beams is still
seen as an isolated problem, focused on optimizing metrics such as received power, capacity, and data
rate. The literature is still lacking approaches that, for example, use power-constrained transmission
antennas [116], minimize interference [117–119], perform beam tracking [120] or allow concurrent
transmissions [121]. In addition, the use of emerging technologies, such as LiDAR [90] and Intelligent
Reflecting Surface (IRS) [122,123], can provide further support to address the beam selection problem.
Finally, creating datasets with MIMO channels can facilitate the application of ML in MIMO systems,
providing data to be used during the training phase [124,125]. The beam selection papers are compiled
in Table 2.
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Table 2. Beam Selection.

Challenges Algorithm Highlight (pros) Limitations (cons) Key contribution Ref.
• RBF-SVM
• GB
• RF
• FNN

Leverages situational
awareness, such as vehicle
coordinates, type, and speed.

Requires the neighboring
vehicles to be connected to
the network for best
accuracy.

This paper evaluates
different coordinate systems
and several levels of
available side information.

[66]

• Linear Regression
• SVM
• RF-R
• GB

• Leverages situational
awareness.
• Requires low overhead.

The lack of information on
trucks’ positions has a large
impact on the method’s
performance.

This work proposes
predicting the received
power with different beam
power quantizations using
regression models through
situational awareness.

[74]

• RF-C
• MLP
• SVM
• Adaboost

The classification models
have smaller feedback and
better overall performance.

The regression models
require feedback.

This work proposes optimal
access point and beam pair
predictions for establishing
communication by
exploiting UE’s localization
and machine learning tools.

[73]

Situational
Awareness CSML

• Shows that context and
social information of
vehicles and passengers are
relevant for beam allocation.
• The results show
improvements in the
received data.

Only permanent blockage is
considered.

This paper brings a
double-layer online learning
algorithm based on user
context and social preference
information.

[71]

RL
Using only GNSS data, the
ML algorithm has a good
beam prediction accuracy.

Although the beam
prediction with LIDAR data
is more accurate, it is
computationally demanding.

This work investigated the
use of GNSS and GNSS +
LIDAR data for beam
selection with NN using
Raymobtime datasets.

[92]

FML

• Low-complexity and
scalable online learning
algorithm.
• Does not require either
accurate or previous
information.
• The paper proposes a
real-scenario protocol for
supporting the mechanism.

The algorithm relies on GPS
coordinates, which can be
inaccurate in domestic
devices.

An online learning algorithm
based on CMAB is proposed,
enabling mmWave BS to
learn from the context
autonomously, and it
provides a scalable solution
to increase the deployment
density of mmWave BS.

[75]

MAB

• Defines an exploration and
exploitation algorithm for
each algorithm layer.
• Criticizes the model
limitations.
• Efficiently broadcasts
content to UEs with the
same interest, maintaining
the SNR.

• Does not specify the
control functions for
exploration timing.
• The content is only related
to movies, which might be of
limited scope for real
scenarios.

• Uses a two-layer RL online
algorithm to learn
surrounding blockages from
context information instead
of using CSI.
• The algorithm aggregates
UEs with interest in the
same content through beam
broadcasting.

[69]

DNN • Reduced outage and beam
misalignment probability.

• Having access to user data
might be difficult.
• Needs large training
datasets.

The results vary with the
number of obstacles for
training and test datasets,
highlighting the robustness
of train-test mismatch.

[67]

MAB

• The algorithm assumes
errors in the positioning
coordinates.
• Two mechanisms are
proposed for beam pair
selection, greedy and
risk-aware.
• Authors also proposed a
beam pair refinement based
on Hierarchical
Optimization.

The paper lacks a discussion
on practical implementations
and the algorithm’s
computational complexity.

Proposes an online method
for beam selection to speed
up the process.

[77]

Position aided LtR

• The authors define the
scoring and ranking
functions to determine the
best beam pairs.
• A communication concise
protocol is described as an
example for implementing
the technique in a real
scenario.

• The offline training
requires careful data updates
and periodic re-training.
• The baseline algorithm is
not well explained.

Authors use context
information and past beam
measurements to determine
potential beam pointing
directions.

[76]

• CNN
• DNN

The algorithm presents high
accuracy for low-resolution
images.

• The authors did not
compare the proposed
technique with other ML
techniques.
• The images used as input
are unusual.
• The positioning info, when
available, could be used
instead for a simpler system.

Proposes a CNN algorithm
for beam selection and
switching using
low-resolution images as
input.

[82]

(Continued on next page)
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Table 2. (continued from previous page) Beam Selection.

Challenges Algorithm Highlight (pros) Limitations (cons) Key contribution Ref.

Angle of Arrival
Aided

• KNN
• DNN
• Singular Vector
Class.

Evaluates the impact of
using imperfect and realistic
information for the AoA and
received power estimation
by using Capon and MUSIC
estimation methods.

The BS performance
degrades for a low number
of UEs compared to the
available antennas.

Proposes the use of AoA and
received power as input of a
DNN to select the best
beamformer on a codebook
rather than the complete
channel matrix, which is a
realistic approach.

[68]

Vehicular Networks SVM
Higher sum rate and lower
complexity than channel
estimation-based method.

The training depends on the
link density, which is hard to
estimate and may vary
substantially in real
scenarios.

Proposes a tailored
SVM/SMO algorithm for
beam training.

[70]

3D scene-based DNN

The 3D-scene reconstruction
achieves better accuracy
than LIDAR, which is more
expensive.

• The UE coordinate
estimation can be erroneous.
• Computational complexity
is not evaluated.

In this paper, a 3D scene
reconstruction is used to
identify the best beams.

[78]

Beam Domain Image
Reconstruction

• CNN
• DNN

Reduced beam selection
overhead without degrading
the beamforming
performance.

The training is based on
historical data.

This paper treats the beam
selection as an image
reconstruction problem
without requiring channel
knowledge.

[80]

Low overhead LSTM

The proposed scheme finds
the narrow best beam based
only on wide beam
measurements reducing the
beam training overhead.

Only DFT codebook is tested
as both high and
low-resolution codebook.

This paper proposes a
DL-based low overhead
analog beam selection
scheme.

[81]

DNN
• Detailed DNN description.
• Good accuracy with a
partial dataset.

Lacks comparisons with
other algorithms using the
same scenario (i.e.,
DeepMIMO O1).

This paper relies on
sub-6GHz channel
information to deduce the
resources in the mmWave
band.

[83]

Sub-6GHz channel
information. DNN

• Compares the results with
prior work.
• Robust to NLoS
conditions.

• Marginal gain increasing
the number of neurons.
• Implementation cost and
energy efficiency not taken
into account.

A dual-band scheme to
predict beam and blockage
from the sub-6GHz band to
aid in the mmWave band.

[85]

DNN

Presents a prototype
validation of an indoor
scenario, which shows that
the ray-tracing and the beam
selection method are very
close to the real scenario.

• The sub-6GHz channel
was modeled like a SISO
channel.
• Although there is a
prototype validation, the
results are not compared
with any other ML-based
beam selection approaches.

The PDP of the sub-6 GHz
channel, which is highly
available and does not
demand beamforming, was
used as input of a DNN for
beam selection estimation in
indoor and outdoor
scenarios.

[84]

Blockage prediction CNN

The use of RGB images
reduces beam selection and
blockage prediction
overhead.

• High training complexity.
• Simplistic scenario.
• It does not work in
dynamic environments.

The paper joints images and
sub-6GHz channel
information to identify
mmWave blocked users.

[86]

Intercarrier
Interference (ICI)
Mitigation

DNN
Low computation time yet
high spectral efficiency
algorithm.

The paper lacks profound
analysis for more users and
if the grouping is effective.

This paper proposes an
optimal user group beam
selection scheme aiming the
spectral efficiency
maximization.

[117]

Small cell networks SVM
Reduced complexity with
quick and high ASR in the
BS.

Though the paper assumes
analog beamforming, the
side-lobe interference is
ignored.

This paper aims to maximize
Average Sum-Rate (ASR) for
concurrent transmission on
an analog beamforming
mmWave network by
analyzing the BS spatial
distribution.

[121]

LIDAR data DNN High accuracy for top-M
beam-selection classification.

The one LIDAR per vehicle
premise is not feasible due to
LIDAR cost.

Proposes using LIDAR
information to select beams
in vehicular applications
using deep learning,
comparing centralized and
distributed LIDAR.

[90]

CNN
The use of LiDAR data
reduced beam-selection
overhead for LOS situations.

Overhead increases on
NLOS occasions to maintain
a tolerable throughput ratio.

The use of LIDAR data with
CNN reduces the beam
selection overhead for
Vehicle to
Infrastructure (V2I)
communications.

[91]

DL

• The use of multiple
sensors, such as cameras,
LiDAR, and GPS
• Accuracy improved and
delay decreased when
compared to IEEE 802.11ad

The measurement setup is
complex and hard to be
reproduced

The authors establish
guidelines for
beam-selection dataset
generation and release a real
experiment dataset with the
paper results

[93]

(Continued on next page)
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Table 2. (continued from previous page) Beam Selection.

Challenges Algorithm Highlight (pros) Limitations (cons) Key contribution Ref.

IRS-Assisted Beam
Selection DL

• The beam management
mechanism utilizes user
positioning information and
environmental information
to build reliable beam
selection.
• Enabling mobility is
approached through updates
on the historical database.

The algorithm depends on
high BS-UE and UE
computational capabilities to
provide full mobility
awareness.

This work presents an
IRS-assisted mmWave
network to improve
coverage, handover, and
beam-switching.

[122]

Channel Data
Generation and
Position aided
Beamforming

• SVM
• Adaboost
• DNN
• DQL
• Decision Tree

Beam selection performance
is simulated for several
classification methods.

The paper is focused on data
generation and classification
methods for beam selection.

It describes a methodology
for generating mmWave
channel data, including
realistic traffic simulation.

[124]

SVM

The computational
complexity of the proposed
data-driven approach is
significantly lower than the
sub-optimization method.

The number of analog beams
considered is too small.

The authors propose a novel
method, called biased-SVM,
that determines the optimal
parameter of the Gaussian
kernel function to achieve
optimal beam selection with
low computational
complexity.

[96]

RF-C

The model complexity
decreases as the number of
users increases and is lower
than the other compared
methods, which is an
advantage for
delay-sensitive applications.

The simulation tool is not
mentioned, which inhibits
the results’ reproductivity.

• Authors compared the
computational complexity
with a large number of users.
• The results show a better
trade-off between
computational complexity
and system performance
compared to exhaustive and
SVM approaches.

[97]

Low
complexity DL

The authors propose a
sampling method, reducing
the number of seeped beams,
and the DL predicts all
beams, increasing the search
space for the beam selection

The beam combination
method cannot be
generalized, so in practice,
each scenario may require a
different combination

A method for sampling a
fraction of the beam pairs is
proposed, combined with a
DL for predicting the RSRP
of all beams from the
samples

[99]

RBF

Reduced complexity by
several orders of magnitude,
with near-optimal
performance compared with
conventional methods..

• Needs large training
datasets
• Performance depends on
the dataset size.

• In this work the authors
propose using a RBF-NN
model to perform the beam
selection procedure.
• The results reveal a
reduction in the complexity,
beam selection overhead,
and latency.

[98]

Q-learning
The performance is close to
the optimal solution but
takes fewer iterations.

Depends on knowledge of
the channel matrix.

The paper minimizes the
training time for beam
selection using Q-learning to
find the best-quantized
analog precoders.

[94]

DNN

This approach is appropriate
for practical massive MIMO
systems due to the
complexity of the algorithm,
which is not proportional to
the number of beamforming
vectors, using only one pilot
signal.

• Good accuracy is only
achieved for a large number
of training epochs.
• The capacity comparisons
do not include other beam
selection mechanisms.

This work proposes a novel
algorithm (named Deep
Scanning) based on deep
Q-learning.

[100]

CNN

• The model-driven
proposed in this work
solution reduced the
computational complexity
and execution time of the
data-driven technique.
• Authors include optimal
solutions, providing upper
bounds for the simulation.

The paper assumes a perfect
complex channel matrix as
input, which can be hard to
obtain in a real scenario.

Authors propose a novel
model-driven technique
based on CNN, which
calculates only essential and
passes it through a
low-complex beamforming
recovery algorithm.

[101]

Body area network GAN

Authors generated a dataset
for WBAN based on a
human pose dataset used for
computer vision.

Does not address how the
beam prediction would be
made without an external
camera, and only one set of
sensor’s location is provided

This work proposes
employing a non-intrusive
beamforming method in the
WBAN with the use of GAN
method for mmWave beam
predictions using human
pose images.

[107]

(Continued on next page)
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Table 2. (continued from previous page) Beam Selection

Challenges Algorithm Highlight (pros) Limitations (cons) Key contribution Ref.

Highly mobile
systems DNN

Authors develop
low-complexity mmWave
coordination strategies for
coverage coordination and
latency reduction using
omni-directional +
directional beams in the
offline training phase and
only omni-directional
transmission in the testing
phase.

• Single user and simplistic
channel scenario.
• Although the effective
achievable rate is greater
than the baseline, the
proposed method is more
sensible to NLOS scenarios
as the rate variation in such
scenarios is larger.

To reduce the overhead, the
BSs use DNN to determine
the best beams using quasi
omni-directional patterns
during the online test phase.

[108]

Out-of-band
information CNN

• The dataset generated is of
academy and industry
interest.
• The proposed technique
reduced the beam sweeping
time by 93% on different
scenarios.

• The proposed method was
not compared with other
algorithms.
• Only one transmitter and
receiver positioning was
tested, as well as only one
camera location.

The authors created an
experimental setup with
mmWave hardware,
obstacles, and cameras,
which originated a dataset of
images and beam pairs.
Furthermore, the dataset
was used for image-based
beam prediction.

[79]

Large Scale MIMO Q-learning
Outperformed
state-of-the-art in terms of
capacity.

Only assumes Rayleigh
fading channel.

Beam scheduling method for
enhancing the RF spectrum
utilization by subleasing RF
slices.

[88]

Limited Feedback DNN
The method achieves high
sum rates in the low SNR
regime and Rician fading.

• It used a MISO system
only.
• The operating band is not
described in the paper.

• The beam allocation
problem is treated into two
different strategies,
classification, and regression.
• The time prediction of the
proposed approach is 6 times
shorter than the optimal
solution prediction time.

[104]

Interference Rejection CNN

• No prior knowledge of the
DOA is required.
• The computational
complexity is reduced for
both space and space-time
processing.

Needs large training datasets
and offline training.

The CNN is employed for
space and space-time
processing, evaluated in two
scenarios with different
interference and DOA
configurations.

[118]

Power restrictions CNN
The intensive computational
training phase is done
offline.

Considers perfect CSI-only.

The goal of this paper is to
maximize the downlink
SINR based on power
restrictions per antenna at
the base station and improve
the performance complexity
trade-off.

[116]

Cloud
Assisted Conv-LSTM

The proposed solution
improves positioning
prediction accuracy while
reducing storage costs by
using Cloud and Edge
collaboratively.

The load caused in the
backhaul and the Cloud
service is not taken into
account.

This paper proposes a
collaborative cloud-edge
architecture. The BS uses
Conv-LSTM to predict the
user distribution and,
through this, decide on a
better set of beams.

[109]

Scheduling RL

• B-BeamOracle RL agent
presents the best
performance
• The proposed
environment emulates a
variety of scenarios.

• Poor agent modeling.
• The B-RL achieves
performance close to the
B-Dummy.

Its used CAVIAR
methodology for
communication systems
combined with the AI
models, and the virtual
world components for
terrestrial and aerial beam
selection.

[87]

Dataset generation GRNN

Provides a baseline solution
that predicts future beams
based on the sequence of
previous ones.

The baseline solution does
not take the generated
images into account.

This work used computer
vision with AI algorithms to
predict blockage through
image classification-aided
beam selection.

[125]

Beam
Alignment KSBL-LTS

• Beam selection policies
were employed using both
theoretical and real-world
channel models.
• The proposed algorithm
obtained a faster learning
rate when compared with
Omnidirectional training
with slowly time-varying
channel support.

• Only MISO systems are
used.
• The algorithm’s
complexity is not evaluated.

The Authors developed a
KBSL algorithm for
mmWave beam alignment
and beam selection policy to
validate which policy would
result in the most efficient
beamformer: the linear
Thompsom sampling, the
omnidirectional, random,
and greedy policies.

[120]

(Continued on next page)
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Table 2. (continued from previous page) Beam Selection

Challenges Algorithm Highlight (pros) Limitations (cons) Key contribution Ref.

No Reference Signal NN Does not depend on prior
knowledge.

The proposed technique only
works in LOS conditions.

• Authors proposed an
AMPBML algorithm for
beam alignment and beam
training reduction.
• Partial beams were used to
predict the beam distribution
vector.

[102]

DL
More efficient and accurate
than MUSIC but with
comparable performance.

• Parameter tuning.
• As it is based on AoA
estimation, it is limited to
LOS.

• A two-step NN model is
proposed to estimate the
Uplink signal’s AoA with
high accuracy.
• Comparing with MUSIC,
the results show the same or
similar estimation
performance in terms of data
rate in moderate to high SNR
regimes and outperforms it
in low SNR ones.

[103]

Dual Connectivity SVM

• Low computational
complexity.
• Memory-efficient
approach.

Training time significantly
increases with the dataset
size.

• A SVM algorithm is used
with sequential minimal
optimization SMO algorithm
in each iteration.
• The proposed method
based on channel parameters
and transmitted power is
compared to the optimal
codeword, and the results
show a reduction in the
beam selection complexity
with a high ASR.

[110]

Non-ideal Channel
conditions NN

Reduced overhead
compared to the exhaustive
search and model-based
approaches.

• Marginal post-alignment
beamforming gain loss of 1
dB.
• Neglects NLOS channels.

• This work proposes a
compressive sensing-based
method for reducing the
number of channel
measurements.
• A NN model addressed
the CS dictionary mismatch
issue caused by radio
hardware impairments.
• The results show a 90.2%
reduction in the overhead
compared to an exhaustive
search approach.

[95]

Beam tracking and
rate adaptation MAB

• The proposed online RL
method achieves significant
throughput gains compared
to other methods.
• Uses ACK/NACK
messages that are part of the
HARQ procedure instead of
explicit control messages,
thus reducing signaling
overhead.
• Both real and simulated
indoor and outdoor data are
used.
• The method selects both
the best beam and
modulation coding scheme
(MCS) without making
assumptions about the
channel model or mobility
pattern.

• The proposed RL method
performance degrades at
high speeds.
• Only a single UE was
considered.

Proposal of a novel restless
MAB framework for
beam-tracking for mmWave
cellular systems using
ACK/NACK messages
instead of explicit control
signaling. The method
implements an online RL
technique called adaptive
Thompson sampling, which
selects the best beam and
MCS pair.

[105]

Data Augmentation SMOTE

• Offers a solution to the
lack of datasets containing
complete 5G scenarios.
• Evaluates the performance
of several classification
models, providing insights
into which models are best
suited for beam selection.

Lack of comparison of the
SMOTE-based method with
other algorithms found in
the literature.

A method to augment
datasets with synthetic data. [111]

(Continued on next page)
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Table 2. (continued from previous page) Beam Selection

Challenges Algorithm Highlight (pros) Limitations (cons) Key contribution Ref.

Angle Estimation and
User Selection DL

• Reduction of the beam
selection overhead and
consequent reduction of the
computational complexity
involved in this task.
• Good performance in
terms of achievable sum rate
and multi-user angle
estimation with a single
camera.

• The angle estimation
accuracy is limited by the
single camera’s field of view
and resolution and the
quality of the image
processing algorithm used
for angle estimation.
• No experimental
validation is provided.
Numerical simulation may
not capture all the real-world
factors that can impact
system performance.

A computer-vision-based method to
estimate the beam angle,
consequently selecting the beam
and user.

[112]

CV-based UAV
localization CNN

• Compared to traditional
schemes, their proposal
significantly saves
implementation costs and
overhead (e.g., pilot
transmission and consequent
bandwidth waste).
• The proposed joint
optimization scheme can
help improve the efficiency
of the system.

• Assumes the UAVs can
obtain accurate visual
information from the
cameras, which may not
always be possible in
real-world scenarios.
• Requires prior knowledge
of the locations of the
grounded receivers, which
may not always be available
or may be subject to errors,
especially in dynamic
scenarios where the receivers
may be moving.
• Simulation results are
based on idealized
assumptions and may not
fully capture the real-world
challenges and complexities
of mmWave UAV
communication systems.

A CV-aided joint optimization
scheme of flight trajectory and
power allocation for mmWave UAV
communication systems.

[113]

Power control and
beam alignment LSTM

• Proposes a novel learning
framework for beam
selection and power control
in mmWave massive MIMO
communications.
• Addresses the missing
data problem and employs
LSTM for temporal
processing of inputs.
• Designs a learning agent
to predict the proper
transmit power based on the
required transmission rate.

• The proposed framework
is only evaluated through
simulations and has not been
tested on real-world data.
• The proposed framework
requires accurate ray-tracing
channels for training, which
may not be easily available.
• The complexity of the
proposed framework may be
high due to the use of deep
learning techniques.
• The proposed approach
assumes that the user
locations are known, which
may not be the case in some
scenarios.

Proposal of a DL framework for
beam selection and power control in
massive MIMO - mmWave
communications to optimize
transmit power and beam selection
for users with unknown channel
state information.

[114]

Beam change
prediction LSTM

• The proposed scheme uses
LSTM-enabled models to
predict whether a beam
change is likely to occur
during the next
measurement cycle.
• Train and test data are
generated using 5G NR
compatible hardware in an
outdoor environment.

• Only a single outdoor
scenario was measured.
• Low mobility, as the
measurements were
performed during walks.

The LSTM-based beam change
prediction scheme can achieve over
58% power reduction regarding
beam management compared to
deployed commercial schemes.

[106]

Beam alignment DNN

• Reduction of the overhead
compared to ES and
improves the accuracy
compared to Hierarchical
beam search.
• Uses a uniform planar
array on both sides of the
link, with the goal of
analyzing the effects of
rotation in 3D space.

The solution presents high
computational complexity.

This approach proposes using
contextual information (position
and orientation of user) for the
initial beam alignment procedure
through deep learning techniques.

[115]

(End Table)

6. Mobility and Handover

Mobility management is a great challenge not yet fully covered by 5G, but that will be a
technological milestone for 6G systems. It ensures users do not lose connection with the network.
Wireless networks have the range of their cells limited by the maximum allowed transmission power.
Therefore, due to this limited coverage area, a user moving across the network undergoes several
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cell changes, known as handover. A handover requires the network to manage a connection from a
serving base station to another base station, known as the target base station. Ideally, handovers are
transparent to the user, which should not notice the service interruption caused by the cell change.

To make matters worse, when wireless networks operate in mmWave and THz bands, blockages
become complex to overcome. As millimeter and THz waves propagate solely by LoS links, a blockage
of the link between the user and the base station implies the disconnection of the communication
session, which affects the overall system’s quality of service and reliability. Moreover, re-configuring
the user’s session to another base station imposes beam selection overhead, and latency issues [126].

Besides the intrinsically high propagation loss of such bands, surrounding obstacles also impose
losses (i.e. attenuation) to the transmitted signal, further reducing the cell range or causing unnecessary
handovers. As a result, traditional handover algorithms based on received power differences do not
perform satisfactorily in mmWave, and THz communications scenarios [127]. Usually, these algorithms
lead to unnecessary or anticipated handovers, increasing the probability of a user having access to the
network interrupted.

Thus, the application of ML techniques has been studied as a way to minimize and optimize
handovers, which increases the throughput, and decreases latency, consequently improving Quality
of Service (QoS) and Quality of Experience (QoE). Furthermore, ML techniques can use data already
available, such as CSI, received power, and throughput measurements [128]. ML aims to assist in
the decision-making process that performs handovers, making it more efficient and offering more
significant support to users who are on the move.

In [129], the authors propose using Red, Green, Blue, and Depth (RGB-D) cameras to tackle
blockage challenges. The images from these cameras are used to observe the BS’s coverage area and
help it proactively conduct a handover before a blockage can cause degradation to the quality of
service experienced by the users. In this work, the authors use an online ML algorithm called Adaptive
Regularization of Weight Vectors (AROW) for estimating throughout based on depth images. The
estimation learned by the algorithm enables the BS to start the handover procedure proactively.

Approaches similar to the previous one are found in [130–133]. In [132], the authors present a
Q-learning-based solution that employs information on the location and velocity of a pedestrian to
trigger a handover decision. The RL-based solution learns how to optimize handover decisions by
maximizing the expected future throughput based on a pedestrian’s current location and velocity.
The work in [130] develops a method for proactive performance prediction to improve handover
management. The proposed method uses Deep Reinforcement Learning (DRL) to choose the best
base station and performs handover. The input to the DRL agent is augmented with video from
RGB-D cameras. The authors of [131] propose a proactive image-to-decision handover framework
that directly maps camera images to a handover decision, avoiding temporal degradation in the link
quality. The proposed framework employs DRL for creating optimal mappings between images and
handover decisions, showing that proactive handovers outperform reactive ones. In [133], the authors
employ information from multiple cameras and DRL to proactively take a handover decision. The
images from several Red, Green, and Blue (RGB) cameras are used to predict blockages so that the
network controller can start a handover process preemptively. Furthermore, the idea behind using
multiple cameras is due to possible blind spots a single camera might present. As a result, the proposed
multi-camera operation outperforms a system with only a single camera.

Aimed at vehicular networks, the authors of [126] propose using a Gated Recurrent Unit-Neural
Network (GRU-NN) model for improving reliability and decreasing latency in high-mobile
applications without requiring cooperation among BSs. In their work, the model at the serving
BS utilizes the history of beam indexes used to serve a user over the past coherence interval to calculate
the probability of a blockage happening in the next interval. This strategy allows the serving BS to
proactively hand the user over to a BS with a better link. Their results show that it is possible to predict
blockages with 95% accuracy, reducing the chances of service interruption, which improves reliability
and decreases latency.
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In [134], the authors use a Extreme Gradient Boosting (XGBoost) classifier to make BSs predict
handover success rates from prior measurements collected from both sub-6 GHz and mmWave bands.
The proposed approach learns the relationship between sub-6 GHz and mmWave measurements and
employs it to determine whether a handover will succeed or not. Using this approach, the handover
decision taken by the BS can be overridden, if needed, based on users’ handover success history.
Compared to standard handover algorithms, their results show that the proposed approach improves
inter-RAT handover success, maintaining user sessions in the optimal band/technology for longer
periods.

The dual-band approach was also adopted in [135]. In this work, the authors employ CSI,
acquired at sub-6 GHz frequencies, as the input to a KNN model, which is trained to predict vehicles’
positions. With the predicted position information, BSs operating in sub-6 GHz bands proactively
inform mmWave BSs close to vehicles requiring handovers. This scheme overcomes the beam
discovery problem caused by the coverage blindness phenomenon (i.e., a situation where beams
radiate somewhere the handover vehicle is not in). Furthermore, they propose using the KNN to speed
up handovers. Finally, they employ past handover information to determine relationships between the
status information sent by vehicles requiring handovers and the final handover decision.

The authors of [136] tackle the problem of handover and power allocation in a two-tier (i.e.,
macro and small base station) heterogeneous network by employing a multi-agent DRL solution. They
model the problem as a fully cooperative multi-agent problem, where the proposed solution aims
to maximize the network’s throughput while reducing the frequency of handovers. The solution
leverages centralized training and decentralized execution of actions to solve the problems at hand.
They use global information such as signal measurements, the number of UEs served by a BS, etc.,
to train individual policies for each UE then, after training is over, each UE receives a policy that it
uses to make decisions based on local observations. The centralized training approach makes the
decentralized agents work more cooperatively, mitigating potential instability and vicious competition
issues, which are common to this kind of approach. Their simulation results demonstrate that the
proposed solution outperforms existing solutions.

To maximize the throughput and minimize unnecessary handovers in mmWave communication
systems, the authors of [137] propose a proactive handover solution based on a DRL model. The
proposed solution employs decentralized multi-agents to make a proactive handover decision. From
their trajectories, the proposed solution learns the optimum mapping between UEs and BSs. The
optimal mapping is achieved when the connectivity between a UE and a BS is the longest possible
among all possible BSs. Every UE acts as a single agent in this work. Their results show that
the proposed solution minimizes the number of handovers and maximizes the overall throughput,
outperforming a heuristic handover approach.

With the minimization of common handover problems such as the ping-pong one, the authors of
[138] propose a two-stage DL-based handover mechanism that allows for the dynamic optimization of
handover performed by the network based on the users’ past behavior and their RSRP. Moreover, the
proposed solution is also trained to predict users’ locations. Their results show that the number of
handovers is significantly reduced without penalizing the network’s throughput. Additionally, it is
shown that the predicted user’s location has an accuracy of a few meters.

In mmWave frequency bands, due to the blindness coverage phenomenon, it is hard for both
BSs and UE to identify the correct direction of beams, which renders the handover process quite
complex. Moreover, when considering the communication of IoT devices, it is essential to consider
minimizing the energy consumed by such devices during the handover process. With this in mind,
the authors of [139] use the XGBoost algorithm to predict the handover success rate through channel
state information. As a result, the proposed approach reduces handover failures and improves the
energy efficiency of the network. Consequently, the XGBoost-based solution proves to be better than a
previously implemented KNN-based handover solution.
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The authors in [140] propose jointly optimizing resource and handover management to provide
seamless connectivity for multi-user mobile mmWave systems. The handover algorithm selects a set of
backup BSs for each set of UEs and allocates the resources to maximize the sum of achievable rates of
the UEs while minimizing the number of handovers and the number of outage events. The problem is
modeled as a non-convex optimization problem, where minimizing the number of outage events and
frequent handovers is more important than maximizing the sum rate. A Deep Deterministic Policy
Gradient (DDPG) method is employed to approximate the solution to the optimization problem as it is
capable of dealing with a large number of states and action spaces. Numerical results show that the
proposed method achieves higher sum data rates and prevents frequent handovers compared to the
benchmark, namely the random BS backup allocation and the worst connection swapping algorithms.

The most common 5G handover method is based on RSRP measurements of access beams, such
as wide beams used for sending control and synchronization signals. In contrast, user data is carried
over link beams. Therefore, the actual throughput depends on the link-beam gains. These beams are
narrower than access beams and have deeper cell penetration. Hence, in order to improve throughput,
the authors in [141] propose including the link-beam gain information in the handover optimization.
The adopted formulation for the RL problem is called Contextual Multi-Arm Bandit (CMAB) problem.
Each serving BS collects measurement data from UEs and then forwards the data to a centralized
CMAB agent, which will then decide the handover actions. The objective of the RL agent is to maximize
the average link-beam gain for all UEs and, hence, their throughput. A major advantage of this method
is that it relies solely on current 3GPP signaling, but additional information such as location, speed,
and antenna configurations can be provided to the CMAB agent.

The adoption of mmWave systems imposes the use of directional communication between BSs
and UEs, which in turn requires the use of beamforming to improve channel gain. Besides, the need
for dense deployment of BSs to provide better coverage increases the handover management problem.
The authors in [142] propose jointly optimizing beamforming and handover. On the one hand, channel
estimation and beamforming are performed more efficiently by only sending pilot signals through a set
of pre-calculated paths called path skeletons. On the other hand, the downside of this approach is the
need for a path skeleton database. RL is then used to select the best backup BS for a given location and
predicted path, minimizing the number of required handovers while maintaining an almost constant
data rate. Simulated results using outdoor environments showed superior performance compared to
other methods.

In order to reduce the number of handovers and still maintain the QoS requirements of the
user, the authors in [143] proposed an algorithm based on RL called SMART for mmWave HetNets.
The algorithm is divided into two parts. In the first part, the algorithm uses the data about channel
characteristics and QoS requirements to perform a handoff. In the second part, two algorithms are
used: SMART-S and SMART-M. Based on the Upper Confidence Bound (UCB) algorithm, SMART-S
selects the BS for a single user, and SMART-M selects the BSs for multiple users. As a result, the
proposed method reduced the number of handovers by 50% compared to traditional methods.

In [128], the authors propose an RL method to reduce unnecessary handovers due to frequent
short-term LOS blockage in mmWave cellular networks. The aim is to choose the next BS so that the
connection can last as long as possible. To achieve this, the method exploits the empirical distribution of
the UEs trajectories and LOS blockages post-handover, which is learned online through a multi-armed
bandit framework. One of the advantages of the method is that it uses Received Signal Strength (RSS)
signals from surrounding BSs to obtain a coarse location of the UE. This eliminates the need to use
GPS information and reduces overhead. Numerical results show that the method performs better
than similar methods regarding the number of handovers and connection time, mainly when the UE
trajectories follow regular patterns emulating the movement on sidewalks. However, the UEs move at
a relatively low speed (1 m/s), leaving questions about performance in higher mobility scenarios open.

The consequence of having a large number of handovers is the deterioration of user data rates and
a decrease in UE’s battery life. To minimize this issue, the authors in [144] proposed a multi-agent-based
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deep reinforcement learning solution, calling it Reinforced Handover (RHando). The proposed solution
is fully distributed, thus limiting signaling and computing overhead, rendering RHando a candidate
to meet the latency requirements of 5G networks. Furthermore, taking into account the collisions that
occur when the number of users is greater than the number of possible connections in the BS, the
authors proposed two solutions. The first one is the Fully cooperative RHando (RHando-F) solution.
In this approach, users receive the same reward, favoring the optimization of the global network. The
second solution, called Self interest RHando (RHando-S), considers only the perceived data rate for
each user’s reward. As a result, the proposed algorithm can reduce the number of handovers by up to
70% and increase the average network throughput by up to 18%, compared to the solution based on
maximum RSS. The handover and mobility papers are compiled in Table 3.

7. Codebook Design

MIMO systems rely on directional beamforming schemes, which encode or decode signals to
be transmitted through multiple antennas and take advantage of this feature to increase network
performance. To generate an appropriate beam pattern, the transmitter needs to get information about
the state of the channel (with or without feedback). The process by which beamforming directs the
radiation pattern of the MIMO system using channel estimates is also called beam training, i.e. the
process of discovering the best beam configuration.

The high cost and energy consumption of high-frequency circuits make the digital beamforming
architecture unfeasible for antenna arrays with many elements. Therefore, most MIMO systems tend
to follow analog or hybrid beamforming architectures. These beamforming architectures, due to their
hardware restrictions, are used with the aid of previously defined beam codebooks, usually with one
beam per codeword. However, these codebooks may not be efficient in all scenarios to which a MIMO
transceiver is applied. In order to increase network performance, it is desirable for a codebook to
adapt itself to the conditions under which the transceiver will be exposed [145]. We summarize the
expressive codebook works in Table ??, in which we emphasize the main purposes of each research
with its limitations and contributions.

A generic codebook is the DFT codebook, based on the Fourier transform property that a
translation in space becomes a phase shift in the Fourier Domain. With progressive phase weights
applied to each element of each codeword, the DFT codebook steers the beams around the angular
space according to these weights and the antenna elements. Despite being simple and robust, this
codebook has some limitations: although it may cover all directions, many of them may not have direct
use and increase the time of the beam training [146]. Because they are generic, these codebooks may
have their performance compromised by imperfections in the hardware of the transceiver [145]. These
factors then led academia and industry to research adaptive codebooks, generated with the help of AI.

The most direct way to adapt the codebook is to use existing indicators or estimates from the
channel itself. Jiang et al. [147] used a deep neural network to extract propagation features from the
channel samples, using these features to classify the samples through the K-means algorithm. After
the clustering, the centroids for each channel characteristic are combined as coordinates of vectors in a
multi-dimensional space, in which the axes are the characteristics. Finally, to reduce the dimension of
the total space and the feedback overhead, the authors remap the channel sequences in the total space
and discard combinations of centroids that do not satisfy a minimum criterion of mapping probability.
Also, from this perspective of adaptation, not only to the scenario but also to hardware limitations,
an artificial neural network was proposed in [148] to generate codebooks, whose phase adjustments
reflect the neural network weights. The proposed neural network performed better than the DFT
codebook, especially in situations with more than 16 beams and when multiple beams were activated
simultaneously.

Due to limitations in the storage and acquisition of information that feed the methods mentioned
above, the authors in [149] proposed an offline learning algorithm that trains from artificially generated
samples. The output generated by the training with the current sample is used to generate a new
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channel sample and train again. This incremental process converges to a quasi-optimal solution for the
precoding and combining optimization problems.

Alrabeiah et al. [145] used a neural network to derive an optimal codebook using complex values,
together with a self-supervised neural network that does not require pre-existing channel information,
enabling the online learning process. Based on the pilots received in an uplink transmission, with
the proposed architecture, the codewords that generate the highest gain for the received pilot are
chosen and adjusted according to the back-propagation algorithm. To maximize the normalized
average gain of beamforming, Bhogi et al. [146] proposed a beamforming codebook generation model
where learning adapts to propagation conditions. Using the k-means model, the results showed
improvements in beamforming compared to CSI quantization techniques and still managed to reduce
the codebook size.

To solve the problems of the complex wireless environment and the high-dimensional data of
the massive MIMO channel, the authors in [147] proposed a codebook project based on a deep cluster
(DC). With this, the DNN learns the propagation characteristics of the channel, and then the algorithm
generates the centroids of each propagation characteristic. The results of the proposed algorithm were
superior to the traditional methods. Zhang et al. [148] developed a new architecture based on neural
networks to learn beamforming codebooks for MIMO systems. The model can adapt to user locations
and takes into account hardware restrictions. About traditional works, the results demonstrated the
ability to reduce the codebook and learn multi-lobular bundles.

Seeking to solve the challenges of the ES, Chen et al. [149] proposed a low-complexity algorithm
based on Cross-Entropy Optimization (CEO) in which the results showed an almost ideal performance
reaching 98% of the results obtained through ES. Zhang et al. [150] used a deep learning algorithm with
the received power as input and no other data about the channel. In the first phase, this method defines
an optimal action in terms of the phase changes for each antenna element, regardless of constraints. In
the second phase, using the KNN algorithm, the optimal action is approximated to the most viable
actions, which will be evaluated in the next phase. Then the codeword is defined, and the learning
strategy is updated.

Another way to employ AI in codebook design is to optimize a performance metric. Jiang et
al. [151] designed codebooks to increase the data rate by minimizing the sum of distances from the
actual channel information to the channel statistical information. The clustering process is based on
the well-known K-means algorithm. Then, different methods can be used to assemble codebooks from
the obtained centroids. Lee et. al. [152] aimed, through deep reinforcement learning methods, to define
a precoder belonging to a predefined set in order to minimize the Bit Error Rate (BER), giving the
method greater adaptability.

The adaptability provided by the various techniques of ML to the design of codebooks meets
the 6G objectives. However, there are still a few works that assume stricter premises, such as those
that will be found in commercial devices. Even so, ML can still be integrated into existing codebook
design algorithms in order to optimize the parameters of these algorithms when applied to specific
environments. These approaches make these algorithms more efficient, adaptable, and simple. For
example, the works by Takabe et al. [? ], He et al. [? ], and Balatsoukas-Stimming et al. [? ] used deep
neural networks to adjust the parameters of the biConvex 1-bit PrecOding (C2PO) algorithm.

Jiang et al. [153] proposed an algorithm for codebooks based on the clustering of self-organized
maps (SOM) for MIMO systems with limited feedback. This algorithm can adaptively learn an arbitrary
environment, so the proposed model adapts according to CSI. The results showed that real-world
channel data could improve the performance of achievable data rates.

Kang et al. [154] developed an algorithm adaptable to any Rician factors. The proposed work seeks
to solve the complexity of traditional models, which require an infinite number of optimal codebooks.
The Rician channel consists of a deterministic LoS component and a Rayleigh-distributed NLoS
component. Regarding quantization distortion, the proposed model was superior to conventional
models. To overcome the overhead introduced by CSI estimation in FDD communication, the authors
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in [155] proposed an unsupervised learning model based on RSSI feedback. As a result, the spectral
efficiency of the system was improved. It is known that the use of unsupervised learning models
improves training time and cost. In their work, they used a deepMIMO model for evaluation, and the
results were similar to the hybrid pre-encoder HSHO.

In [156], the authors proposed a deep neural network-based algorithm for a MISO system using the
combination of two beamforming schemes to solve the challenges in interference channels, maximum
transmission ratio (MRT) and zero-forcing (ZF). As input to the deep neural network, they used the
transmission powers, achieving a 99% sum rate. Furthermore, using the MISO system, Xia et al. [157]
proposed a model to optimize the downlink beam formation. The model in that work is based on
convolutional neural networks. The structure is composed of three neural networks to solve three
typical problems, the SINR balancing problem, the power minimization problem, and the sum rate
maximization problem. The results obtained for the first two problems can reach almost optimal
solutions, and the performance of the third problem was close to the solution using the weighted
minimum mean squared algorithm.

To maximize the weighted sum rate (WSR) in a MISO channel, the authors of [158] developed a
model based on deep learning named beamforming neural network. The model is based on LSTM
layers. Different versions of the proposed model were used to tackle three optimization problems:
SINR balancing, power minimization, and sum-rate maximization. The results of the proposed model
outperform the Weighted Minimum Mean Squared (WMMSE) model at high SNR and are comparable
when the SNR is low.
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Table 3. Handover and mobility

Challenges Algorithm Highlight (pros) Limitations (cons) Key contribution Ref.

Beam selection and
blockage prediction Kernel-based KNN

Employs sub-6 GHz CSI to
predict vehicle’s positions
and, consequently,
pre-activate the target BS as
a way to speed up
handovers preemptively.

• As it is a lazy learner
algorithm, KNN requires the
whole dataset to be stored in
memory, consuming a large
portion of it if the dataset is
large.
• The cost of calculating the
distance between the new
input and each existing
example is huge, and
sub-optimal solutions may
degrade the performance of
the algorithm.

• Uses sub-6 GHz CSI and a
Kernel-based ML algorithm
to predict vehicles’ positions.
• Use historical handover
data and the KNN algorithm
to accelerate handovers
without complicated target
selection and beam training
processes.

[135]

Handover success
prediction XGBoost

• Performs preemptive
handover procedures based
on estimates of the mmWave
channel conditions taken
from collocated LTE cell
measurements in the sub-6
GHz band.
• The proposed approach
has the potential to decrease
latency and increase QoS
and QoE.

• The proposed solution
only works if the mmWave
and sub-6 GHz cells are
collocated.
• XGBoost algorithm is
required to be retrained if
any of the cells operate at
different frequencies.

• Introduces the concept of
partially blind handovers.
• Employs XGBoost to
predict handover success
rate from sub-6 GHz to
mmWave frequencies.
• Show that the combination
of XGBoost and partially
blind handovers improve the
handover success rate.

[134]

Throughput
estimation AROW

• Employs a time and
memory-efficient online ML
algorithm.
• The BS does not need to
transmit any control frame,
reducing the overhead and
increasing throughput.

• The experiments were
carried out with static
mmWave BS and devices,
which makes the results less
useful.
• Online learning
algorithms suffer from noisy
updates, which might affect
the proposed solution’s
performance.

Estimates mmWave
throughput using depth
images and the AROW
algorithm.

[129]

DRL

Uses received power signals
and video from depth
cameras to train a DRL agent
to overcome the
computational complexity of
learning the optimal
handover policy, decreasing
handover time.

• Only two base stations are
used, and the experimental
setup is rather contrived,
which makes the results
complicated to be
extrapolated to other cases.
• Requires some time for the
DRL algorithm to converge
as it learns from trial and
error attempts.
• The experimental setup is
rather contrived.

Shows that blockage
prediction is improved by
augmenting the input to the
DRL agent with video from
depth cameras.

[130]

Blockage prediction
and preemptive
handover

DRL

Improves blockage
prediction and handover
reaction time by using depth
images from multiple
cameras.

Blockage caused by
pedestrians being out of the
camera’s coverage is hard to
be avoided, requiring a
greater number of cameras
to be solved.

Employs DRL with received
signal powers and images
from multiple cameras as
states to predict blockage
and proactively initiate
handovers.

[133]

GRU

• Decreases the latency
caused by handovers as the
current serving BS
proactively knows the next
serving BS, and then, it can
start off the handover
procedure before the UE
loses the connection with the
serving BS.
• Does not require
cooperation among multiple
BSs, which decreases the
overhead associated with
coordinated transmissions,
consequently reducing
power consumption.

• The proposed model does
not account for mobile
blockages, only working for
stationary blockages.
• Requires a relatively large
dataset to achieve reasonable
accuracy.

Presents a blockage
prediction and proactive
handover solution that
reduces latency and
increases the system
reliability in high-mobile
applications without
requiring high cooperation
overhead of coordinated
transmission.

[126]

Load balancing
handover DDPG

Maximizes the sum rate of
all UEs moving along
different trajectories while
minimizing the number of
handover and outage events.

• Does not consider
interference from other
active UEs, only from other
BSs.
• Assumes the UEs’
trajectories are deterministic
(perfect mobility prediction).
• The decision process
requires estimating the
channel capacity and its
backup BSs, thus requiring
the CSI between the user and
multiple BSs.

Maximizes the sum data rate
of all users and minimizes
the number of handovers
and outage events using the
DDPG algorithm.

[140]

(Continued on next page)

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 15 March 2023                   doi:10.20944/preprints202303.0282.v1

https://doi.org/10.20944/preprints202303.0282.v1


30 of 53

Table 3. (continued from previous page) Handover and mobility

Challenges Algorithm Highlight (pros) Limitations (cons) Key contribution Ref.

Beam gain
maximization CMAB

• Traditional 3GPP signaling
can be used. There is no
need for special
measurements or new
signals. However,
information such as location,
speed, and antenna setup
can be used for context.
• Link-beam performance
gain of 0.3 to 0.7 dB
compared to the methods in
practical propagation
environments.

• A centralized RL agent is
required to handle
measurement reports from
UEs.
• UE mobility model used
for the numerical results is
simple (UEs only move on
vertical lines).

The handover mobility
optimization considers
current 5G deployment
aspects and uses current 5G
signaling.

[141]

Joint handover and
beamforming
optimization

Q-Learning

• Channel estimation uses a
set of location-based of path
skeletons, which are defined
according to the channel
gain, AoA, and AoD.
• Pilot signals are sent only
through the path skeleton
sets, thus reducing overhead.
• Minimizes the number of
handovers by using
Q-Learning to decide the
best backup BS for each UE
location and using a link
quality threshold to trigger
the handover.

• Assumes perfect trajectory
information.
• Requires keeping and
updating a path skeleton
database, which can be
costly for a dense and highly
mobile scenario.
• Only a few UE location
points are considered for the
UE trajectories.

Beamforming can be
performed using a low
number of pilots due to the
use of path skeletons.
Handover optimization uses
Q-learning to determine the
best backup BS for handover
based on each UE location
and trajectory.

[142]

MAB

• Uses received signal
strength information
collected from the
surrounding environment to
obtain a coarse UE location
estimate to feed the RL
algorithm.
• UE location information
allows for better trajectory
and LOS blockage
prediction.
• The proposed method
achieves a lower handover
number and higher average
lasting time of connection in
different simulation
environments compared to
other RL-based handover
methods.

• Low mobility, as UEs are
simulated always moving at
1 m/s.
• Does not present data
rates results.

• Achieves a lower number
of handovers than other
methods using current 3GGP
signaling (i.e., RSS).
• Does not require accurate
location and trajectory
information.

[128]

Minimization of
handovers DRL

• SMART’s computational
complexity is much lower
than that of the brute force
algorithm to calculate the
optimal solution.
• The algorithm can be
implemented in a
distributed way.

• The UE may not stay
around a specific BS for
sufficient time. Therefore, it
cannot have enough
historical information to
estimate the reward
accurately.
• It is not always possible to
select the BS with the highest
reward.

Reduces the number of
handovers and maintains the
user’s QoS.

[143]

DRL

RHando-F and RHando-S
adapt their policies to the
channel fading
characteristics, providing
robustness of the proposed
framework.

• The method selection is
not discussed.
• The two proposed
methods perform differently
depending on the number of
connection requests.

Reduces the number of
handovers, and increases the
average network
throughput.

[144]

Handover success
rate maximization
and power allocation

DRL

• Tackles the joint problem
of handover minimization
and power allocation.
• The proposed solution
addresses instability and
vicious competition issues,
which are common to
decentralized cooperative
multi-agent approaches.
• They employ the
counterfactual baseline to
mitigate the credit
assignment problem,
achieving better
performance.

• Higher overhead since
information like individual
UE states must be sent to the
central model.
• Overhead is also increased
due to the transmission of
policies to the individual
UEs.

Employs a fully cooperative
multi-agent DRL approach
to optimize handover
success and power allocation
jointly.

[136]

(Continued on next page)
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Table 3. (continued from previous page) Handover and mobility

Challenges Algorithm Highlight (pros) Limitations (cons) Key contribution Ref.

Maximization of
handover success rate
and user localization

DL

• The proposed solution
improves the network’s
throughput, reduces
signaling overhead, and
improves the overall
network’s energy efficiency.
• Performs better than 3GPP
models under the presence
of uncertainty.

• As it employs a DL model,
it requires a large training
dataset, which requires a
more prolonged training
phase.
• Does not consider delayed
(outdated) channel
information.
• As it employs the RSRP as
the input to the DL model, it
loses the phase information,
which might negatively
impact the performance of
the handover and
localization mechanism.

Usage of DL with users’
RSRP signals as input to
implement a handover and
localization mechanism.

[138]

Maximization of
handover success rate XGBoost

• The proposed solution
minimizes signal overhead
and improves the success
rate of handovers.
• Reduces energy
consumption due to
reduction of signaling
overhead.

• XGBoost is very sensitive
to outliers since every
classifier is forced to fix the
errors in the predecessor
learners. Therefore,
pre-processing is required,
which might increase the
proposed solution’s
computational complexity
• XGBoost is hardly scalable.

Usage of XGBoost and CSI to
implement a handover
mechanism.

[139]

Handover prediction DRL

• The multi-agent solution is
based on UEs’ trajectories.
• Agents share their policies,
speeding up the learning
process.
• The agents use image-like
states, presenting the
location of UEs, BSs, and
obstacles at a given time, as
input to the DRL models.
• Differently from other
works, they consider the
issue that UEs might
handover to the same BS,
which decreases the system
throughput. The proposed
multi-agent solution ensures
handover minimization and
the system’s throughput
maximization.

• It is based on the
trajectories of UEs. Therefore
it requires the transmission
of such information, which
increases the overhead.
• As it is based on the
trajectories of users, it cannot
be applied to the initial
access phase.
• It is an offline learning
framework that requires
data to be collected before
any training is performed.
• As the agents share
policies, it might increase the
transmission overhead,
decreasing the network’s
performance.

Multi-agent DRL approach
that employs image-like
states as input and takes the
maximization of the system’s
throughput into
consideration as well.

[137]

Q-Learning

• Improves handover
decisions by predicting
human blockages based on
pedestrians’ locations and
velocities.
• Maximizes the throughput
of users.

• If the number of
access-points increases
considerably, Q-Learning
will suffer to learn an
optimal handover policy.
• The states, namely
location, and velocity, are
discretized, which discards
part of the information
conveyed by them.

Usage of pedestrians’
locations and velocities to
maximize their throughput
by predicting the necessity
of handovers.

[132]

Proactive handovers DRL

Employs DRL to map
images into handover
decisions, improving the
QoS perceived by users,
since handovers are
proactively triggered.

• Since it is a DRL-based
solution (learns by trial and
error), it may present a long
learning curve until
convergence, which might
hinder its deployment.
• As is uses images, it
requires a relatively large
number of images to achieve
reasonable performance.
• The delay to obtain an
image might impact the
performance of the proposed
framework.

Usage of camera images to
proactively trigger
handovers.

[131]

(End table)

8. Precoding and Combining in MIMO with Hybrid or Digital Architectures

Precoding and combining are techniques that exploit the spatial diversity and spatial multiplexing
of transmission when multiple antennas are used. First, the spatial diversity techniques allow fading
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mitigation, improving reliability. Second, in spatial multiplexing, the receivers at different positions in
space receive different signals simultaneously during the same transmission, increasing throughput.

Precoding (combining) works on the transmitter (receiver) side, encoding (decoding) the
transmitted (received) signals with amplitude and phase adjustments that maximize the gain of
the transmitted (received) information. When we refer to the precoder, we will also be referring to
the combiner, which is its counterpart on the receiver side. We summarize relevant beamforming
approaches highlighting their strengths, weaknesses, and their main objectives in Table 5.

As a consequence of the more significant number of antennas required for communications in
mmWave and THz bands, the known channel estimation techniques might be prohibitive. Such
channel estimation techniques depend on the probing and feed-backing of each pair of antenna
elements between the transmitter and receiver, establishing all the channels available. Thus, they
are not feasible due to the overhead that channel estimation would bring. Therefore, it is necessary
to investigate low-complexity algorithms to establish the precoding matrix, especially algorithms
dealing with multiple users. For this, a promising approach is the use of AI, which can, from different
information about the channel, user, or BS, determine the formation of an optimal precoding matrix
according to some criterion of interest, like the spectral efficiency [159], for example.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 15 March 2023                   doi:10.20944/preprints202303.0282.v1

https://doi.org/10.20944/preprints202303.0282.v1


33 of 53

Table 4. Codebook Design.

Challenges Algorithm Highlight (pros) Limitations (cons) Key contribution Ref.

Hardware and deployment awareness • NN

• Robust to hardware impairments.

• Decouples learning process from

communication.

• The codebook is refined while

communication goes on.

• the offline learning process can

be time consuming and requires accurate

channel state

information.

• for reduced number of codewords

the performance is not satisfying.

• online machine learning framework.

• adapt the codebook,

and avoids the need for explicit

channel state information.

[145]

Limited Feedback K-means
• adapt well to the underlying channel distribution.

• reduce the feedback overhea.
K-means clustering will suffer with dimensionality.

reduces the codebook design problem

to an unattended clustering

problem in a Grassmann collector.

[146]

Limited Feedback
• DC;

• DNN

• Networks could learn the key

propagation characteristics of CSI.

• Clustering algorithms acquire the centroids

of the corresponding characteristic.

• The offline learning process can be

time consuming and requires accurate CSI.

• Network performance for smaller

antennas is lower than for larger antennas.

• the number of spatial lobes affects

the accuracy of the alignment direction.

Reduce the dimension of the full space

and the feedback overhead.
[147]

Environment awareness • NN

• artificial neural network based framework

for learning environment.

• aware beamforming codebooks.

• developed neural network architecture

takes into account hardware constraints.

• the optimizer book can still reach more than 85%

of the upper limit with 64

codes and 90% of the upper limit with 12 bits.

• nearly performs or even outperforms the same

64-service DFT codebook with just 16 services.

• learning environment aware beamforming

codebooks.
[148]

Exhaustive search algorithm (ESA) • CEO
• guarantee a result that is within 98% of that

obtained by ESA with substantially lower complexity.

• limitations due to the use of phase shifter.

(finite resolution)

• Design of efficient algorithms.

• Convergence analysis.
[149]

Large codebook sizes • RL
• Does not require channel knowledge.

• Evaluates hardware impairments.

• Complex deep reinforcement

learning architecture.

• Designing a deep reinforcement learning.

• relies only on receive power measurements

and does not require any channel knowledge.

• Framework capable of learning a codebook

for users in the surrounding environment.

[150]

Maximize the achievable rate K-means
proposed codebook design can recognize

and adapt to arbitrary propagation environment.

large amounts of channel state information (CSI)

is stored as the input data.

characteristics extracted from the clustering

centroids are used as the key channel

information.

[151]

Optimal precoding

policy for complex (MIMO)
• DRL

• proposed precoding framework can outperform the

conventional approximation algorithm

in the complex MIMO environment.

• Does not compare with any

other solution in the literatur.;

• DQN and DDPG-based agents

can learn the near

optimal policy for the precoder

selection problem.

[152]

Limited Feedback • SOM
• Simple implementation

• Better than DFT Codebook.

• Initial codebook depends

on prior massive channel data.

• ignores the impact of noise

over the channels samples.

proposed method is able to update the codebook

adaptively according to the instantaneous

channel state information.

[153]

Limited Feedback • GLP

• codebook adaptive to any Rician factors.

• proposed codebook substantially outperforms

conventional methods.

when the Rician factor is small, the impact

of the NLOS components is greater.

As a result, the average quantization

distortion increases.

• Deduces the distribution of the

angle between the channel vectors

and the LoS component, as well as

a precisely approximated distribution

of the angle in tractable form.

[154]

CSI Feedback • DL

• can be implemented in real-time

systems due to low computational

complexity.

• works in FDD mode.

• decreased training time as it

is unsupervised.

• Might not be as precise as CSI

trained DL models.

• design and evaluation of

two unsupervised

deep learning methods to

train a multi-tasking

DNN and directly design

the hybrid beamforming

using only quantized RSSI.

• method to design the codebook which

reduces the complexity of the DNN.

[155]

Balanced MRT-ZF combined optimization • DL

• Outperforms MRT and ZF in

terms of data rate.

• Computational complexity below

the optimal solution.

• A low number of user is used in

the simulation results.

• Only considers Rayleigh

Channel model.

• This paper uses DL to build

beamforming vectors based on the

sub-optimal solutions provided by the

MRT and ZF methods.

[156]

Interference mitigation (SI & CCI) • MLP

• The trained model presents

lower computational complexity than

the ODD approach.

• Training dataset depends on

complex optimization problem solution.

• The solution quality is coupled

to the dataset size.

• The proposed MLP-based

solution has scalability

issues.

• The proposed solution presents

a sub-optimal solution that is

comparable to the traditional

optimization-driven design

(ODD) approach.

[157]

SINR balancing and power minimization • BNN

• Achieves high beamforming

accuracy when combining supervised

and unsupervised learning.

• The beamforming prediction must

be trained previously.

• framework is designed based on the

CNN structure.

• it was proposed a hybrid two-stage BNN

with both supervised and unsupervised learning.

[158]

Increasingly popular, neural networks are often employed in precoder designs, as neural networks
can achieve highly accurate results even in non-linear and complex applications. For example, Ma
et al. [160] use a deep learning neural network to generate samples of artificial channels and train a
hybrid precoder with these samples, comparing the results with a simulated environment. On the
other hand, Elbir et al. [161] generated precoder from artificial channels using a convolutional neural
network, achieving better results than the heuristic, deep learning, and Multilayer Perceptrons (MLP)
solutions that were compared in the article. However, samples of real-world network indicators
are abundant in most cases, such as AoA and Angle of Departure (AoD) [162], the pilots present in
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different frame configurations [163], and samples from the channel [164], and, therefore, can also be
used to train neural networks and result in more accurate precoders, tailored to specific conditions.

Different strategies can be employed to generate precoder matrices. As the antenna array has
several radiating elements, it is possible to form sub-arrays in some cases. In [165], the authors
propose a two-step method for forming a hybrid precoder with sub-arrays of dynamic arrays. In
the first step, a hierarchical clustering algorithm is used to group the array antennas in order to
explore the characteristic variations of frequency-selective channels. In the second step, an algorithm
based on Principal component analysis (PCA) generates an optimal low-dimensional precoder with a
flat frequency response from a frequency-selective precoder. In [166], the authors propose splitting
a multi-user codebook into inner and outer precoders. The inner precoder is focused on spatial
multiplexing, while the outer one is focused on spatial division, that is, the inner precoder is divided
into user sectors, and the outer one divides the users within each cluster. The inner precoder uses
ZF beamforming to alleviate the interference among the users of a cluster. A DNN is employed to
solve the outer precoder problem. The article’s approach keeps the number of groups fixed, and the
performance is close to the established optimum, which uses ES for the best codebook.

Some authors criticize the traditional method of estimating the channel and specifying codebooks
separately. Attiah et al. [167] proposed a method employing a DNN that directly uses the pilots
received in baseband for an end-to-end design of the precoding matrix. Li et al. [168] proposed the
creation of a precoding matrix for beamforming with joint optimization. First, the precoding matrix is
created using a cross-entropy method. Later, ZF or block diagonalization algorithms can be used to
reduce interference between users with one and multiple antennas, respectively.

The precoding and combining project aided by ML techniques prove to be a possible way to
provide the adaptability and performance necessary for high-frequency communications. In addition,
it is possible to serve multi-user systems, contributing to the advances towards 6G, whose planned
network capacity is beyond the capacity achieved today. Concrete steps are being taken so that ML
techniques can be confirmed as a method for designing precoding matrices, such as the integration
with 5G NR and the interaction with IRS [155,169]. However, there is still a lack of alternatives in the
literature for real-time learning that can be applied to real-world equipment, which are challenges to
be explored by academia and industry.

In [170], the authors propose using a neural network with a structure based on random Fourier
features (RFF) to determine the most appropriate precoder matrix based on the user’s location only.
Their approach is capable of handling both LoS and NLoS channels [170]. They show that, depending
on how the users’ locations are obtained, it is possible to reduce or even eliminate the need for pilots.

Huang et al. [171] proposed a novel framework named Extreme Learning Machine that is capable
of jointly optimizing transmitting and receiving beamformers of MU-MIMO systems. They used
hybrid beamforming algorithms based on fractional programming and majorization-minimization
techniques. They show that the proposed solution not only outperforms the system sum rate of
conventional methods but also has a short computation time.

Due to high computational complexity and performance loss, Almagboul et al. [172] proposed
a method based on the diagonal loading technique along with phase-only named Robust Adaptive
Beamforming (RAB). Through integration with deep-learning for analog and digital beamforming and
Spatial matched Filter-based to scale an appropriate identity matrix. Also, DNN is used to find digital
beamforming weights combined with metaheuristic particle swarm optimization.

Lee et al. [152] present a performance evaluation of two techniques based on RL for precoding
problems in single-user MIMO systems. Similarly, Li et al. [173] brings an auto-precoder system
targeting to optimize the compressive channel sensing vectors and construct RF beamforming of
hybrid architectures. Their numerical results surpass conventional approximation algorithms in
complex MIMO environments.
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9. Security of AI models

6G is the latest instance of next-generation wireless networks. This new standard is expected to
rely heavily on AI models, especially NN-based ones (e.g., DL), for improved system performance
[175]. However, potential security risks associated with AI models are typically ignored. For example,
NN-based models are susceptible to a set of attacks known as adversarial attacks, being the most
common evasion attacks [176], data poisoning attacks [177], Byzantine gradient attacks [178], and
model extraction [179]. These attacks can drastically impact the performance of networks employing
AI.

The integration of ML to 5G and 6G technologies might lead to potential security issues. Trained
ML models can be tampered with to produce faulty results. In [180], the authors show that ML models
trained for mmWave beam prediction can be manipulated to output wrong predictions. In this work,
the authors consider poisoning ML-based beamforming prediction by using a technique known as an
adversarial machine learning attack. This technique tries to deceive ML models by feeding them with
craftily designed input signals so that they produce faulty predictions. The attack method adopted in
this work is the Fast Gradient Sign Method (FGSM), one of the most straightforward and powerful
attack types. It works by using the gradients of a neural network model to develop an adversarial
signal that is employed to evade the model. They propose an adversarial learning mitigation method
based on using the gradient of the victim’s model and then retraining it with adversarial samples and
their respective labels. By comparing the effective achievable rate, the proposed technique efficiently
defends ML models from such adversarial attacks.

Beam selection is a time-consuming and complex task performed by mmWave communication
systems. The issues associated with this task are mitigated by adopting DL solutions. However,
DL-based solutions are vulnerable to adversarial attacks. With these vulnerabilities in mind, the authors
of [181] study four different types of adversarial attacks and propose two methods of counterattacking
them: adversarial training and defensive distillation. Their results reveal that the proposed methods
effectively defend the DL models against the studied adversarial attacks.

ML algorithms, especially neural network-based ones, offer important benefits to next-generation
wireless networks. However, considering the security implications involved in their adoption is of
utmost importance and practically ignored by the research community. Therefore, security is also
a critical part of ML algorithms since attackers might be able to poison and confuse the models. In
this regard, the authors of [182] study how adversarial attacks can deceive and confuse trained DL
models employed in mmWave beam prediction applications. Their study employs the fast gradient
sign method attack, which adds a specially crafted noise signal to the input data to fool the DL
model. Furthermore, the authors propose a method to mitigate adversarial attacks on mmWave beam
prediction applications using iterative adversarial training. The proposed method can be applied to
other adversarial ML attacks. The results show that the model employing their method performs quite
close to that of a model not being attacked.
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Table 5. Precoding and combining in MIMO with hybrid and digital architectures.

Challenges Algorithm Highlight (pros.) Limitations (cons.) Key Contributions Ref.

Channel Estimation DL Solves two problems with a
similar approach.

• Large NN offline training
overhead.
• based on artificial channel
measurements.

A comparison between a DL
compressed sensing channel
estimation for MIMO and
deep learning quantized
phase hybrid precoding.

[160]

DL

• Lower computational
complexity.
• Imperfect CSI premise.
• Better than others state of
art greedy and sum-rate
optimization precoders.

Needs large training dataset
to provide robustness.

• A CNN that accepts an
imperfect channel matrix
and outputs analog precoder
and combiners.
• A exhaustive search
algorithm for analog
precoder to feed the CNN
training.
• A solution that is capable
of training with large
amounts of data.

[161]

DL

Good results with lower
computational complexity if
compared to SVD and
GMD-based methods.

The simulated
communications
environment is poorly
described.

• A novel framework that
incorporates DL into hybrid
precoding.
• A DNN with lower
computational complexity
requirements in the training
phase.
• DNN provided accurate
hybrid precoding while
supporting channel
feedback.

[162]

DL
The proposed solution can
be generalized to unseen
environments.

The training time was not
discussed to assess the
feasibility of the proposed
solution.

• Joint DNN architectures
for high generalization.
• DNNs achieve
outstanding performance in
scenarios where
downloading training
dataset is very limited.

[163]

Deep Learning
Integrated
Reinforcement
Learning (DLIRL)

The hybrid beamforming
method spectral efficiency
that surpluses the fully
digital precoding

As it is a new ML scheme, it
lacks a complexity
assessment to fairly compare
it to the other algorithms

The authors propose a new
way of combining DL and
RL for beamforming
leveraging high spectral
efficiency and overall
beamforming efectiveness

[174]

Dynamic subarrays AHC
Proposed hybrid precoding,
which can efficiently avoid
mutually correlated metrics.

• The authors do not
mention the simulation tools
used.
• The clustering algorithm
misses information about the
training phase.

• Optimal hybrid precoder
on PCA.
• Agglomerative
Hierarchical Clustering to
grouped dynamic subarrays.
• Energy efficiency for
passive and active antennas.

[165]

Two-stage precoding DL

Proposed an ML-based
approach to finding optimal
dimensions with good
accuracy and closer to the
brute-force solution.

• The authors do not
describe the dataset nor its
size and format.
• The training phase
required too many iterations.

• A DNN algorithm to
predict the dimension
output in MIMO.
• A customized DNN
algorithm to cope with the
requirements.

[166]

Hybrid, analog, and
Digital Precoding DL

• Generalizable for many
systems with many
parameters.
• Numerical results suggest
the performance of the
proposed approach is closer
to optimal.

Missing some ML algorithm
details.

• Proposes a joint channel
sensing and downlink
precoding solution that
avoids explicit channel
estimation.
• Introduces an end-to-end
design that directly builds
precoders from the received
pilots without the
intermediate channel
estimation step.

[167]

BF-based on IRS DL

• The combination of
BF-based on IRS with BS
enhances the system sum
rate.
• Uses a NN to achieve the
optimal configuration.
• Good generalization rate
achieved by ML algorithm.

• The convergence time was
not discussed.
• Different DNN
architectures could be
evaluated.

• A combined BF based on
BSs and IRS.
• An optimization method
for implicit channel
estimation.
• A DNN performance
assessment for BF.

[169]

(Continued on next page)
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Table 5. (Continued from previous page) Precoding and combining in MIMO with hybrid and digital
architectures.

Challenges Algorithm Highlight (pros.) Limitations (cons.) Key Contributions Ref.

Location-based DL
A method capable of
handling LoS and NLoS
propagation.

• The solution does not
predict the user location in
BF.
• The solution does not
predict the channel vector
directly.

• A supervised learning
method to map user location
to an appropriate precoder.
• Reduces the need for pilot
symbols.

[170]

Complexity
reduction DL

The proposed method has
low computation complexity
when compared with CNNs.

The computational
complexity relies on the
learning technology design
(CNN or ELM).

• Novel, robust, and
low-complexity Hybrid BF
algorithms.
• An optimization method
based on fractional
programming to provide
labels for the training set.

[171]

DL

Using PSO combined with
DNN, the authors reduced
computational cost in
managing antenna arrays.

Does not present accuracy,
which hinders the
performance assessment.

• A novel DL with
phase-only digital BF for
MIMO.
• A metaheuristic method
based on DL was used to
reduce the computational
complexity.

[172]

DRL

• Online adjustment of
parameters to minimize BER.
• Uses a bi-fold approach for
finding optimal precoding
policy and the codebook and
non-codebook-based
precoding.

• Does not compare with
any other solution in the
literature.
• Does not discuss the
convergence time of the
proposed algorithm.

A hybrid ML approach for
precoding policy for
complex MIMO systems.

[152]

DL

• Lower baseband
precoding and combining
training overhead.
• Detailed experimental
evaluation description
supports reproducibility.

Leveraging prior knowledge
with DL has an underlying
training cost to collect
information about the
end-to-end channel and
network training.

• A reduction of training
overhead compared to
classical (non-ML) solutions.
• A novel DL-based
approach to optimize
channel measurement
vectors.

[173]

Channel estimation
and Power
consumption

DL

• Can be implemented in a
real-time system due to low
computational complexity.
• Works in FDD mode.
• Short training time as it is
unsupervised.

Might not be as precise as
CSI-trained DL models.

• Evaluation of
unsupervised learning to
design the Hybrid BF.
• Use of ray-tracing model
in the deployment
environment.
• A loss function proposal
that is based on sum-rate for
classification and regression.
• Evaluation of non-DL and
DL hybrid BF for the realistic
channel model.

[155]

(End table)

Table 6 summarizes works found in the literature dealing with the security of AI models. It
presents the beamforming challenge involved, the algorithm employed to study how the attack and
counterattack measures affect the DL models’ performance, the benefits and limitations of the proposed
solutions, and their key contributions.

Therefore, as can be concluded from this section, it is of utmost importance to study and develop
secure AI solutions for 6G networks. This new attack surface poses enormous risks to users and
telecommunications companies if not adequately covered.
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Table 6. Security of AI Models.

Challenges Algorithm Highlight (pros.) Limitations (cons.) Key Contributions Ref.

Beam
prediction
under
adversarial
attacks

DL

The proposed
counterattack can be
used against a variety of
different adversarial ML
attacks.

To be effective, the
attacker must have
access to the gradient of
the loss function for a
given input instance,
which in turn implies
having access to the
model’s weights, which
is often unfeasible.

Proposes a mitigation
method that uses the
gradients of the victim’s
model to retrain it with
adversarial samples and
their respective labels
and mitigate adversarial
attacks, consequently
improving the security.

[183]

Proposes two methods
for counterattacking
adversarial attacks:
adversarial training and
defensive distillation.

[184]

• Studies how
adversarial attacks
confuse trained DL
models used for
mmWave beam
prediction.
• Proposes a method to
mitigate adversarial
attacks using iterative
adversarial training.

[182]

10. Limitations of AI-based Beamforming and Beam Management

AI-based beamforming and beam management have some limitations that need to be considered.
Some of these limitations are:

• Limited applicability: AI-based algorithms may work well in specific scenarios but may not be
suitable for other scenarios. For example, algorithms designed for pedestrian mobility may not
work well for high-speed mobility scenarios such as trains or urban vehicles.

• Reliance on training data: AI-based algorithms require large amounts of training data to learn the
optimal beamforming and beam management strategies. If the training data is not representative
of the actual operating environment, the performance of the algorithm may suffer.

• Limited generalizability: The performance of AI-based algorithms can be heavily influenced by
the training data used to develop them. Therefore, the algorithms may not generalize well to
new scenarios or environments where the training data does not adequately represent the target
environment.

• Complexity: AI-based beamforming and beam management algorithms can be complex and
require significant computational resources. This can increase the cost and power consumption
of the system.

• Limited interpretability: AI-based algorithms often rely on complex deep learning models, which
can be difficult to interpret. This can make it challenging to understand why certain decisions
are being made or to identify errors or biases in the algorithm’s output.

• Limited robustness: AI-based algorithms may be vulnerable to adversarial attacks or other forms
of interference that can disrupt their performance. This can limit their reliability in real-world
applications where security and robustness are critical factors.

• Limited scalability: As the number of antennas and users in a massive MIMO system increases,
the complexity of AI-based beamforming and beam management algorithms can become
prohibitively high. This can limit their scalability and make them less practical for large-scale
deployment.
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Overall, while AI-based beamforming and beam management have shown promising results in
certain scenarios, they are not a one-size-fits-all solution and must be carefully designed and evaluated
for each specific use case.

11. Open Problems and Future Research Directions

This section discusses the challenges of AI-aided beamforming management solutions and
highlights various promising research directions.

11.1. Centralized and Decentralized Learning

With the inception of Cloud-RANs (C-RANs), collaborative and centralized joint processing of
information became possible [185]. This joint processing can improve the system capacity through the
joint processing of the information gathered from several different nodes [186].

Furthermore, in the context of AI-aided beamforming management, C-RANs offers the possibility
of enhancing the solutions to related problems by training AI algorithms with data coming from
several different and localized radios, which can hugely improve latency, QoS, and spectral and energy
efficiency [187,188].

Centralized learning seems a straightforward and logical approach since massive amounts and
different types of information can be gathered and used to train the algorithms better. Besides that,
centralized processing means that enough storage and computing power is available, which is a
considerable advantage over the decentralized processing occurring at radios with insufficient storage
and processing power.

However, most of the surveyed works don’t consider centralized processing or training
approaches, relying almost exclusively on non-collaborative distributed ones. For instance, centralized
processing can be used to solve the codebook design and beam-selection problems so that a given
user can be served by multiple beams from different radios, increasing the system capacity [189].
Additionally, considering centralized processing, codebooks can be optimized to minimize the total
transmit power subject to several constraints, such as the users’ required rates [190].

Therefore, studying and proposing centralized training or processing approaches that take
advantage of the vast processing power, storage, and surplus of data is a promising research direction
with several still open problems.

11.2. Reproducible Research

Reproducibility is the basis of the scientific method. Research is said to be reproducible when all
related information, including text, data, and code, is made accessible such that interested researchers
can reproduce the results. The reproducibility of published results and the use of commonly available
datasets for benchmarking are essential for creating confidence and drawing precise conclusions [191].

However, even though the number of works on beamforming, including AI-aided ones, increases
daily, most of those works employ simulated and private datasets, making it difficult to benchmark the
proposed solutions. For example, in [192], the authors report that only around a third of the considered
papers share the dataset.

The IEEE Communications Society has created a study group called Machine Learning for
Communications-Emerging Technologies Initiative (MLC-ETI) to increase research reproducibility.
The group is dedicated to promoting the utilization of ML in communications by providing the source
code and datasets of several published works. Their main objective is to define a set of common
communications problems and their corresponding source code and datasets with which researchers
can benchmark their models consistently and plausibly.

Therefore, openly available and widely spread datasets for benchmarking are of utmost
importance to advance not only AI-related studies but also the research of the whole scientific
community. Furthermore, open-source initiatives are significant in accelerating the embracement
of AI-based solutions.
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11.3. Semi-supervised, Active, and Reinforcement Learning

Most works studied for this survey use supervised learning models trained with synthetic
datasets, which might not represent real-world environments. Adopting supervised learning models
in wireless communications is highly desirable since they present high performance. However, as
in other research areas, labeled datasets are usually unavailable, cannot be accurately created, or are
costly and time-consuming to be created.

In those cases where labeled samples are not available, unsupervised learning would be the
intuitive choice. Additionally, as shown in [193], the performance of unsupervised learning models
might be higher than that of supervised ones. If some labeled samples are available, semi-supervised
learning becomes a promising solution, exploiting the advantages of supervised and unsupervised
learning.

Another option is active learning, an exciting approach to solving the labeling problem.
With active learning, only a tiny fraction of samples are manually labeled and used to train a
classification model that will be used to label the remaining samples automatically. During this
process, automatically labeled samples can be used to retrain the model and improve its classification
accuracy. A few recent studies have started looking into and using this kind of learning [194].

Yet another option is using reinforcement learning algorithms, which do not need a training
dataset and learn a mapping, called policy in this context, between a given state and the action that
returns the highest reward based on trial and error attempts. With this learning approach, it is possible
to have a beamforming system that selects the best beams based on the current state of the channel
[195].

Therefore, future research works should focus on understanding and advancing the use of
unsupervised, semi-supervised, active, and reinforcement learning models.

11.4. Prototypes and Real-World Demonstrations

The necessity for prototyping beamforming and other technologies is paramount to achieving
the ideas envisioned for 5G and 6G systems. Additionally, prototyping is necessary to assess whether
these systems’ main performance demands on energy and spectral efficiencies are satisfied.

Prototyping is vital since computer-based simulations cannot wholly capture the complexness
of the several unanswered problems, which might prevent AI-aided beamforming from becoming
a commercially viable solution. For instance, to thoroughly understand the propagation aspects
of the channel, researchers also have to understand the impairments caused by the hardware (e.g.,
RF circuitry imperfections, synchronization issues, etc.) [196]. All these impairments must be well
understood and accounted for to ensure effective and seamless services to users.

The bulk of the works reviewed for this survey has shown a lack of real-world implementations
and demonstrations. Instead, most works concentrate on simulation-based assessments of the proposed
algorithms and models and neglect the discussion of their prototyping. Therefore, this gap highly
suggests a vast potential for research on implementing proof of concepts that account for and propose
solutions to the joint channel and hardware circuitry impairments.

11.5. Privacy and Security

User data privacy is one of the most, if not the most, essential worries of telecom providers. But,
on the other hand, as the use of ML become widespread in business, telecom providers are finding
that ML models can make the most of the enormous flow of data they have in their possession.

ML models take advantage of the vast and rich datasets created by combining user data. Therefore,
one of the challenges met during the deployment of ML models is how to train such models without
exposing user data to privacy risks. Therefore, it is essential to devise security schemes that allow
these models to be trained with data from different users without jeopardizing user privacy. One
possible solution to this challenge is the use of federated learning. In this approach, user data is not
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sent to a centralized entity (at the BS) responsible for training the ML model. Instead, what is sent is
the gradient information data collected from the users, which is then used to update the ML model
[197]. This way, federated learning could be employed to avoid having users send raw CSI back to the
BS for training, which mitigates both privacy and security risks [198].

Another critical concern is the security of the ML models, mainly neural network-based ones,
since they are subject to adversarial attacks [199]. In this kind of attack, the performance of ML models,
and consequently that of networks employing such models, can be drastically impacted by the addition
of fake data to the training dataset. Therefore, in [200,201], the authors employ autoencoders, a kind
of neural network, to tackle network security problems since they have shown the ability to detect
anomalies under several different circumstances.

Unfortunately, the study of how adversarial attacks can affect the performance of systems
deploying ML-assisted beamforming is still in its infancy, requiring much more attention as it poses
high risks to such systems. However, a few works are already available in the literature discussing
such issues [181].

Therefore, there is considerable interest in studying and building privacy-preserving systems and
ML models that are robust against adversarial attacks.

11.6. Computer Vision

Computer vision is a subarea of AI dealing with how machines acquire high-level understanding
from data from optical sensors like visible-light and LiDAR cameras. Its objective is to understand and
reproduce the tasks the human visual system can carry out through computers [202].

Due to their high directivity and high penetration loss, mmWave and THz communications are
mainly carried out through LoS links. Moreover, they are highly susceptible to blockages, requiring
systems employing such bands to resort to beamforming techniques. Nonetheless, selecting the
optimal beams in mmWave and THz links often requires significant beam training overhead, occupying
necessary radio resources and decreasing spectral efficiency. This challenge motivates the design of
novel solutions to select the best beams with low training overhead [203].

The reliance on LoS links and the employment of narrow beams at such frequencies renders the
information on the physical location of the devices and the geometry of the surrounding environment
particularly important. That prompts the use of sensors, such as visible-light and LiDAR ones, that can
provide information on the position of the devices and a 3D representation of the surroundings so that
the communication terminals can allocate the best beams or even predict blockages and take preemptive
handover actions. Unlike traditional CSI-based methods, optical sensor-aided beamforming methods
do not require CSI measurements, and they can also simultaneously decide the best beams for both
transmitter and receiving devices. In addition, the accuracy of those methods can be improved by
adding GPS information or fusing it with optical and CSI data [204].

Optical sensor-aided beamforming is a new and hot research topic attracting attention recently.
It has several open problems ranging from handover prediction, passing by beam, and base station
selection to received power prediction. The alliance between computer vision and ML algorithms
can make the most out of those optical-based data and find models that mitigate or even solve all
the problems mentioned earlier. To show the potential of employing optical information, the authors
of [205] use LiDAR data to train a CNN-based model to predict blockages and preemptively initiate
handover procedures.

Therefore, the initial results on this subject indicate that using computer vision, ML algorithms,
and optical data can bring huge gains to beamforming communications in mmWave and THz
frequencies.

11.7. Beamforming at low SNR regimes and joint optimization

As can be concluded from this survey, beam selection, beam tracking, and blockage prediction are
the most challenging tasks in beamforming. These tasks get more complicated when beamforming
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systems operate in low SNR scenarios. For instance, classical eigen-subspace decomposition and
projection methods suffer from severe performance degradation at low SNR levels [206]. Further, the
high accuracy of MUSIC-based methods is only achieved when many samples are available, and the
systems operate at high SNR levels. On the other hand, some very initial works show that ML-based
solutions can outperform classical beamforming methods in low SNR scenarios with a limited number
of channel information samples [207]. On the other hand, computer vision and ML algorithms fed
with sensor and GPS data seem better contenders to tackle this problem. Therefore, the study and
design of high-accuracy methods for beam selection and tracking in low SNR scenarios with limited
samples remain an open issue.

Two quite exciting and still largely open issues beamforming systems face are the joint
optimization of parameters like beams, transmission power, interference, etc., to maximize spectral
and energy efficiency and joint beam selection and blockage prediction tasks. Solutions to these issues
are highly desirable features for mmWave and THz systems. However, the extensive body of literature
investigated for this survey lacks detailed studies tackling them. For example, in [208], the authors
propose an online learning approach to optimize beam training, selection, and handover procedures.
However, they do not study the effects high mobility has on the system’s performance. Our research
shows that today’s models do not achieve high accuracy for such joint problems and, therefore, there
still is room for advancement.

11.8. Channel Estimation

Channel estimation in mmWave and THz systems employing beamforming and beam
management technologies is challenging due to several factors, such as the complexity of the channel
(estimation of a large number of channel coefficients accurately), limited coherence time (short
coherence time makes accurate channel estimation difficult), susceptibility to impairments (signal
propagation at these frequencies is more susceptible to attenuation, scattering, and path loss), sparsity
of the multipath components (signals at these frequencies are directional and sparse with few dominant
paths, requiring systems to capture and model these paths), hardware constraints (limited hardware
resources make channel estimation more challenging since it needs to be done efficiently and with low
complexity), and beam misalignment (misalignment might occur due to changes in the user location or
mobility, which can degrade the beamforming performance) [209–211]. Addressing these challenges
requires developing advanced channel estimation techniques that can accurately estimate the channel
parameters while also being computationally efficient and scalable.

Some open problems in this topic include:

• Developing robust and efficient channel estimation algorithms that can handle the sparsity of
the channel and limited coherence time.

• Investigating new channel estimation techniques that can take advantage of the hardware
constraints and limitations of mmWave and THz systems, such as low-resolution
analog-to-digital converters (ADCs) and limited feedback bandwidth.

• Addressing the challenges of beam misalignment and developing adaptive channel estimation
algorithms that can adjust to changes in the user location or mobility.

• Investigating the use of machine learning techniques for channel estimation in mmWave and
THz systems, such as deep learning and reinforcement learning, which can potentially improve
the accuracy and efficiency of channel estimation.

• Multipath interference: In mmWave and THz systems, the multipath components can arrive at
the receiver with different delays and phases, leading to interference and reduced signal quality.
Channel estimation algorithms need to be designed to handle the interference and accurately
estimate the channel coefficients.

• Environmental effects: The mmWave and THz signals are highly sensitive to environmental
factors such as atmospheric absorption, scattering, and reflection. These effects can cause
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significant variations in the channel characteristics, making it challenging to estimate the channel
accurately.

• Scalability: The use of a large number of antenna elements in mmWave and THz systems can
lead to scalability issues in channel estimation. Efficient channel estimation algorithms that
can handle a large number of antennas are needed to enable the practical deployment of such
systems.

• Hybrid beamforming: In practical mmWave and THz systems, hybrid beamforming techniques
are often used, which combine digital and analog beamforming. Channel estimation algorithms
need to be designed to handle the complexity of such hybrid beamforming architectures.

Artificial intelligence can be used to address these challenges. This includes developing efficient
algorithms that can handle the sparsity of the channel, multipath interference, and environmental
effects. Machine learning techniques like deep learning and reinforcement learning can be used to
improve the accuracy and scalability of channel estimation, especially in systems with hardware
constraints and hybrid beamforming.

12. Conclusions

The paper presented a thorough overview of beamforming and beam management methods in
the context of 5G and 6G systems. AI-aided beamforming and beam management are one of the most
active research topics at the interface between communications and AI. Significant advances have been
achieved in this topic in recent years. However, there are still many issues to be overcome until the
technology is mature enough to be incorporated into communication standards. This article discussed
not only the problems but also promising directions, such as increasing security and privacy, and using
larger, publicly available datasets, to better evaluate new algorithms.
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