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Abstract: Machine learning (ML) is widely used in the field of crop-growing information identification based on high-resolution 

remote sensing images. With Baoying County in Jiangsu Province, China, as the study area, this paper used Sentinel-2 images during 

the winter wheat growth period to construct its spectral, textural, and topographic features during its growth period and proposes a 

winter wheat-growing area extraction method based on the extreme gradient boosting (XGBoost) algorithm, which was com-

pared with traditional ML algorithms such as the support vector machine (SVM), classification and regression tree (CART), and 

random forest (RF) algorithms. The results indicated that (1) a winter wheat-growing area identification model based on the XGBoost 

algorithm was successfully constructed based on Sentinel-2 images, considering 27 spectral, textural, and topographic features; (2) 

the constructed model could effectively extract winter wheat in the study area with an overall accuracy of 93.43% and only a small 

error compared with the actual winter wheat-growing area in Baoying County, meeting the accuracy requirement for crop identifi-

cation in the study area; and (3) the deep learning algorithm XGBoost outperformed the three traditional ML algorithms, among 

which the RF algorithm was better than the SVM and CART algorithms, both of which had poor identification performance and a 

large error compared with the actual growing area. This paper provides a scientific basis for the accurate extraction of winter wheat-

growing areas and further research on winter wheat growth monitoring and yield estimation. 
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1. Introduction 

Wheat is one of the most important food crops for humanity, accounting for 21% of the global food demand [1]. 

China is the largest wheat-growing country in the world. As one of China’s three major staple crops, winter wheat 

occupies approximately 22% of the total growing area for food crops and has an important position in grain production, 

circulation, and consumption. Therefore, timely information on the distribution of winter wheat is of great significance 

to ensure grain yield[2]. With the rapid development of remote sensing (RS) and machine learning (ML) technologies, 

the combination of the two has become an effective means of monitoring the distribution of crops. It takes advantage of 

not only the macroscopic, economical, and time-sensitive nature of RS technology [3–4] but also the automatic image 

classification capability of ML technology, and therefore, it has become a new research area of intense focus in the field 

of RS. 

Recently, extensive attention has been paid to ML classification methods for crop category extraction based on RS 

images [5]. ML algorithms can effectively improve the time efficiency of data processing and the accuracy of classifica-

tion results through their own heuristic learning strategies and learning engines and therefore have become the main-

stream method for RS identification of large areas of crops [6]. To date, ML methods such as support vector machine 

(SVM), classification and regression tree (CART), and random forest (RF) have been widely adopted in their respective 

research fields with good results. Li et al. [7] used Sentinel-1 RS data to construct a multimodal feature dataset of spec-

tral, textural, and topographic features and used the RF algorithm to effectively extract the winter wheat-growing area 

at the county scale. Zheng et al. [8] used multitemporal Landsat normalized difference vegetation index (NDVI) data to 

effectively classify crops using the SVM algorithm, and Zhao et al. [9] used the CART algorithm to identify the land 

use/cover classification of the Jiangning Pilot Area in Jiangsu Province as an example and demonstrated the feasibility 

of the CART algorithm. 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.
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As an ensemble learning algorithm, the extreme gradient boosting (XGBoost) algorithm can adapt to complex non-

linear relationships, and the model has a better parallel processing capability, which can effectively solve the overfitting 

problem that may occur in ML regression models [10]. Therefore, it can be used as an effective method for constructing 

crop identification models in a certain area, thereby promoting the development of hyperspectral RS technology in the 

field of crop identification [11]. Zhang et al. [12] constructed a multisource RS crop identification method based on the 

XGBoost algorithm by using the time-series spectral and vegetation index features, which can meet the requirements of 

crop identification applications in cloudy and foggy areas. Based on the XGBoost algorithm, Zhang et al. [11] established 

a model for simulating and estimating the meadow aboveground biomass. Xu et al. [13] used unmanned aerial vehicle 

RS data and the XGBoost method for mangrove identification based on the fusion features of hyperspectral images and 

light detection and ranging (LiDAR) point clouds. Deng et al. [14] used the XGBoost algorithm to classify and extract 

feature bands of diseased citrus plants based on the full band. 

Although the XGBoost algorithm has achieved good results in biomass and forest identification, there are still few 

studies on the identification of winter wheat, a main food crop in China, based on the XGBoost algorithm. In addition, 

most of the traditional methods are based on the spectral features of images but have poor identification performance 

for crops with similar growth periods due to the phenomenon that “the same object shows different spectral character-

istics and different objects show the same spectral characteristics.” In [15] Research has shown that textural features can 

account for both macroscopic features and microscopic details of crops and have high stability, which can make up for 

the shortcomings of classification based on image spectral features and can effectively distinguish crop types [16]. There-

fore, using Baoying County in Jiangsu Province, China, as a study area, this paper implemented winter wheat identifi-

cation based on the XGBoost algorithm under the support of multiple features by using Sentinel-2 data during the main 

growth period of winter wheat and adopting the spectral, textural, and topographic features of winter wheat in the 

study area. The XGBoost algorithm-based identification method was compared with traditional identification methods. 

This paper is expected to provide a guarantee of food security in China and to offer a scientific basis for research on 

winter wheat growth monitoring and yield estimation. 

2. Data and Methods 

2.1 Overview of the Study Area 

The study area selected in this study was Baoying County, Jiangsu Province, China, located in the central Jiangsu 

Province, with geographical coordinates of 33°02′–33°24′N and 119°07′–119°42′E (Figure 1). The fertile soil, vast waters, 

and mild and humid climate in this area are extremely suitable for the cultivation of winter wheat. The county is rich 

in agricultural resources, with a crop growing area of 52,800 hectares and winter wheat as the main winter food crop. 

It is one of the major grain-producing areas for winter wheat in Jiangsu Province. Therefore, this area was selected as a 

representative study area for winter wheat information extraction. 

 

Figure 1. Location of the study area. 
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2.2 RS Data and Preprocessing 

Sentinel-2A MultiSpectral Instrument (MSI) data from the main wheat growth period (from January 1, 2022, to 

June 30, 2022) were used in this paper. Nine RS images with a cloud cover of less than 10% in the study area taken on 

January 16, February 5, February 25, March 7, April 6, May 6, May 16, June 15, and June 25, 2022, were selected. These 

data have been processed by radiometric correction, atmospheric correction, and orthorectification, and directly called 

and processed through the Google Earth Engine (GEE). 

GEE is a cloud-based platform for geospatial analysis on a global scale [17]. Users can not only extract, call, and 

analyze a vast number of publicly available RS images stored online but also leverage its powerful cloud computing 

capabilities for online computation and processing. The advent of the GEE platform has greatly improved the efficiency 

of RS research and provided new opportunities for the rapid classification of RS images, crop extraction, and regional 

monitoring [18]. 

Sentinel-2A MSI data cover a total of 13 spectral bands, with a width of 290 km, ground resolutions of 10, 20, and 

60 m, and a revisit period of 10 days, and they have become one of the main data sources for crop classification research 

[19]. 

Shuttle radar topography mission (SRTM) digital elevation data, a type of SRTM data [20], were obtained jointly 

by the National Aeronautics and Space Administration, the National Imagery and Mapping Agency (NIMA) of the 

Department of Defense, and the German and Italian space agencies. The SRTMGL1_003 product used in this paper was 

provided by the United States Geological Survey at a resolution of 1 arcsecond (~30 m). This paper used this product in 

the GEE to construct the topographic features, including the elevation and slope, of the study area. 

2.3 Sample data 

Five typical features, namely, winter wheat, water bodies, urban land, woodland, and oilseed rape, were selected 

in the study area. Samples were obtained by visual interpretation in addition to field collection. The feature sample 

points were selected online using the GEE platform and then imported into Google Earth for inspection. After eliminat-

ing those with obvious errors, a total of 3651 sample points were obtained, including 1610 samples of winter wheat, 733 

samples of water bodies, 634 samples of urban land, 631 samples of woodland, and 43 samples of oilseed rape (Figure 

2). Due to the uneven growing area of traditional agriculture in Baoying County, the proportions of the sown area of 

food crops [10] and cash crops (mainly oil crops) are 87.0% and 4.1%, respectively, indicating that food crops dominate 

while cash crops are small in scale and simple in structure. Therefore, only a small number of oilseed rape samples were 

selected in this paper to meet the ratio of winter wheat to oilseed rape samples [21]. 

 

Figure 2. Location of the sample sites. 

2.4 Feature Extraction 

Spectral features are important features in current research on crop classification and identification. In this paper, 

12 original bands (except the B1 band) were selected from Sentinel-2 RS images for the construction of spectral features, 
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and indices such as the normalized difference vegetation index (NDVI)[22], enhanced vegetation index (EVI)[23], nor-

malized difference water index (NDWI)[24], normalized difference building index (NDBI)[25], normalized difference 

tillage index (NDTI)[26], and modified normalized difference water index (MNDWI)[27] were used to construct spectral 

features. As the vegetation indices are mostly constructed based on the red band, chlorophyll absorption is strong in 

the red band, leading to a decrease in the sensitivity of the vegetation indices to the chlorophyll content; furthermore, 

the chlorophyll absorption in the red-edge region is lower than that in the red band, effectively reducing the influence 

of the chlorophyll saturation effect[28]. In addition, the red-edge is a steeply rising region between the red and near-

infrared (NIR) bands, and the spectral features of the red-edge vary between different plant species. Therefore, the 

classification accuracy can be effectively improved by calculating the vegetation index using the reflectance of the red-

edge region[29], and the red-edge NDVI (RENDVI)[30] was constructed by using the red-edge band of Sentinel-2 data. 

A total of 19 spectral features (i.e., 12 original bands plus seven indices) were selected in this paper, namely, B2, B3, B4, 

B5, B6, B7, B8, B11, and B12, representing blue, green, red, red-edge 1, red-edge 2, red-edge 3, NIR bands, and shortwave 

bands 1 and 2, respectively; the specific calculation formulas are shown in Table 1. 

Table 1. Description of spectral features. 

Vegetable Index Expression 

Normalized Difference Vegetation 

Index (NDVI) 

(B8−B4)/(B8+B4) 

Enhanced Vegetation Index (EVI) 2.5(B8-B4)/(B8+6B4-7.5B2+1) 

Normalized Difference Water Index 

(NDWI) 

(B3−B8)/(B3+B8) 

Normalized Difference Building In-

dex (NDBI) 

(B11−B8)/(B11+B8) 

Modified Normalized Difference 

Water 

Index (MNDWI) 

(B3−B11)/(B3+B11) 

Normalized Difference Tempera-

ture Index(NDTI) 

(B11−B12)/(B11+B12) 

Red Edge Normalized Difference 

Vegetation Index (RENDVI) 
(B8−B6)/(B8+B6) 

This paper also made full use of textural features to improve the classification accuracy of winter wheat-growing 

areas. The gray-level co-occurrence matrix (GLCM) is a commonly used method for describing texture by studying the 

spatial correlation characteristics of the gray levels [31–33]. Since the NIR band plays an important role in vegetation 

RS and vegetation reflection is extremely pronounced in the NIR region due to the internal structure of the leaves, 

Sentinel-2 data in the NIR band (B8) were used to calculate the textural features [34]. The GLCM textural feature func-

tion in the GEE was called to calculate six textural features [35–36]: variance (B8_var), contrast (B8_contrast), entropy 

(B8_ent), correlation (B8_corr), angular second-order distance (B8_asm), and inverse difference moment (B8_idm). In 

addition, two topographic features, elevation and slope, were constructed by calling the SRTMGL_003 data in the GEE. 

A total of 27 features are used in this paper, see Table 2 for details. 

Table 2. The features. 

feature type features num-

bers 

spectral features B2, B3, B4, B5, B6, B7, B8, B8A, B9, B10, B11, B12, EVI, 

NDBI, NDVI, NDWI, MNDWI, NDTI, RENDWI 

19 

texture features B8_asm, B8_contrast, B8_corr, B8_var, B8_idm, B8_ent 6 

terrain features Elevation, slope 2 

total  27 
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Finally, a median composite of all Sentinel-2 images from this growth period was computed to obtain a synthesized 

spectral, textural, and topographic feature image with 27 bands with a spatial resolution of 10 m [37]. The composite 

image of the main features is shown in Figure 3. 
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Figure 3. The composite image of the main features. 

2.5 XGBoost Algorithm 

Proposed by Chen et al. [38], the XGBoost algorithm was developed by optimizing the gradient boosting (GDBT) 

algorithm. Compared with GDBT, XGBoost is characterized by high accuracy, less overfitting, and strong scalability 

[39]. Its core is to integrate multiple weak learners into a strong learner through a certain method using the GDBT 

algorithm. First, a weak learner is trained using the initial training set, and then, the weights of the training samples in 

the next weak learner are optimized according to the performance of the previous weak learner until the Kth weak 

learner is optimized. Finally, the weighted combination of the trained multiple learners is used as the final prediction 

result [12]. 𝑦𝑦𝚤𝚤� = ∑ 𝑓𝑓𝑘𝑘(𝑥𝑥𝑖𝑖)𝐾𝐾𝑘𝑘=1                                         (1) 

where 𝑥𝑥𝑖𝑖 is the feature of the ith sample, 𝑓𝑓𝑘𝑘(𝑥𝑥𝑖𝑖) is the prediction of the kth weak learner, and 𝑦𝑦𝚤𝚤�  is the model’s predic-

tion. 

The objective function of XGBoost (Equation 2) consists of two parts: the loss function, which measures the training 

error, and the regularization term, which controls the complexity. 𝑜𝑜𝑜𝑜𝑜𝑜  𝐾𝐾 = ∑ 𝑙𝑙(𝑦𝑦𝑖𝑖 ,  𝑦𝑦𝚤𝚤�)𝑛𝑛𝑖𝑖=1 + ∑ 𝛺𝛺(𝑓𝑓𝑘𝑘)𝑘𝑘𝑘𝑘=1                             (2) 𝑜𝑜𝑜𝑜𝑜𝑜  𝐾𝐾 = ∑ (𝑦𝑦𝑖𝑖 ,  𝑦𝑦𝚤𝚤�(𝐾𝐾−1)𝑛𝑛𝑖𝑖=1 + 𝑓𝑓𝐾𝐾 (𝑥𝑥𝑖𝑖)) + 𝛺𝛺(𝑓𝑓𝑘𝑘) + 𝑐𝑐                     (3) 

In Equations (2) and (3), 𝑙𝑙(𝑦𝑦𝑖𝑖 ,  𝑦𝑦𝚤𝚤�) is the loss function, which is used to measure the error between the true value 𝑦𝑦𝑖𝑖  
and the model prediction 𝑦𝑦𝚤𝚤� . The default loss function used in this classification model is the root mean squared error 

(RMSE), and Ω is the regularization term, which is used to control the model complexity to prevent it from overfitting. 𝛺𝛺(𝑓𝑓𝑘𝑘) represents the complexity of the kth weak learner, and c is a constant term. 

The loss function is expanded by the Taylor series to obtain the approximate objective function, and the constant 

term c can be ignored. 𝑜𝑜𝑜𝑜𝑜𝑜  𝐾𝐾 ≈ ∑ 𝑔𝑔𝑖𝑖𝑓𝑓𝑘𝑘(𝑥𝑥𝑖𝑖)𝑛𝑛𝑖𝑖=1 +
12h𝑖𝑖𝑓𝑓𝐾𝐾2 (𝑥𝑥𝑖𝑖) + 𝛺𝛺(𝑓𝑓𝑘𝑘)                       (4) 

where 𝑔𝑔𝑖𝑖 and ℎ𝑖𝑖 denote the first and second derivatives of the loss function 𝑙𝑙(𝑦𝑦𝑖𝑖 ,  𝑦𝑦𝚤𝚤�), respectively. 

The complexity of the model depends on many factors. In the XGBoost classification model, it is mainly determined 

by the number of leaf nodes and the smoothness of the corresponding node weights. 𝛺𝛺(𝑓𝑓𝑘𝑘)  = 𝛾𝛾𝛾𝛾 +
1 2 𝜆𝜆 ∑ 𝜔𝜔𝑗𝑗2𝑇𝑇𝑗𝑗=1                                  (5) 

where γ and λ are both manually set parameters, T is the number of leaf nodes, ω is the weight of each leaf, and 1 2 𝜆𝜆 ∑ 𝜔𝜔𝑗𝑗2𝑇𝑇𝑗𝑗=1  is the regularization penalty term for the weight parameter ω. 
The combination of Equations (4) and (5) results in Equation (8) for the optimal leaf node weight and Equation (9) 

for the algorithm’s optimal objective function. 
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𝜔𝜔 𝑗𝑗∗ =  
− 𝐺𝐺𝑗𝑗 𝐻𝐻𝑗𝑗 + 𝜆𝜆                                          (6) 𝑂𝑂 =  − 12   ∑ 𝐺𝐺𝑗𝑗2𝐻𝐻𝑗𝑗+𝜆𝜆𝑇𝑇𝑗𝑗=1    + 𝛾𝛾𝛾𝛾                                    (7) 

where 𝐺𝐺𝑗𝑗 = ∑ 𝑔𝑔𝑖𝑖𝑖𝑖∈𝐼𝐼𝑗𝑗  and 𝐻𝐻𝑗𝑗 = ∑ ℎ𝑖𝑖𝑖𝑖∈𝐼𝐼𝑗𝑗 ; In the above equations, 𝜆𝜆 is a fixed coefficient, 𝛾𝛾 is the complexity parameter, 𝛾𝛾 is the number of leaf nodes in the tree, 𝐺𝐺𝑗𝑗 is the cumulative sum of the first partial derivatives 𝑔𝑔𝑗𝑗 of the samples 

contained in leaf node j, and 𝐻𝐻𝑗𝑗 is the cumulative sum of the second partial derivatives ℎ𝑗𝑗 of the samples contained 

in leaf node j. 

2.6 Traditional ML Algorithms 

Three representative traditional ML algorithms, namely, RF, SVM, and CART, were selected in this paper for com-

parison with the XGBoost algorithm. 

Proposed by Breiman [40], an American scientist, RF is a classification algorithm that can efficiently process da-

tasets with multidimensional features and seek the optimal solution for category attribution through cross-validation 

of sample features. It has the advantages of a fast training speed, insensitivity to sample size, high classification accu-

racy, and strong antinoise ability, making it an ML algorithm that is widely used for intelligent learning of agricultural 

RS big data [41]. In this paper, an RF model was built using the ee.Classifier.smileRandomForest function in the GEE 

platform with the number of decision trees set to 100 and all other parameters set to their default values. 

The SVM is an ML algorithm based on the statistical learning theory developed by the Vapnik team [42]. It is one 

of the most novel and practical methods in statistical learning theory. The SVM is characterized by the ability to mini-

mize empirical error and maximize the classification interval at the same time, i.e., it achieves supervised learning by 

finding a hyperplane that both guarantees classification accuracy and maximizes the interval between the two types of 

data. This method has a strong ability to process nonlinear and high-dimensional data and also solves the curse of 

dimensionality problem, making it a current research area of major focus in the international ML community [43]. In 

this paper, an SVM model was built using the ee.Classifier.libsvm function in the GEE platform with all parameters set 

to their default values. 

CART is a decision tree construction algorithm proposed by Breiman [44] in 1984, and it has been improved con-

tinuously. Its basic principle is the creation of a decision tree structure in the form of a binary tree by cyclic bisection of 

the training dataset, which is composed of test and target variables. The algorithm can be used for both classification 

and prediction of continuous variables. It is structurally clear, easy to understand, simple to implement, fast and accu-

rate, and can handle both a large amount of data and high-dimensional data effectively. In addition, it does not require 

any statistical distribution of the input data, which can be continuous or discrete. The CART algorithm can also deter-

mine the importance of test variables [9]. In this paper, a decision tree model was built using the ee.Classifier.smileCart 

function in the GEE platform with the parameter set to 100 and the rest of the parameters set to default values. 

2.7 Accuracy Evaluation 

The use of a confusion matrix is a standard method for evaluating the accuracy of RS image classification results 

[45]. The confusion matrix, also known as the error matrix, is represented as a matrix with n rows and n columns (Table 

3). 

Table 3. Confusion matrix. 

 Predicted as Positive Predicted as Negative 

Labeled as Positive True Positive(TP) False Negative(FN) 

Labeled as Negative False Positive(FP) True Negative(TN) 

This paper selected four accuracy evaluation indicators, namely, user accuracy (UA), producer accuracy (PA), over-

all accuracy (OA), and the kappa coefficient to evaluate the accuracy of three classifiers for winter wheat identification. 𝑂𝑂𝑂𝑂 =
𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇𝐹𝐹𝑇𝑇 +𝐹𝐹𝑇𝑇+𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇 

                             (8) 𝑈𝑈𝑂𝑂 =
𝑇𝑇𝑇𝑇𝐹𝐹𝑇𝑇+𝑇𝑇𝑇𝑇                                    (9) 𝑃𝑃𝑂𝑂 =
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇                                   (10) 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 =
𝑝𝑝0−𝑝𝑝𝑒𝑒1−𝑝𝑝𝑒𝑒                                  (11) 
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In Equations (8)–(11), 𝛾𝛾𝑃𝑃 represents the positive samples correctly classified by the model, with both predicted 

and true values being 1; 𝐹𝐹𝑃𝑃 represents the positive samples misclassified by the model, with the predicted and real 

values being 1 and 0, respectively; 𝛾𝛾𝑇𝑇 denotes the negative samples correctly classified by the model, with both pre-

dicted and true values being 0; 𝐹𝐹𝑇𝑇 represents the negative samples misclassified by the model, with the predicted and 

true values being 0 and 1, respectively; 𝑘𝑘0 is the sum of the number of correctly classified samples in each category 

divided by the total number of samples, i.e., the overall classification accuracy; and 𝑘𝑘𝑒𝑒 is the sum of the product of the 

true and predicted numbers of samples in each category divided by the square of the total number of samples. 

3. Materials and Methods 

3.1 Classification Model Training 

The XGBoost model was built using Python 3.9. A sample dataset containing 27 feature bands was exported as 

training samples. A total of 70% of the samples were randomly selected to train the XGBoost model to classify the 

features in the study area, and the remaining 30% of the samples were used as test samples to evaluate the accuracy of 

the crop identification results. In addition, to improve the model’s identification accuracy, the parameters needed to be 

reasonably adjusted before building the model. The number of weak learners in the model is the primary parameter 

that affects the final model’s accuracy. A larger number of weak learners is not always better, as too many weak learners 

can lead to model overfitting and increased computational burden. 

The learning curve in Figure 4 demonstrates that the average absolute error dropped sharply as the number of 

weak learners increased from 0 to 30 and then gradually became stable, reaching the lowest average absolute error with 

75 weak learners, and the program stopped early at 83 runs. Therefore, 75 weak learners were used as the optimal 

number for this training sample set. The other parameters were optimized by the learning curve and the grid search 

methods, including key parameters such as the step size (learning_rate), the maximum tree depth (max_depth), the 

minimum leaf weight (min_child_weight), and the minimum loss function drop (gamma) for each training set. The 

specific optimal parameters are as follows: learning_rate/step = 0.1, number of weak learners = 75, max_depth = 6, 

min_child_weight = 1; the rest of the parameters were set to default values. 

 

Figure 4. The learning curve 

3.2 XGBoost Classification Results 

Figure 5a shows the spatial distribution of winter wheat based on the XGBoost algorithm model. Table 4 presents 

the results of the accuracy evaluation for the winter wheat identification results based on the four algorithms. Figure 5a 

and Table 4 indicate that the use of the XGBoost algorithm to identify the winter wheat-growing area in Baoying County 

with the same sample set finally led to an overall identification accuracy of 93.43%, a winter wheat producer accuracy 

of 98.01%, a consumer accuracy of 93.53%, and a kappa coefficient of 0.9059, which essentially met the accuracy require-

ments for crop identification in the study area. 
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(a) XGBoost (b) RF 

  
(c) CART (d) SVM 

  

Figure 5. Extraction results of winter wheat based on the 4 ML algorithm models. 

Table 4. Accuracy evaluation based on four algorithms. 

Feature 

type 

XGBoost RF CART SVM 

pro-

ducers  

con-

sumers  

pro-

ducers  

con-

sumers  

pro-

ducers  

con-

sumers  

pro-

ducers  

con-

sumers 

Winter wheat 98.01% 93.53% 96.49% 95.43% 92.79% 96.17% 93.53% 95.47% 

Water body 89.76% 96.17% 87.01% 95.26% 83.98% 90.65% 83.98% 86.22% 

urban land 97.19% 94.08% 98.95% 90.87% 93.72% 88.61% 93.72% 91.33% 

woodland 88.89% 91.43% 88.61% 87.75% 86.14% 79.09% 81.68% 78.95% 

oilseed rape 31.34% 100% 16.67% 100% 33.33% 15.38% 0.00% 0.00% 

overall  93.43% 93.2% 89.75% 89.15% 

kappa 0.9059 0.9022 0.8531 0.8439 

To objectively evaluate the extraction performance of the XGBoost classification model on winter wheat in the 

study area, this paper used the measured sample points except for the training set and the test set, combined with the 

mixed sample points selected by visual interpretation, for comparison with the extraction results by the model. It was 

found through comparison with the information for the sample points that the winter wheat in each township could 

essentially be correctly extracted, and thus, the extraction results were satisfactory. Only a small amount of misclassifi-

cation occurred in Sheyanghu Town and Guangyanghu Town. Because field investigation revealed that fishponds, win-

ter wheat, and oilseed rape were scattered in these areas, the misclassification and missed classification might be at-

tributed to the phenomenon that different objects can show the same spectral characteristics. Overall, this paper had a 

low misclassification rate and a missed classification rate, and the winter wheat extraction model had a high identifica-

tion accuracy, thereby successfully identifying winter wheat in the study area. 
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3.3 Comparison with the Classification Results of Traditional ML Algorithms 

The winter wheat identification and classification results of the three traditional ML algorithms, namely, RF, SVM, 

and CART, were compared with those of the XGBoost algorithm in Figure 5. Table 5 is a comparison of typical feature 

extraction results based on four types of machine learning. Evidently, the classification results based on the XGBoost 

algorithm were significantly better than the other three classification results and effectively distinguished winter wheat 

from other features. 

Table 5. Comparison of typical feature extraction results based on 4 ML algorithm models. 

 True Color XGBoost RF CART SVM 

Winter 

wheat 
     

Water 

body 
     

Urban 

land 
     

Wood-

land 
     

Oilseed 

rape 
     

As shown in Table 4, the overall accuracies of the XGBoost, RF, CART, and SVM algorithms were 93.43%, 93.25%, 

89.75%, and 89.15%, respectively, with XGBoost having the highest overall accuracy, which was slightly higher than RF 

and significantly higher than CART and SVM. The kappa coefficient of the XGBoost classification results was also the 

highest. The four algorithms were sorted in descending kappa coefficient order as XGBoost, RF, CART, and SVM, with 

the kappa coefficient of XGBoost having the highest accuracy of 0.9059. The four algorithms were sorted in descending 

order according to the producer accuracy of winter wheat as XGBoost, RF, SVM, and CART, which were 98.01%, 96.49%, 

93.53%, and 92.79%, respectively. The CART algorithm had the highest customer accuracy for winter wheat, which was 

96.17%. 

The official statistical area of winter wheat in Baoying County was searched in terms of the grain sown area and 

yield data in the 2022 Yangzhou Statistical Yearbook released by the Yangzhou Bureau of Statistics. The winter wheat-

growing area was found to be 53,462.67 hectares in 2021. Using the official statistical area published as the benchmark, 

the area accuracy of each model result was evaluated, and the results are shown in Table 6. The area extracted by 

XGBoost and RF was closer to the official statistical value, while the area of winter wheat extracted by CART and the 

SVM had a large error compared with the official statistical value. Among them, the area extracted by the XGBoost 

method had the highest accuracy, which was only 5.64% less than the official statistic data, demonstrating relatively 

good performance. 

Table 6. Area accuracy evaluation. 

Type XGBoost RF CART SVM 

Area/hm² 50449.18 49735.82 45975.632 45788.956 

error/(%) -5.64 -6.97 -14.00 -14.35 

4. Discussion 

In this paper, good results were achieved in terms of identifying winter wheat based on the XGBoost algorithm. 

The overall accuracy was improved to some extent compared with that in the paper by Zhang et al. [12] by using the 
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XGBoost algorithm to identify crops in cloudy and foggy areas. This improved accuracy is a result of the textural fea-

tures added in this paper to the feature bands in the training samples to improve the classification accuracy for winter 

wheat-growing areas. As important structural information about the spatial distribution of features, textural features 

compensate for the deficiency of spectral features in the classification of hyperspectral RS images to a certain extent and 

partially offset the influence of clouds and fog [46–47]; thus, the identification accuracy was higher than that of the 

results from Zhang et al. Using the textural features of Satellite pour l’Observation de la Terre (SPOT5) images, Li et al. 

[48]estimated and verified the biomass of each of five forest types and found that the textural features contributed 

significantly to the model, demonstrating the importance of textural features in model construction. In their parametric 

study of a tropical rainforest stand using Landsat images, Lu et al. [49] found that the accuracy of forest biomass esti-

mation was higher when textural features were combined with spectral features than when band values or vegetation 

indices were used alone, further confirming this point. 

Sample selection is also an important factor that affects the identification accuracy. Both the type and number of 

samples affect the model accuracy to a certain extent. This paper only selected five typical features in the study area, 

and an appropriate increase in the size of the sample data set can improve the identification accuracy. However, it is 

not necessarily the case that more feature variables in the model lead to better results; instead, too many features can 

easily cause data redundancy and overfitting of the identification results. In addition, because this study area clearly 

presents plain landforms, it is questionable to include topographic features in the feature variables. Therefore, the se-

lection of appropriate feature variables during model construction also played a crucial role in the identification of 

winter wheat in the study area. 

5. Conclusion 

Using winter wheat in Baoying County in Jiangsu Province, China, as a research object, this paper used Sentinel-2 

images as the data source to construct spectral, textural, and topographic features, used the XGBoost algorithm to iden-

tify and extract winter wheat during the growth period, and compared the results with those of traditional ML algo-

rithms. The following conclusions are drawn: 

(1) Using Sentinel-2 data in the main growth period of crops in Baoying County, a sample training set and a vali-

dation set containing 27 features were constructed by considering nineteen spectral features, six texture features, and 

two topographic features. A model based on the XGBoost algorithm was constructed using Python, the model param-

eters were optimized, the standard sample model was trained, and the crop identification model for the classification 

and extraction of winter wheat was constructed. 

(2) In the identification of winter wheat in the study area, the XGBoost algorithm had the highest overall accuracy 

(93.43%) and the largest kappa coefficient (0.9059), and its result had only a small error compared with the actual winter 

wheat-growing area in Baoying County, essentially meeting the accuracy requirement for crop identification in the 

study area. 

(3) The algorithm XGBoost far outperformed the three traditional ML algorithms. Among the traditional ML algo-

rithms, only the RF algorithm had good accuracy, with an overall accuracy only slightly lower than that of the XGBoost 

algorithm, while the SVM and CART algorithms had low accuracy, and their results had a large error compared with 

the actual winter wheat-growing area in Baoying County. 

This paper showed that the XGBoost algorithm demonstrates good performance in fast and accurate estimation of 

the winter wheat-growing area, which is of great significance in terms of estimating yield and ensuring food security. 

In future research, the XGBoost-based crop identification model can be further optimized to provide a better experience 

and more technical methods for winter wheat identification. 
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