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Abstract: The COVID-19 pandemic has affected millions of people globally, with respiratory organs
being strongly affected in individuals with comorbidities. Medical imaging-based diagnosis and
prognosis have become increasingly popular in clinical settings to detect COVID-19 lung infections.
Among various medical imaging modalities, ultrasound stands out as low-cost, mobile, and
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radiation-safe imaging technology. In this comprehensive review, we focus on ultrasound-based Al
studies for COVID-19 detection that use public or private lung ultrasound datasets. We surveyed
articles that used publicly available lung ultrasound datasets for COVID-19 and reviewed publicly
available datasets and organize ultrasound-based Al studies per dataset. We analyzed and tabulated
studies in several dimensions, such as data preprocessing, Al models, cross-validation, and evaluation
criteria. In total, we reviewed 42 articles, where 28 articles used public datasets, and the rest used
private data. Our findings suggest that ultrasound-based Al studies for the detection of COVID-19
have great potential for clinical use, especially for children and pregnant women. Our review also
provides a useful summary for future researchers and clinicians who may be interested in the field.

Keywords: COVID-19; deep learning; artificial intelligence; ultrasound; review

1. Introduction

1.1. Coronavirus Disease 2019

The World Health Organization (WHO) declared the Coronavirus Disease 2019 (COVID-19) a
global pandemic in early March 2020. Despite numerous preventive measures to slow the spread
of this virus, more than 681 million cases and 6.81 million deaths have been reported worldwide to
date [1]. This new coronavirus and common respiratory infections have been known to strongly affect
the respiratory organs of the human body, particularly individuals with comorbidities such as chronic
heart disease, diabetes, etc. [2,3]. As the number of infection cases refusing to eschew altogether
with new variants becoming rampant, medical imaging-based diagnosis and prognosis have been
becoming more popular in clinical settings over time, where various medical imaging modalities
such as computed tomography (CT), X-ray, ultrasound, etc. have been used to detect COVID-19 lung
infection [4-6].

1.2. Ultrasound in COVID-2019 Diagnosis

Medical imaging is undeniably the most important tool for the diagnosis and management of
treatments in clinical settings [7]. Despite ultrasound being known to be a noisy imaging modality
compared to various other imaging modalities with exceptional image quality (i.e., CT, magnetic
resonance imaging (MRI), X-ray, etc.) [8], it stands out for being a low-cost, mobile, and, above all,
non-ionizing medical imaging technology [9]. Because ultrasound is radiation-safe, it is the preferred
imaging modality for children and pregnant women [10] and has been widely used in the detection
and severity assessment of COVID-19 for the same patient group [11]. Lung infection due to COVID-19
can be seen and assessed in chest ultrasound images.

Typically, there are three major tasks that can be performed on lung ultrasound images for
COVID-19 patient management, (i) detection of pneumonia infection in the lung (e.g., [12-15]), (ii)
pneumonia type/severity classification (e.g., [16-20]), and (iii) segmentation of infection in the lung
(e.g., [21]). There are usually three types of artifacts that can appear in a lung ultrasound image, such
as A-lines, B-lines, and irregular pleural lines (see Figure 1) [22]. When ultrasound pulses reach the
surface of the lung, healthy lungs exhibit horizontal lines parallel to the surface of the transducer,
known as A-lines. On the other hand, a lung infected with pneumonia shows irregular pleural lines,
as well as brightness in the lung (see Figure 2). In contrast, COVID-19, a special kind of pneumonia,
typically shows discreet vertical reverberation artifacts, known as B lines, which originate from the
pleural surface (see Figures 1 and 2) [18,19]. Based on the presence and appearance of these artifacts,
pneumonia can be detected and classified as community-acquired pneumonia (CAP) and COVID-19,
respectively. Finally, using segmentation, the spread of pneumonia can be estimated, which can be
used for the severity scoring criteria for COVID-19 [23,24].
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Figure 1. Demonstration of different types of lines that may appear in lung ultrasound images. A-lines
are marked with blue, B-lines are marked with yellow, and the pleural line is marked with green [12].

Large area with
white reflection

/

Small dotted like

No consolidation reflection

or
white reflection —

Figure 2. Example ultrasound images of a healthy lung (left), community-acquired pneumonia
(CAP)-infected lung (middle), and COVID-19-infected lung (right) [12].

1.3. Al for Ultrasound-based COVID-2019 Management

To accelerate the detection and classification of CAP and COVID-19 in clinical settings, artificial
intelligence (Al) algorithms [4,25-27] have recently been introduced and have shown great promise,
which can reduce the burden of expert radiologists/clinicians to detect and assess the severity of
pneumonia. Several studies recently reviewed these Al techniques used in COVID-19 detection and
analysis in ultrasound [4,25,26,28-32]. Most of these review works have been performed between late
2019 and early 2022 and mainly focused on discussing Al techniques used in different ultrasound-based
COVID-19 studies. However, Al methods require a sufficient volume of training data for optimal
optimization of Al models to make clinically acceptable diagnostic decisions. In addition, the
reproducibility of the reported accuracy in the existing studies mostly relies on access to the exact
dataset that has been used in the studies. However, existing review articles did not emphasize studies
based on the use of publicly accessible data, which could be a critical factor in the reproducibility
of the accuracy reported. Furthermore, many existing reviews on Al-based COVID-19 detection in
ultrasound are not comprehensive in covering all the works in the field.

1.4. Main Contributions

In this comprehensive review, we include ultrasound-based impacting AI COVID-19 studies that
used a public data set or a private data set, or both. A summary of our contributions is the following:

1. We exhaustively surveyed articles that used publicly available lung ultrasound datasets for
COVID-19. To our knowledge, this survey is the first organized to focus on the accessibility of
the data set.

2. We list and review the publicly available lung ultrasound COVID-19 datasets and organize
ultrasound-based Al studies per dataset.

3. We analyze and tabulate studies in several dimensions, such as data preprocessing, Al models,
cross-validation, and evaluation criteria.

4. We summarize all reviewed works in a tabular fashion to facilitate an easier comparison among
studies.
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5. Last by not least, we also include many ultrasound-based COVID-19 Al studies that used private
lung ultrasound datasets to elucidate a clear picture of the field.

1.5. Search Strategy

We searched Google Scholar! for all scholarly publications: peer-reviewed journal papers, papers
published in the proceedings of conferences or workshops, and non-peer-reviewed pre-prints from
January 2020 to December 2022. The search query was (COVID-19 | corona virus disease)

(detect* | predict* | class*) (ultrasound). We also included quality unpublished
preprints. We selected an article if

1. Its full text is available online or it is published in any of the common and well-known
publications, which are usually accessible through an institutional subscription. In our case, we
took help from fellow scientists working in top North American universities for accessing papers,
if not accessible through our own institutional subscription.

2. It used any form of artificial intelligence techniques (i.e., conventional machine learning or deep

learning) for COVID-19 detection or analysis from lung ultrasound data.

. It used a lung ultrasound dataset of COVID-19, which is publicly available.

. The hypothesis of the article is supported by its qualitative and quantitative results.

5. The article maintained a minimum standard of quality (e.g., abstract or methodology section is
not missing, no reference missing error, clear legends/axis titles in the figure, etc.)

= W

In total, we have reviewed 42 articles in this study, where 28 articles used public datasets (exhaustively
included) and the rest used private data (non-exhaustive).

1.6. Paper Organization

The remainder of the paper is organized as follows. Details of the datasets, the collection procedure
of the ultrasound images, and the image pre-processing techniques are presented in Section 2. An
overview of the architecture of the Al models employed in the studies is presented in Section 3. Specific
dataset-based studies with their methods and findings are tabulated and discussed in Sections 4, 5, 6,
and 7. Discussion and future work are described in Section 8. Finally, concluding remarks are presented
in Section 9.

2. Input Data

Supervised learning using deep neural networks, a category of Al, has been extensively used
for medical imaging applications in recent years [33]. Adequate training of deep models for medical
data requires prohibitive amounts of annotated data at the image/pixel/voxel level. Using such deep
models on ultrasound data for COVID-19 detection and analysis is also not an exception. Furthermore,
it is also critical to have public access to such dataset as many research group lacks the clinical setup
for data collection. In addition, reproducing a claimed performance by an Al method and possible
future improvement greatly relies on access to the exact dataset. However, there are only a few publicly
accessible lung ultrasound datasets available. In this section, we discuss such datasets and their
attributes in detail.

2.1. Public Dataset

In Table 1, we list publicly accessible COVID-19 ultrasound datasets and their associated class
labels. We briefly discuss each dataset below:

1 https:/ /scholar.google.com/
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Table 1. List of publicly accessible COVID-19 ultrasound datasets.

| SL | Dataset | Year | Number of Samples | Class Distribution | Note |
. COVID-19 (35%)
(216 pa‘t1ents) Bacterial Pneumonia (28%) .19
1 POCUS 2020 202 videos Viral Pneumonia (2%) Link
59 images Healthy (35%)
(35 patients) Score 0: Continuous A-line (34%)
pa’ Score 1: Alteration in A-line (24%) . o
2 ICLUS-DB 2020 277 videos ; 1 lidati o Link
58924 frames Score 2: Small consolidation (32%)
’ Score 3: Large consolidation (10%)
COVID-19 (29%)
242 videos CAP (20%) . 13
3 COVIDx-US | 2021 29,651 images non-pneumonia diseases (39%) Link
Healthy (12%)

POCUS: Born et al. [12,13] published and have been maintaining a lung ultrasound dataset, namely
point-of-care ultrasound (POCUS), since 2020. This dataset initially contains 261 lung ultrasound
recordings combining 202 videos and 59 still images collected from 216 patients. In this dataset,
data from 92, 90, 73, and 6 are associated with COVID-19, healthy control, bacterial, and viral
pneumonia, respectively. These data were collected using either convex or linear probes. Each film
in their dataset also comes with visual pattern-based expert annotation (e.g., B-Lines or consolidations).

ICLUS-DB: Soldati et al. [24] published an internationally standardized lung ultrasound acquisition
protocol along with a four-level scoring scheme in March 2020. This dataset contains 277 ultrasound
videos (consisting of 58,924 frames) of 17 confirmed COVID-19, 4 suspected COVID-19, and
14 healthy subjects. These data were collected at various clinical centers in Italy using various
ultrasound scanners by either linear or convex probes. To evaluate the progress of pathology, this
data consortium defined a four-level scoring system ranging from 0 to 3. Continuous pleural-line
and horizontal A-lines indicate a healthy lung with a score of 0. Score 1 is tagged for initial
abnormality when alterations in the pleural line appear. Score 2 is more severe than 1 and
is associated with small consolidations in the lung. Score 3 is the most severe grade, which is
associated with the presence of a larger hyperechogenic area below the pleural surface (i.e., white lung).

COVIDx-US: Ebadi et al. [34] published an open-access lung ultrasound benchmark dataset gathered
from multiple sources in 2021. The dataset was assembled from various sources (e.g., POCUS Atlas,
GrepMed, Butterfly Network, and Life in the Fast Lane). This dataset (i.e., version 1.5) contains 242
videos (with 29,651 extracted images) corresponding to 71 COVID-19, 49 CAP, 94 non-pneumonia lung
diseases, and 28 healthy classes.

2.2. Private Dataset

In contrast to the publicly accessible datasets described in section 2.1, there were studies that used
private datasets and some of these datasets are mentioned as available on request. However, these
data sets have variations in terms of patient origin, hospital location, and data collection protocols. We
list these datasets in Table 2 with the number of available samples and associated labels/classes. We
also briefly summarize the imaging protocols and types of transducers used in those datasets below.

Regardless of the variation of ultrasound scanners, scanning areas on skin targeting the lung
are typically similar across datasets. Durrani et al. [35] considered six distinctive scanning regions
in their study. Panicker et al. [36] adopted the scan protocol of Soldati et al. [24] and also aimed at
six acquisition points for data extraction. Quentin Muller et al. [37] scanned on ten thoracic sites in
their study. Although video of the costophrenic region was excluded in [38], most studies followed
a twelve-zone scanning protocol for the data acquisition process [21,39-43]. Furthermore, Mento
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et al. [44] used fourteen scanning areas, following the scan protocol of by Soldati et al. [24]. Another
study [45] followed the scan protocol by Mento et al. [46] and Perrone et al. [47].

Variations in transducer types and frequency were also observed in the studies. For example, some
studies used low-frequency (1-5 MHz) curved array [36,39—41] and phased array [35,38] transducers.
On the other hand, Roshankhah et al. [45] used both linear and convex transducers in multi-sites with a
wide range of center frequencies. Similarly, La Salvia et al. [42] used both linear and convex transducers
with a frequency of 5 and 12 MHz, respectively, and Mento et al. [44] used 3.5 to 6.6 MHz in their study.

Table 2. List of private (non-accessible publicly) COVID-19 ultrasound datasets. Acronyms- N: number

of samples, Tr: training, Va: validation, and Te: test.

SL Dataset Year N Tr/Va/Te Classes Note
1 Lond.on Health Sciences Centre’s 2020 (243 patients) ~80/20 COVID, Non-COVID, -
[ZX;e]rtlary hospitals (Canada) 600 videos; 121,381 frames Hydrostatic Pulmonary Edema
2 ULTRACOV (Ultrasound in 2022 (28 COVID-19 patients) N A-Lines, B-Lines, Available upon
Coronavirus disease) [39] 3 sec video each consolidations, and pleural effusions request
3 Huoshenshan Hospital 2021 (31 patients) ; . Normal, septal syndrome, Source Link2
(Wuhan, China) [40] 1,527 images interstitial-alveolar syndrome, ” :
white lung
4 Royal Melbourne Hospital 2022 (© patients) - Normal, consolidation/collapse Available upon
(Australia) [35] 27 videos; 3,827 frames request
5 Ultrasound lung data 2021 (300 patients) 80/20 A-line artifacts, B-line artifacts,
[34] 1530 videos; 287,549 frames presence of consolidation/pleural effusion
6 Huoshenshan Hospital 2022 (31 patients); 2,062 ~ Normal, septal syndrome, Source Link3
(Wuhan, China) [41] images interstitial-alveolar syndrome, : B
white lung
A-lines with two B-lines,
. L slightly irregular pleural line,
7 Fondazione IRCCS Policlinico San 2021 (450 patients) 75/15/10 artefacts in 50% of the pleura,
Matt'eo s Emergency Department 2,908 frames damaged pleural line,
(Pavia, Italy) [42] visible consolidated areas,
damaged pleura/irregular tissue
8 Third People’s Hospital of Shenzhen 2020 (71 COVID-19 patients) _ A-line, B-l?ncl
(China) [48] 678 videos; 6,836 images pleural lesion,
pleural effusion
Fondazione Policlinico Universitario ) .
9 Agostino Gemelli (Rome, Italy), 2021 (82 patients) - 4 severity levels -
Fondazione Policlinico San 1,488 videos; 314,879 frames [24]
Matteo (Pavia, Italy)
[44]
10 CHUV (Lausanne, Switzerland) 2020 (193 patients) 80/20 True (experts’ approval), -
[37] 1,265 videos; 3,455 images False (experts’ disapproval)
11 [\i)r]ious online sources 2022 792 images - COVID-19, healthy
12 Spain, India 2021 (10 subjects) B Adlines, lack "ff Qﬂ"‘es' Available upon
[36] 400 videos, 5,000 images appearance of B-lines, request
confluent appearance of B-lines,
appearance of C-lines
13 Private clinics (Lima, Peru) 2021 1,500 images - Healthy, COVID-19 Available upon
[50] request
BresciaMed (Brescia, Italy), Valle del
Serchio General Hospital (Lucca, Italy),
Fondazione Policlinico Universitario Healthy,
14 A. Gemelli IRCCS (Rome, Italy), Fondazione 7021 (32 patients) 90/10 . . ’ .
Policlinico Universitario San Matteo IRCCS 203 videos; 1,863 frames . indentation of pleural line,
(Pavia, Italy), and Tione General Hospital discontinuity of the pleural line, white lung
(Tione, Ttaly) [45]
15 Beijing Ditan Hospital 2021 (27 COVID-19 patients) ~ _ Severe, non-severe -
(Beijing, China) [43] 13 moderate, 7 severe, 7 critical
Cancer Center of Union Hospital,
West of Union Hospital, Jianghan Cabin Normal, presence of 3-5 B-lines,
16 Hospital, Jingkai Cabin Hospital, 2021 (313 COVID-19 patients) >6 B-lines or irregular pleura line,

Leishenshan Hospital
[21]

10 second video from each

fused B-lines or thickening pleura line,

consolidation

Figure 3 presents a pie-chart showing the percentage of articles, reviewed in this study, per lung
ultrasound datasets.
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Figure 3. A pie-chart showing the percentage of reviewed articles in this study per lung ultrasound
datasets.

2.3. Data Pre-processing and Augmentation

Various image processing techniques are typically used before feeding the data to AI models.
Image processing techniques include, but are not limited to, curve-to-linear conversion, image resizing,
intensity normalization, standardization, augmentation, etc. In this section, we briefly discuss different
image pre-processing techniques used in the reviewed articles.

2.3.1. Curve-to-linear Conversion

Acquired ultrasound videos and images using convex transducers are typically fan-shaped (i.e.,
narrower close to the probe surface, while wider at depth). On the contrary, ultrasound videos
and images that use linear transducers are usually rectangular in shape. Thus, harmonizing images
acquired by convex and linear transducers requires the conversion of fan-shaped images to rectangular
images. Therefore, various automatic built-in conversion techniques in the scanner, as well as
external user-defined interpolation techniques [51], are typically used for this conversion task, and
ultrasound-based COVID-19 Al studies are not an exception [16].

2.3.2. Image Resizing

Image resizing is the most common image pre-processing technique used for Al model training.
Typically, ultrasound images come with various resolutions in terms of pixel count. On the other
hand, Al models, especially deep learning models, typically require all input images to be of equal
dimension. In addition, the larger input image dimension and the number of channels cause a higher
computational overhead in the Al model optimization process. Therefore, Al studies often resize
input images to a widely used common dimension across datasets. Most of the reviewed articles
in this paper, for example, [37,49,50,52-55], etc., also used the common image dimension of 224 x
224 pixels, as well-known computer vision deep learning models are typically designed to intake
images of 224 x224 pixels. However, other image dimensions are also found for ultrasound COVID-19
studies. For example, Karar et al. [56] resized all ultrasound images to 28 x28 pixels to avoid a higher
computational overhead. Furthermore, Mateu et al. [57], Durrani et al. [35], Muhammad and Hossain
[58], and Gare et al. [15] resized their ultrasound images to 254 x 254, 806 x550, 512512, and 624 x464
pixels, respectively.

2.3.3. Intensity Normalization

Intensity normalization is another common image pre-processing technique used in Al studies.
This process ensures a common intensity range across images and datasets. In most cases, all image
data are converted to a common intensity range of [0, 1], or [0, 255] [55], followed by mean subtraction
and division by standard deviation [37,43,45,58,59].
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2.3.4. Image Augmentation

Image augmentation is a widely used technique in Al studies, which is used to increase the
number of training data, as well as increase the variation and diversity in the appearance of an image.
one of the most prevalent steps that have been executed in most of the studies. Various conventional
(as in Hussain et al. [60]) and learning-based data augmentation [61] techniques are present in the
literature. Conventional image augmentation techniques such as random rotation, horizontal and
vertical flipping, histogram equalization, random image shifting, zooming in and out, and/or a
combination of these operations, etc., are more prevalent in Al studies, and articles in this review
(e.g., Born et al. [12], Gare et al. [15], Roy et al. [20], Arntfield et al. [38], La Salvia et al. [42], Nabalamba
[49], Rojas-Azabache et al. [50], Muhammad and Hossain [58], Adedigba and Adeshina [59]) mostly
adopted this type of augmentation.

2.3.5. Other Image Processing Techniques

Apart from the common image pre-processing techniques discussed above, there are other
processes that are often used in ultrasound Al studies. Ultrasound images are known to be a noisy
modality [62]. Therefore, ultrasound-based studies often use noise reduction filters for pre-processing
of images [18], such as circular averaging filter [63], median filter [64], non-linear diffusion filter [65],
contrast-limited adaptive histogram equalization (CLAHE) [66], etc.

Ebadi et al. [34] performed several pre-processing operations to make resulting ultrasound images
in COVIDx-US* dataset easily usable to Al models. They cropped video frames into rectangular
windows to remove the background or visible text from the image periphery. Any video frame with a
moving pointer on it was also ignored when frames were extracted to use as images.

3. Al in Ultrasound COVID-2019 Studies

The accuracy of identifying COVID-19 infection and assessing its severity is based primarily on
the expertise of clinicians, which is often difficult and time-consuming. To overcome this limitation, Al
approaches have been widely used in recent years. Al approaches used in COVID-19 ultrasound studies
can be categorized into conventional machine learning and deep learning approaches. Conventional
machine learning approaches (e.g., support vector machine (SVM), linear regression, etc.) typically
require hand-engineering of features, which are often difficult to define optimally [60]. Overcoming
this limitation, deep learning using convolutional neural networks (CNN) has exploded in popularity
throughout the last decade. There are various CNN architectures, which have been widely used on
natural image and medical image-based classification and segmentation tasks. However, medical
imaging data are often very difficult to collect, which results in a small training data cohort. To
overcome this limitation, deep learning on medical imaging often leverages the transfer learning
strategy, where the deep model is pre-trained on a much larger natural image dataset and then
finetuned on the smaller medical data. This transfer learning strategy is also used in many articles
(for example, Nabalamba [49], Rojas-Azabache et al. [50], Diaz-Escobar et al. [67], Al-Jumaili et al.
[68], Barros et al. [69]) we reviewed in this study. In addition, many studies in this review (for
example, Born et al. [12], Diaz-Escobar et al. [67]) used cross-validation techniques to avoid overfitting.

3.1. AI Models

In Table 3, we list the articles reviewed in this study and the corresponding Al methods used
by these articles. We also mark in the table whether a study used conventional machine learning or
deep learning or both. We see in the table that only two studies used conventional machine learning
approaches (see rows 12 and 40 of Table 3) approaches, and two studies combined conventional

4 https://github.com /nrc-cnre/COVID-US
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machine learning and deep learning (see rows 2 and 14 of Table 3). Except for these two studies, all
other studies we reviewed used deep learning approaches. This tendency to prefer deep learning
approaches over conventional machine learning approaches is motivated by the fact that deep learning
models are capable of learning optimal feature representation by themselves without requiring manual
intervention and the availability of more complex and powerful computation facilities.

Table 3. A list of the articles reviewed in this study and the corresponding Al methods used by
those articles. Acronyms- Sl.: serial, CM: conventional machine learning, DL: deep learning, RNN:
recurrent neural network, SVM: support vector machine, LSTM: long short-term memory, STN: spatial
transformer network, AC: auxiliary classifier, GAN: generative adversarial network

[ SL T Studies [ AI'Methods [ cM [ DL |
1 Adedigba and Adeshina [59] SqueezeNet, MobileNetV2 X v
2 Al-Jumaili et al. [68] ResNet-18, RestNet-50, NASNetMobile, GoogleNet, SVM v v
3 Al-Zogbi et al. [70] DenseNet X v
4 Almeida et al. [71] MobileNet X v
5 Arntfield et al. [38] Xception X v
6 Awasthi et al. [72] MiniCOVIDNet X v
7 Azimi et al. [73] InceptionV3, RNN X v
8 Barros et al. [69] Xception-LSTM X v
9 Born et al. [12 VGG-16 X v
10 Born et al. [74 VGG-16 X v
11 Born et al. [13 VGG-16 X v
12 Carrer et al. [16] Hidden Markov Model, Viterbi Algorithm, SVM v X
13 Cheetal. [17] Multi-scale Residual CNN X v
14 Chen et al. [40] 2-layer NN, SVM, Decision tree v v
15 Diaz-Escobar et al. [67] InceptionV3, VGG-19, ResNet-50, Xception X v
16 Dastider et al. [18] Autoencoder-based Hybrid CNN-LSTM X v
17 Durrani et al. [35] Reg-STN X v
18 Ebadi et al. [52] Kinetics-I3D X v
19 Frank et al. [19] ResNet-18, MobileNetV2, DeepLabV3++ X v
20 Gare et al. [15] Reverse Transfer Learning X v
21 Hou et al. [75] Saab transform-based successive subspace learning model X v
22 Huang et al. [41] Non-local channel attention ResNet X v
23 Karar et al. [53] MobileNet, ShuffleNet, MENet, MnasNet X v
24 Karar et al. [56] A semi-supervised GAN, a modified AC-GAN X v
25 Karnes et al. [54] Few-shot learning X v
2 Khan ef al. [76] CNN x v
27 La Salvia et al. [42] ResNet-18, ResNet-50 X v
28 Liu et al. [48] Multi-symptom multi-label (MSML) network X v
29 MacLean et al. [77] COVID-Net US X v
30 MacLean et al. [78] ResNet X v
31 Mento et al. [44] STN, U-Net, DeepLabV3+ X v
32 Muhammad and Hossain [58] CNN X v
33 Nabalamba [49] VGG-16, VGG-19, ResNet X v
34 Panicker et al. [36] LUSNet (a U-Net like network for ultrasound images) X v
35 Perera et al. [55] Transformer Network Architecture X v
36 Quentin Muller et al. [37] ResNet-18 X v
37 Roshankhah et al. [45] U-Net X v
38 Roy et al. [20] STN, U-Net, U-Net++, DeepLabv3, Model Genesis X v
39 Sadik et al. [66] DenseNet-201, ResNet-152V2, Xception, VGG-19, NasNetMobile X v
40 Wang et al. [43] SVM v X
41 Xue et al. [21] U-Net X v
[Y] Zeng et al. [79] COVID-Net US-X x v

3.2. Loss Functions

A classification model can be defined as 77 = fy(x), where the Al model fy is parameterized by a

set of parameters 0 and an input image x is assigned to the most probable class §j. Given a training set
of ultrasound images x; and their ground truth class y;{(x;,y;);i = 1, ..., N}, training a classification
model consists of finding the model parameters 6 that minimize loss £, such as:

N
0" = argffgnxﬁ(ﬁi | yi) 1)

i=1

Therefore, the choice of the appropriate loss function £ is important, and we briefly discuss the loss
functions used in the articles reviewed in this study:.
3.2.1. Cross-entropy Loss

Training an Al model on a binary decision-making task (e.g., COVID-19 vs. CAP, or COVID-19 vs.

healthy, etc.) usually utilizes binary cross-entropy or simply cross-entropy loss defined as:

1
N :

1=

Lce(X,Y;0) = yi < log(9:) + (1 —y;) x log(1 — ;). 2)

I
—
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The cross-entropy loss appears in the majority of ultrasound COVID-19 Al studies (e.g., Born et al.
[12,13], Gare et al. [15], Che et al. [17], Frank et al. [19], Perera et al. [55], Diaz-Escobar et al. [67]).

3.2.2. Categorical Cross-entropy

Categorical cross-entropy works on multiclass (more than two classes; e.g., COVID-19 vs. CAP
vs. Healthy) classification problems. This loss is typically used in an AI model when the model must
select one or more categories among numerous possible categories/classes. This loss can be defined as:

N
[’CCE(X Y; 9 Z X lOg yl (3)

Like cross-entropy loss, categorical cross-entropy loss also appears in many ultrasound COVID-19 Al
studies (e.g., Karar et al. [53], Sadik et al. [66], Barros et al. [69]).

3.2.3. L1 Loss

L1 loss, also known as mean absolute loss, is typically used when an Al model is tasked to predict
a continuous value (e.g., the distance between two landmarks, optimal location for lung scanning
using ultrasound, etc.). It is defined as:

X Y; 9 Z | Yirue — Ypredict |/ 4

where Yirue and Y pedict are the ground truth and predicted continuous values, respectively. Al-Zogbi
et al. [70] used this loss function to train their deep model to predict landmarks for optimal ultrasound
scanning.

3.2.4. Focal Loss

The focal loss is a dynamically scaled cross-entropy loss and is used when there is a class in the
training data. Focal loss incorporates a modulating term in the conventional cross-entropy loss so that
it can emphasize learning from difficult data samples that lead to misclassification more often. This
loss is defined as:

LrL(X,Y;0) = —— 2 )7 % log(gi), ®)

where 1y controls the weight of different samples and v = 0 transforms Eq. 6 into a binary cross-entropy
loss. Awasthi et al. [72] used focal loss in their ultrasound-based COVID-19 study.

3.2.5. Soft Ordinal (SORD) Loss

When output classes are independent of each other, their relative order in the loss calculation
during deep model training does not matter. This scenario allows using one-hot encoding, i.e., setting
all wrong classes to be infinitely far from the true class. However, there exists a soft order among
classes in an ordinal regression scenario, where certain categories are more correct than others with
respect to the true label Diaz and Marathe [14] (i.e., a true class is no longer infinitely far from false
classes, resulting in a continuity among classes). For these continuously related classes, Roy et al. [20]
introduced a modified cross-entropy, called soft ordinal (SORD) loss, defined as:

; xv:0) V] e—9(n,i) l efo(xi) ©)
JY; = — ————= | X lo “INT £+ |7
SORD Z Zje./\/’ e—00i) g Z}N‘ efe(xj)
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where | A | is the set of possible soft-valued classes, 1 is a possible ground truth soft value, ¢ is a
user-defined distance (e.g., weighted square distance) between scores/levels, fy is the deep model and
x; is the i-th input data.

3.3. Evaluation Criteria

The effectiveness and efficacy of predictive models are assessed using various evaluation metrics.
This process follows a standard approach of building a model on a dataset followed by testing it on
a holdout dataset that was not used during training. A comparison between the model-predicted
values and the holdout dataset’s expected values provides the measure of a model’s effectiveness. The
metrics compare the actual class label to the predicted class label for the classification problems. The
different studies reviewed in this article used different types of evaluation criteria, which we briefly
discuss below. We also clarify a few key acronyms that are typically used to define different evaluation
criteria here.

¢ True Positive (TP): A result that is positive as both the actual value and the expected value.

¢ True Negative (TN): A result that is negative as both the actual value and the expected value.

¢ False Positive (FP): A false positive occurs when a projected outcome is indicated as being
positive when it is actually negative.

¢ False Negative (FN): A false negative occurs when a projected outcome is indicated as being
negative when it is actually positive.

3.3.1. Precision

The ratio of accurate positive predictions and all positive predictions is known as precision.
Precision is the proportion of true positives to all predicted positives, which is defined as:

TP

Precision = TP+ FD’

@)

3.3.2. Recall

Recall, also known as Sensitivity, estimates the ratio of the number of predicted positive samples
and the actual number of positive samples, which is defined as:

TP

Recall - m

®)

3.3.3. Specificity

Specificity is the complement of Sensitivity, which estimates the ratio of the number of predicted
negative samples and the actual number of negative samples. It is defined as:

TN

SpelelClty = m

©)

3.3.4. Accuracy

The proportion of accurately predicted samples among all predictions is known as accuracy,

which is defined as:
TP+ TN

A - .
Ay = TP Y TN+ FP+ EN

(10)
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3.3.5. Fl-score

The weighted average of precision and recall is the Fl-score. This metric is generally more
beneficial than accuracy, especially if there is an uneven class distribution. F1-score is defined as:
Precision x Recall

F1- =2 . 11
score % Precision + Recall (1)

3.3.6. Intersection over Union (IoU)

IoU is typically used in segmentation accuracy estimation, which is the ratio of overlap between
the bounding box around a predicted object and the bounding box around the ground truth object

mask. It can be defined as:
TP

U= T N

(12)

3.3.7. Serensen—Dice coefficient

Serensen—Dice coefficient, or simply Dice, is another common metric used in segmentation
accuracy estimation, which is defined as:
2xTP

Serensen—Dice = @x TP) + EP+ EN' (13)

4. Studies using POCUS Dataset

We discussed the POCUS dataset [12] in Section 2.1, which can be used in making breakthroughs
in the diagnosis, monitoring, and reporting of COVID-19 pneumonia in patients. This dataset contains
COVID-19 (35%), bacterial pneumonia (28%), viral pneumonia (2%), and healthy (35%) classes.

4.1. Studies

In Table 4, we summarize studies that used the POCUS dataset to develop and evaluate Al
methods. Al-Jumaili et al. [68] utilized a set of pre-trained CNN models, namely ResNet-18, ResNet-50,
GoogleNet, and NASNet-Mobile, to extract the features from the images. These features are then fed
to an SVM classifier to classify the images into COVID-19, CAP, and healthy classes. A regression
task was performed by Al-Zogbi et al. [70], who employed DenseNet to approximate the position
of the ultrasound probe in the desired scanning areas of the torso. Almeida et al. [71] investigated a
lightweight neural network, MobileNets, in the context of computer-aided diagnostics and classified
ultrasound videos among abnormal, B-lines, mild B-lines, severe B-lines, consolidations, and pleural
thickening classes. Awasthi et al. [72] also focused on lightweight networks that can operate on mobile
or embedded devices to enable rapid bedside detection without additional infrastructure. Their method
classified ultrasound images into COVID-19, CAP, and healthy classes. Barros et al. [69] proposed a
CNN-LSTM hybrid model for the classification of lung ultrasound videos among COVID-19, bacterial
pneumonia, and healthy classes. The extraction of the spatial feature was performed by CNNs, while
the time dependency was established using the LSTM module. Born et al. published three consecutive
articles [12,13,74] using POCOVID-Net, VGG-16, and Model-genesis, respectively, to classify lung
ultrasound images into COVID-19, CAP, and healthy classes. Several pre-trained neural networks
such as VGG-19, InceptionV3, Xception, and RestNet-50 have been fine-tuned on the lung ultrasound
image by Diaz-Escobar et al. [67] to detect COVID-19 in the lung ultrasound test data. Gare et al. [15]
used reverse transfer learning in a U-Net, where weights were pre-trained for segmentation and then
transferred for the COVID-19, CAP, and Healthy ultrasound image classification task. To address the
need for a less complex, power efficient, and less expensive solution to screen lung ultrasound images
and monitor lung status, Hou et al. [75] introduced a Saab transform-based subspace learning model
to find the A-line, B-line, and consolidation in lung ultrasound data. Karar et al. [53] introduced a

d0i:10.20944/preprints202303.0296.v1
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lightweight deep model, COVID-LWNet, to make an efficient CNN-based system for classifying lung
ultrasound images into COVID-19, bacterial pneumonia, and healthy classes. In addition, Karar et al.
[56] proposed a generative adversarial network (GAN) to perform the same task on ultrasound images.
Few-shot learning is a machine learning framework, where a machine learning model is trained with
supervision using a few training samples. Karnes et al. [54] used the few-shot learning on the POCUS
dataset and classified test images into COVID-19, CAP, and healthy classes. A few other approaches
also used state-of-the-art CNNs [58,66] or transformers [55] to classify lung ultrasound images into
COVID-19, CAP, and healthy classes.

Table 4. A summary of studies that used the POCUS dataset. X indicates either absent or not discussed
in the article, and v indicates present but not discussed in the article.

https:/ /github.com/bmandelbrot/pulmonary-covid19
b https:/ /github.com/BorgwardtLab/covid19_ultrasound

4.2. Evaluation

Studies using POCUS dataset reported impressive results across various metrics and
methodologies. For instance, Al-Jumaili et al. [68] achieved accuracy, precision, and Fl-score of
above 99%. Awasthi et al. [72] developed a power and memory-efficient network that attained an
impressive highest accuracy of 83.2%. Among pre-trained models, Diaz-Escobar et al. [67] found that
the InceptionV3 model had the highest accuracy of 89.1% and ROC-AUC of 97.1%. In semantic
segmentation, Gare et al. [15] reported high scores for various metrics, including mloU (0.957),
accuracy (0.849), precision (0.885), recall (0.925), and F1-score (0.897). Saab transform-based successive
subspace learning model was reported to have an accuracy of 0.96 by Hou et al. [75]. Additionally,
modified AC-GAN (accuracy: 99.45%) outperformed semi-supervised GAN (accuracy: 99%) in a study
by Karar ef al. [56], while MnasNet achieved the best accuracy of 99% among six pre-trained networks.
Muhammad and Hossain [58] obtained high scores for accuracy, precision, and recall (91.8%, 92.5%,
and 93.2%, respectively) with a less complex CNN architecture based on fusion. The real-time mass
COVID-19 test by Perera et al. [55] resulted in over 90% accuracy, while spectral mask enhancement
(SpecMEn) improved the accuracy score of DenseNet-201 from 89.5% to 90.4% in a study by [66].

5. Studies using ICLUS-DB Dataset

We discussed the Italian COVID-19 Lung Ultrasound dataset (ICLUS) in Section 2.1, which can
also be used in making breakthroughs in the diagnosis, monitoring, and reporting of COVID-19
pneumonia in patients. This resource may enable Al to identify the progress, rate, and response of the
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disease to treatment, facilitating more effective and personalized patient care. This dataset contains
lung ultrasound data with different COVID-19 severity scores, defined as score 0: Continuous A-line
(34% of the total data), score 1: alteration in A-line (24% of the total data), score 2: small consolidation
(32% of the total data), and score 3: large consolidation (10% of the total data). The following table
(Table 5) summarizes the literature on the detection of COVID-19 through the use of the ICLUS-DB
dataset.

Table 5. A summary of studies that used the ICLUS-DB dataset. X indicates either absent or not
discussed in the article, and v* indicates present but not discussed in the article.

Studies Al Loss Results Cross-validati A ion/ Prediction Code
models Ppre-processing Classes
Aceuracy: Severity Score
Carrer et al. [16] HMM, VA, SVM X 88% (convex probe) k=10 X o1 y2 3) X
94% (linear probe) s
Generation of local
. 9 i -
Cheetal. [17] Multi-scale residual CNN Cross-entropy “;cfg:?;g 99;57130//"’ k=5 P:;Z?:;g;ﬁ:;:‘; nCo?vCIg\}Ig]/D X
- : 96.70% -
transformed images
Accuracy: Rotation, horizontal
Dastider et al. [18] Autogncoder-based Categorical 67.7% (convex probe) k=5 anq Vertlca? shift, Severity Score Availabled
Hybrid CNN-LSTM cross-entropy 79.1% (linear probe) scaling, horizontal 0,1,2,3)
o P and vertical flips
Affine transformations,
ResNet-18, ResNet-101, N . ! .
- o g SORD, Accuracy: 93%, rotation, scaling, Severity Score
Frank et al. [19] VGG 16, MobileNetV2, cross-entropy F1-Score: 68.8% d horizontal flipping, 0,1,2,3) X
MobileNetV3, DeepLabV3++ .
random jittering
. Accuracy: 96%,
Spatial Transformer Network Fl-score: ZlilZo% Severity Score 6
Roy et al. [20] (STN), U-Net, U-Net++, SORD, cross entropy Precisi " 70il9°/, k=5 v ©,1.2,3) Available!
DeepLabV3, Model Genesis r?;é?;?‘é(}i?’/ o (it
N - Pre-trained CNN Agreement-based Severity Score
Khan et al. [76] from [20] SORD, cross-entropy scoring (82.3%) X X ©0,1,2,3) X
5.1. Studies

In Table 5, we summarize studies that used the ICLUS-DB dataset [24] to develop and evaluate
Al methods. Carrer et al. [16] proposed an automatic and unsupervised method to locate the pleural
line using the hidden Markov model (HMM) and Viterbi Algorithm (VA). Subsequently, the localized
pleural line is used in a supervised support vector machine (SVM) to classify the lung ultrasound image
into COVID-19 severity scores 0-3. Che et al. [17] extracted local phase and radial symmetry features
from lung ultrasound images, which were then fed to a multi-scale residual CNN to classify the image
between COVID-19 and non-COVID classes. Dastider et al. [18] incorporated a long-short-term memory
module (LSTM) in DenseNet-201 to predict the severity of COVID between 0 and 3 in lung ultrasound
images. Frank et al. [19] incorporated domain-based knowledge such as anatomical features, and
pleural and vertical artifacts in conventional CNNss (i.e., ResNet-18, ResNet-101, VGG-16, MobileNetV2,
MobileNetV3, and DeepLabV3++) to detect the severity of COVID-19 in lung ultrasound images. Roy
et al. [20] trained several benchmark CNN models such as U-Net, U-Net++, DeepLabV3, and model
genesis, incorporating spatial transformer networks (STN) to simultaneously predict severity scores of
COVID-19 and localize pathological artifacts in a weakly supervised way in lung ultrasound images. In
a unique study, [76] evaluated the performance of deep Al models in the severity scoring of COVID-19
by varying the resolution of the image and the intensity of the gray level of the lung ultrasound images.
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5.2. Evaluation

Studies that used ICLUS-DB, as summarized in Table 5, reported impressive results in various
metrics. Carrer et al. [16] reported accuracy of 88% and 94% for lung ultrasound images acquired
with convex and linear probes, respectively, when using SVM to detect pleural line alterations due to
COVID-19. Che et al. [17] reported an accuracy of 95.11% and an F1-score of 96.70% in predicting the
severity scores of COVID-19 on lung ultrasound. Other studies mainly predicted COVID-19 severity
scores [0, 3] using the ICLUS-DB lung ultrasound dataset as summarized in Table 5. For example,
accuracy in severity scoring is reported to be 67.7-79.1%, 93%, 96%, and 82.3% by Dastider et al. [18],
Frank et al. [19], Roy et al. [20], and Khan et al. [76].

6. Studies using COVIDx-US Dataset

The COVIDx-US is another large public dataset (discussed in Section 2.1) that has been thoroughly
reviewed, analyzed, and validated with the aim of developing and assessing Al models and
algorithms [34]. Table 6 summarizes existing deep learning approaches that used this dataset for
COVID-19 identification and characterization in lung ultrasound images.

Table 6. A summary of studies that used the COVIDx-US dataset. X indicates either absent or not
discussed in the article.

Studies Al Loss Results Cross-validati: A ion/ Prediction Code
models pre-processing Classes

Rotation,

Accuracy: 99.74%, Gaussian blurring,

SqueezeNet, Categorical COVID-19, CAP,

Adedigba and Adeshina [59] . - Precision: 99.58%, X random zoom, X
MobileNetV2 cross-entropy Recall: 99.39% random lighting, Normal, Other
random warp
Azimi et al. [73] InceptionV3, RNN Cross-entropy Accuracy: 94.44% X Padding ch;:::z?rfno_gg%;gh% Available”
oy g " . Positive (COVID-19) . 8
MacLean et al. [77] COVID-Net US Cross-entropy ROC-AUC: 0.98 X X Negative (non-COVID-19) Available
Categorical Lung ultrasound
MacLean et al. [78] ResNet 8 Accuracy: 0.692 X X severity score X
cross-entropy ©,1,2,3)
- Nt 1]5. . Accuracy: 88.4%, Random projective Positive (COVID-19)
Zengetal. [79] COVID-Net US-X' Cross-entropy AUC: 93.6% x augmentation Negative (non-COVID-19) x

6.1. Studies

We summarize the studies that used the COVIDx-US dataset to develop and evaluate Al methods
in Table 6. Adedigba and Adeshina [59] used computation and memory efficient SqueezeNet and
MobileNetV2 to classify lung ultrasound images in COVID-19, CAP, normal, and other classes. Using
a hybrid network consisting of the InceptionV3 model to extract spatial information and a recurrent
neural network (RNN) to extract temporal features, Azimi et al. [73] classified lung ultrasound
images into COVID-19 and non-COVID classes. MacLean et al. [77] proposed a deep neural network,
COVID-Net US, using a generative synthesis process that finds an optimal macro-architecture design
in classifying lung ultrasound images into COVID-19 and non-COVID classes. Furthermore, MacLean
et al. [78] used ResNet to classify lung ultrasound images into one of the four lung ultrasound severity
scores (i.e., 0,1,2,3). Zenget al. [79] proposed an improved COVID-Net US network, called COVID-Net
US-X, that used a projective transformation-based augmentation to transform linear probe data to
better resemble convex probe data. This approach performed a binary classification of lung ultrasound
images into COVID-19 and non-COVID classes.


https://github.com/lindawangg/COVID-Net
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6.2. Evaluation

The COVIDx-US dataset was used to implement various models, whose performance is illustrated
by various evaluation metrics in Table 6. The models implemented by Adedigba and Adeshina [59]
achieved high levels of accuracy (99.74%), precision rate (99.58%), and recall (99.39%). Meanwhile,
Azimi et al. [73]’s hybrid network attained an overall accuracy of 94.44% and learned to categorize
COVID-19 as a binary classification problem. MacLean et al. [77]'s deep model achieved an
area-under-the-curve (AUC) of over 0.98 while reducing architectural and computational complexity
and inference times significantly. ResNet implemented by MacLean ef al. [78] achieved a total accuracy
of 69.2% with varying sensitivity values for different classes. Among all the models, the MobileNet
and SqueezeNet variations performed the best in this dataset, with Zeng et al. [79] achieving a gain of
5.1% in test accuracy and 13.6% in AUC.

7. Studies using Private Dataset

Several studies have utilized privately owned datasets, which are not publicly available as
mentioned in Section 2.2. However, some of the primary sources of these datasets, such as hospitals,
clinics, and online repositories, have overlapped with those of public data. Although some links to
private data sets could not be traced due to lack of availability in the papers, some can be accessed by
sending a request for use (for example, Durrani et al. [35], Camacho et al. [39], Rojas-Azabache ef al.
[50D).
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Table 7. A summary of studies that used private datasets. X indicates either
absent or not discussed in the article.

Studies Al Loss Results Cross-validation Augmentation/ Prediction Code
‘models. pre-processing Classes.
Arntield et al. [38] Xception ROC-AUC: 0978 X Available
Chen et al. [40] x Accuracy: 87% k=5 x
o CNN, Reguralized . 5,
S——— N Repure sorp - » x
Ebadi et al. [52] Kinetics-13D. Focal loss k=5 x x
, Non-local Channel Resizing to b
Huang et al. [41] ttenon oot Cross-ent tropy x 300300 gixels Available
lvin ot ol (15 g g o Geometric, filtering, everity S
Laalvin etal 2] Reset 8, ResNet-50 Flscore 5% x Seomri e vy Scor: x
» § Multi-symptom multi-label . acy: 100%
Liuetal. (48] (MSML) network. Cross-ent tropy (with 14.7% data) d Ple x
Mento et al, [44] STN, U-Net, DeepLabV3+ x x x x
Quentin Muller et al. [37] ResNet-18 Cross-entropy Accura -y (Val): 100% x Resizing to 349x256 x
B e Width and height shifting,
| . ; random zoom within 20%, .
Nabalamba [49] VGG-16, VGG-19, ResNet Binary cross-entropy rl]’f;c‘n)re Y : X brightness variations within [0.4, 1.3], COVID-19, Healthy x
ROCALIC: 990% rotation up to 10 degrees
Accuracy: 97%, Generation of local
Panicker ef al. [36] LUSNet (U-Net based CNN) Categorical cross-entropy Sensitivity: 93%, k=5 phase and shadow back. Classes: 1,2,3,4,5 Available®
Specificity: 98% scatter product images
etal. 151 2 C. y N Randomly cropping and Severity Score:
Roshankhah ef al. [45] U-Net Categorical cross-entropy Accuracy: 95% X Totating the frames 0123 x
ROC-AUC: 0.93,
Wang et al. [43] SVM X Sensitivity: 0.93, X x Non-severe, severe x
Specificity: 0.85
. y I Affine transformations (translation,
UNet (with modality alignment Dice, _ Accurac, rotation, scaling, shearing), Severity score:
Xue et al. [21] contrastive learning of . 75% (4-level) X flec ch G: 01,23 x
v loming ol cross nteopy T e efletion contrast hange, Gatesan i
P! noise, and Gaussian filtering
a . : .
https:/ /github.com/bvanberl/covid-us-ml

https:/ /biohsi.ecnu.edu.cn
¢ https://github.com/maheshpanickeriitpkd/ALUS

7.1. Studies

Arntfield et al. [38] highlighted the need for collaborative research involving multi-center for
the discrepancy in results between the model and people, which shows the presence of hidden
biomarkers within ultrasound images. In addition, they trained Xception neural network to classify
lung ultrasound images into hydrostatic pulmonary edema (HPE), non-COVID acute respiratory
distress syndrome (ARDS), and COVID-19 ARDS. Chen et al. [40] employed a 2-layer NN to extract
image features, which were subsequently used in an SVM and decision tree algorithm for predicting
lung ultrasound scores between 0 to 3 (i.e., score 0: normal, score 1: septal syndrome, score 2:
interstitial-alveolar syndrome, and score 3: white lung syndrome). Durrani et al. [35] used an
autonomous deep learning-based technique to detect consolidation/collapses in lung ultrasound
images. A CNN and Reg-STN-based model has been used with a SORD cross-entropy loss function.
A fast and reliable interpretation of COVID-19 effects in lung ultrasound images without requiring
any pre-processing was presented by Ebadi et al. [52]. They proposed a two-stream inflated 3D CNN,
known as Kinetics-I3D, to detect A-line (normal), B-line, consolidation, and/or pleural effusion in


https://github.com/bvanberl/covid-us-ml
https://biohsi.ecnu.edu.cn
https://github.com/maheshpanickeriitpkd/ALUS
https://doi.org/10.20944/preprints202303.0296.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 March 2023

18 of 26

lung ultrasound images. Huang et al. [41] proposed a non-local channel attention ResNet to facilitate
extraction of dependencies between distant pixels and stressing specific key channels. Their method
classified lung ultrasound images into four scores (i.e., score 0: normal, score 1: septal syndrome,
score 2: interstitial-alveolar syndrome, and score 3: white lung syndrome). La Salvia et al. [42] used
ResNet-18 and ResNet-50 to perform a seven-way classification of lung ultrasound images. Classes
include score 0: A-lines, score 0*: A-lines not defined, score 1: an irregular or damaged pleural
line along with visible vertical artifacts, score 1*: pleural line not defined, score 2: broken pleural
line with small or broad consolidated areas with wide vertical artifacts below (white lung), score 2*:
broken pleural line not defined, and score 3: dense and broadly visible white lung with or without
larger consolidations. Liu et al. [48] proposed a novel multi-symptom multi-label (MSML) network
incorporating a semi-supervised two-stream active learning strategy, which detected A-line, B-line,
pleural lesion, and pleural effusion in lung ultrasound images. In a different type of study, Mento
et al. [44] estimated the agreement of the COVID-19 severity scores predicted by deep models (i.e.,
STN, U-Net, and DeepLabV3+) to the expert scores. Quentin Muller et al. [37] used a pre-trained
ResNet-18 to automate the selection of clinically meaningful and predictive image frames from lung
ultrasound videos that have high clinical predictive value. Nabalamba [49] used three pre-trained deep
learning models (i.e., VGG-16, VGG-19, and ResNet) to detect COVID-19 from lung ultrasound images.
Panicker et al. [36] designed a U-Net for lung ultrasound image analysis, called LUSNet, which is
trained to classify ultrasound images into five severity scores. Their approach made ultrasound images
agnostic to the type of probe used to acquire ultrasound images. In a typical abnormal lung ultrasound
image, B-line artifacts appear, which gradually evolve into white patterns as the severity increases.
Using these anatomical changes, Roshankhah et al. [45] used the U-Net-based segmentation approach
to automatically stage the progression of COVID-19. Although most Al approaches for COVID-19
detection and analysis adopted deep learning techniques, Wang et al. [43] extracted hand-engineered
features such as the thickness and roughness of the pleural line, which were subsequently used in an
SVM to classify lung ultrasound images into severe and non-severe cases. Xue et al. [21] performed
a comprehensive study using the features from lung ultrasound data and clinical information in
supervised attention-based multiple instance learning (DSA-MIL) modules to classify lung ultrasound
images into four severity grades.

7.2. Evaluation

Various metrics have been used to evaluate the performance of methods that used private datasets.
Arntfield et al. [38] were able to distinguish between COVID-19 (AUC = 1.0), non-COVID (AUC =
0.934), and HPE (AUC = 1.0) with high AUCs, while the performance of physicians for the detection of
COVID-19, non-COVID, and HPE had AUCs of 0.697, 0.704, and 0.967, respectively. Camacho ef al.
[39] achieved high agreement between the expert and the algorithm for detecting B-Lines (88.0%),
consolidations (93.4%), and pleural effusion (99.7%), and moderate agreement for the individual
video score (72.8%). Chen et al. [40] performed a comparison of performance by CNN, SVM, and
Decision Tree models, where CNN performed the best, achieving 87% accuracy over traditional
machine learning models. In the study of Durrani et al. [35], the video-based supervised learning
method outperformed a fully supervised frame-based method in terms of PR-AUC, with scores of
73.34 and 60.08, respectively. Using a classification model originally developed for recognizing human
action, Ebadi ef al. [52] achieved high accuracy (90%) and average precision (95%). Using a non-local
channel attention ResNet, [41] achieved superior performance compared to conventional ResNet, VGG,
and other networks, with an accuracy of 92.34% and F1-score of 92.05%. Liu et al. [48] reported 100%
accuracy for regional classification by training only 14.7% of the data, with comparable performance
in sensitivity (92.38%) and specificity (100%). Nabalamba [49] also achieved an accuracy of 98%,
along with other high metrics (precision of 95.74, recall of 1.00, F1-score of 97.82%, and ROC-AUC of
99.99%) for the classification of patients at high risk of clinical deterioration and patients at low risk.
Similarly, Mento et al. [44] showed a high percentage of agreement (85.96%) for the classification of
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patients at high risk of clinical deterioration and patients at low risk with those of expert-radiologists.
Quentin Muller et al. [37] employed a transfer learning-based approach that achieved high validation
accuracy (99.74%) for data with varying brightness levels. Using deep learning approaches, higher
accuracy of 97% and 95% in the detection of COVID-19 in ultrasound is also reported by Panicker
et al. [36] and Roshankhah et al. [45], respectively. Wang et al. [43] on the other hand, used an SVM
classifier that achieved a good binary classification performance between severe and non-severe cases
(sensitivity = 0.93, specificity = 0.85, ROC-AUC = 0.93). By combining lung ultrasound data and clinical
information in a multiple instance learning framework, Xue et al. [21] were able to categorize patients’
clinical severity into four groups with 75% accuracy and into severe/non-severe groups with 87.5%
accuracy.

8. Discussion and Future Works

We began this survey with 874 articles with initial search results on the topic of COVID-19
detection using Al in ultrasound from Google Scholar. After several filtering phases as discussed in
Section 1.5, we reviewed a total of 42 lung ultrasound studies that focused on COVID-19 detection or
analysis using Al. However, we could not review an additional 14 papers that satisfied our inclusion
criteria except that we could access that full-text due to not having institutional subscriptions to
journals that were published. Nonetheless, some of the key observations that can be noted from this
review are as follows:

8.1. COVID-19 Severity Assessment

Ultrasound can be helpful in assessing the severity of COVID-19 in patients, as supported by the
studies in the survey [16-20]. COVID-19 primarily affects the respiratory system, causing pneumonia
and acute respiratory distress syndrome (ARDS). Lung ultrasound can detect these lung abnormalities
earlier than chest radiographs and provide detailed information on the extent and severity of lung
involvement [80]. It can also help differentiate COVID-19 pneumonia from bacterial or viral pneumonia
(i.e., CAP). Overall, ultrasound is a safe and non-invasive imaging modality that can provide valuable
information for the assessment and management of COVID-19 in patients, especially pregnant women,
and children. It can help detect early lung involvement, monitor disease progression, and guide clinical
decision-making.

8.2. Data Partition for Benchmarking

Although numerous publicly available datasets are available, studies have reported varying
degrees of quantitative accuracy in detecting, segmenting, and assessing the severity of COVID-19
independently. Without replicating the results of a particular study that used a publicly available
ultrasound dataset, it is impossible to make a fair comparison of methodological performance.
However, this complex issue can be resolved by partitioning a specific portion of a publicly available
dataset for quantitative validation between studies. This benchmark dataset can then be used for
model validation and quantitative accuracy comparison.

8.3. Public Sharing of Code

We found in this review that there are very few studies shared their Al model implementations
publicly (e.g., [12,18,20,69,73]). However, sharing code publicly is crucial for COVID-19 detection and
analysis using Al for several reasons. Firstly, it promotes transparency and reproducibility of research,
allowing other researchers to build upon existing work and improve upon it. This collaborative
approach accelerates scientific discovery progress and facilitates the development of more accurate
and reliable Al models for COVID-19 detection and analysis. Second, publicly sharing code enables
easier evaluation and comparison of different Al models. This allows researchers to identify the most
effective and accurate models for COVID-19 detection and analysis, and to make improvements where
necessary. Thirdly, public code sharing promotes the wider adoption of Al models for COVID-19
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detection and analysis. By making the code publicly available, researchers and healthcare professionals
can access and implement Al models in their own settings, improving the accuracy and speed of
COVID-19 diagnosis and treatment. Public code sharing plays a critical role in advancing research
in COVID-19 detection and analysis using Al, promoting collaboration and transparency, facilitating
evaluation and comparison of models, and accelerating the development and adoption of accurate
and reliable AI models for COVID-19 detection and analysis.

8.4. Description of Image Pre-processing/augmentation

We also observed in our review that many articles did not properly document their pre-processing
and/or augmentation pipeline of ultrasound images. However, not only for ultrasound images
but for any computer vision Al studies, it is essential to describe all the image pre-processing and
augmentation methods clearly for several reasons. First, the quality of the input data is crucial for
the accuracy of the Al model. Pre-processing methods such as resizing, cropping, filtering, and
normalization can significantly impact the quality of the input data and therefore the performance of
the Al model. Providing a clear description of these methods allows other researchers to understand
how the data was processed and replicate the methods in their own research. Second, augmentation
techniques such as rotation, flipping, and shearing are commonly used to increase the diversity of the
data and improve the robustness of the Al model. However, the choice of augmentation methods and
the degree of augmentation can impact the performance of the Al model. Providing a clear description
of the augmentation methods enables other researchers to understand how the data was augmented
and replicate the methods in their own research. Third, clear documentation of image preprocessing
and augmentation methods allows for the reproducibility of the research. Reproducibility is critical to
scientific progress and allows the validation and comparison of Al models in different studies and
datasets. Thus, providing a clear description of image preprocessing and augmentation methods in
Al-based COVID-19 detection and analysis on lung ultrasound is crucial to ensure the accuracy and
reproducibility of research, facilitating the comparison of different Al models, and promoting scientific
progress.

8.5. Potential Future Work

Based on the observation in this review, we foresee several research directions, which can be
pursued in the future:

* Developing a standardized protocol for ultrasound-based severity assessment of COVID-19: The studies
in the survey highlight the potential of ultrasound to assess the severity of COVID-19. However,
there is a need to develop a standardized protocol for ultrasound-based severity assessment to
ensure consistency across studies and to facilitate comparisons between different Al models. This
protocol should include standardized imaging techniques, imaging parameters, and diagnostic
criteria.

o Integration of ultrasound with other imaging modalities: While ultrasound is a useful tool for
COVID-19 assessment, it has some limitations, such as limited penetration depth and difficulty in
imaging certain structures. Future work can focus on combining ultrasound with other imaging
modalities, such as CT or MRI (if available), to provide a more comprehensive assessment of
COVID-19.

o Integrating Al models for early detection and monitoring of COVID-19: Ultrasound can detect early
lung involvement and monitor disease progression in COVID-19 patients. Future work can
focus not only on developing but also integrate Al models in clinical settings that can accurately
detect COVID-19 at an early stage and monitor disease progression over time, enabling timely
intervention and better patient outcomes.

o Comparison of Al models using benchmark datasets: As highlighted in the discussion, there is a need
for benchmark datasets for quantitative accuracy comparison of different AI models. Future
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work can focus on developing benchmark datasets and using them to compare the performance
of different Al models for COVID-19 detection and analysis.

e Integration of Al models into clinical practice: The potential of Al models for COVID-19 detection
and analysis is vast, but their integration into clinical practice is still limited. Future work can
focus on developing user-friendly and interpretable AI models that can be easily integrated into
clinical workflows, improving the accuracy and speed of COVID-19 diagnosis and treatment.

o Exploration of novel pre-processing and augmentation techniques: The quality of input data is crucial
for the accuracy of Al models. Future work can focus on exploring novel pre-processing
and augmentation techniques for ultrasound images to improve the quality of input data
and the performance of Al models. These techniques can include advanced filtering, contrast
enhancement, or more sophisticated augmentation methods.

e [ntegration of clinical and imaging data: Al models for COVID-19 detection and analysis can benefit
from the integration of clinical and imaging data. Future work can focus on developing Al
models that can integrate clinical and imaging data to provide a more comprehensive assessment
of COVID-19 and its impact on patients.

9. Conclusions

In this comprehensive review, we provide a comprehensive survey of ultrasound-based Al
COVID-19 studies that have used publicly available and private lung ultrasound datasets. The
main contributions of this review are the exhaustive survey of articles using publicly available lung
ultrasound datasets for COVID-19, the listing and review of publicly available lung ultrasound
COVID-19 datasets, and the organization of ultrasound-based Al studies per dataset. Additionally, this
review analyzes and tabulates studies in several dimensions, such as data preprocessing, Al models,
cross-validation, and evaluation criteria, and summarizes all reviewed works in a tabular fashion
to facilitate an easier comparison among studies. The search strategy employed in this study was
comprehensive, and we reviewed 42 articles in total, with 28 articles using public datasets and the rest
using private data. We only selected articles that met our criteria, which included full-text availability,
the use of any form of Al technique for COVID-19 detection or analysis from lung ultrasound data,
the use of publicly available lung ultrasound dataset of COVID-19, the hypothesis that the article
is supported by its qualitative and quantitative results, and the maintenance of a minimum quality
standard. This review provides insight into the current state of ultrasound-based AI COVID-19 studies
and serves as a valuable resource for researchers interested in this field. The findings of this study can
aid in the development of more accurate and efficient Al models for the detection and diagnosis of
COVID-19 using lung ultrasound data, ultimately improving patient care and outcomes.
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