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Abstract: Cluster of differentiation 44 (CD44) is a type I transmembrane glycoprotein, and has been
shown as a cell surface marker of cancer stem-like cells in various cancers. Especially, the splicing
variants of CD44 (CD44v) are overexpressed in cancers, and play critical roles in cancer stemness,
invasiveness, and resistance to chemotherapy and radiotherapy. Therefore, the understanding of
the function of each CD44v is indispensable for the CD44-targeting therapy. CD44v9 contains the
variant 9-encoded region, and its expression predicts poor prognosis in patients with various can-
cers. CD44v9 plays critical roles in the malignant progression of tumors. Therefore, CD44v9 is a
promising target for cancer diagnosis and therapy. Here, we developed sensitive and specific mon-
oclonal antibodies (mAbs) against CD44 by immunizing mice with CD44v3-10-overexpressed Chi-
nese hamster ovary CHO-K1 (CHO/CD44v3-10) cells. We first determined their critical epitopes
using enzyme-linked immunosorbent assay, and characterize their applications to flow cytometry,
western blotting, and immunohistochemistry. One of the established clones, C44Mab-1 (IgGs, kappa)
reacted with a peptide of the variant 9-encoded region, indicating that C44Mab-1 recognizes CD44v9.
CuMab-1 reacted with CHO/CD44v3-10 cells or colorectal cancer cell lines (COLO201 and
COLO205) by flow cytometry. The apparent dissociation constant (Kp) of CwuMab-1 for
CHO/CD44v3-10, COLO201, and COLO205 was 2.5 x 10M, 3.3 x 10 M, and 6.5 x 10*M, respec-
tively. Furthermore, C14Mab-1 was able to detect the CD44v3-10 in western blotting, and endoge-
nous CD44v9 in immunohistochemistry using colorectal cancer tissues. These results indicated that
CuMab-1 is useful for detecting CD44v9 not only in flow cytometry or western blotting but also in
immunohistochemistry against colorectal cancers.
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1. Introduction

Cluster of Differentiation 44 (CD44) is a type I transmembrane glycoprotein, and its
variety of isoforms are expressed in various type of cells. [1]. The alternative splicing of
CD44 mRNA mediates the variety of isoforms [2]. The CD44 standard (CD44s) isoform,
the smallest isoform of CD44, is expressed in most vertebrate cells. CD44s mRNA is as-
sembled by the first five (1 to 5) and the last five (16 to 20) constant region exons [3]. The
CD44 variant (CD44v) isoforms are assembled by the alternative splicing of middle vari-
ant exons (v1-v10) in various combinations with the standard exons of CD44s [4]. Both
CD44s and CD44v (pan-CD44) bind to hyaluronic acid (HA), which plays critical roles in
cellular adhesion, migration, homing, and proliferation [5].
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The CD44 protein is further modified by variety of glycosylation, including N-gly-
cans, O-glycans, and glycosaminoglycans (heparan sulphate, etc.) [6]. Due to the post-
translational modifications, the molecular weight of CD44s is enlarged to 80-100 kDa, and
some CD44v isoforms surpass 200 kDa due to a high level of glycosylation [7].

Several isoforms of the CD44 are associated with malignant progression in various
tumors [8], including head and neck squamous cell carcinomas (SCCs) [9], pancreatic can-
cers [10,11], breast cancers [12], gliomas [13,14], prostate cancers [15], and colorectal can-
cers (CRQC) [16]. CD44 is also known as a cell surface marker of cancer stem-like cells
(CSCs) in various carcinomas [17]. Specific monoclonal antibodies (mAbs) to CD44s or
CD44v are utilized for sorting CD44"sh CSCs [17]. The CD44bish population exhibited the
increased stemness property, drug resistance, and tumor formation in vivo [17]. Therefore,
development of anti-CD44 mAbs, which recognize each variant, is important for the fur-
ther characterization of CSCs in various cancers.

The functions of CD44v have been reported in the promotion of tumor invasion, me-
tastasis, CSC properties [18], and resistance to chemotherapy and radiotherapy [8,19]. The
v3-encoded region is modified by heparan sulfate, which promotes the binding to heparin-
binding growth factors including fibroblast growth factors and heparin-binding epidermal
growth factor-like growth factor. Therefore, the v3-encoded region functions as a co-re-
ceptor of receptor tyrosine kinases and potentiate their signal transduction [20]. Further-
more, the v6-encoded region is essential for the activation of c-MET through ternary com-
plex formation with the ligand hepatocyte growth factor [21]. The v8-10-encoded region
could bind to and stabilize a cystine—glutamate transporter (xCT), which promotes the
defense to reactive oxygen species (ROS) via cystine uptake-mediated glutathione synthe-
sis [22]. The regulation of redox status depends on the expression of CD44v8-10 that is
associated with the xCT function and links to the poor prognosis of patients [23]. There-
fore, the establishment and characterization of mAbs, which recognize each CD44v, are
essential for understanding each variant function and development of CD44-targeting
cancer therapy. However, the function and distribution of the variant 9-encoded region in
tumors have not been fully understood.

We previously developed an anti-pan-CD44 mAb, CuMab-5 (IgGs, kappa) [24] using
the Cell-Based Immunization and Screening (CBIS) method. Furthermore, another anti-
pan-CD44 mAb, CuMab-46 (IgG1, kappa) [25] was established by immunizing mice with
CD44v3-10 ectodomain. We showed that both Cs4Mab-5 and CsuMab-46 could be applied
to flow cytometry and immunohistochemistry in oral [24] and esophageal SCCs [25]. We
also determined the epitopes of C4«Mab-5 and CuMab-46 within the standard exons (1 to
5)-encoding regions [26-28]. Furthermore, we produced a defucosylated version (5-mGaa-
f) using FUT8-deficient ExpiCHO-S cells (BINDS-09) and investigated the antitumor ef-
fects of 5-mGa.-f in mouse xenograft models of oral SCC [29]. Recently, we have been es-
tablished various CD44v mAbs, including CuMab-108 (v4) [30] and CuMab-9 (v6) [31].

In this study, we established a novel anti-CD44v9 mAb, CuMab-1 (IgG, kappa) by
CBIS method, and evaluated its applications, including flow cytometry, western blotting,
and immunohistochemical analyses of oral squamous cell carcinoma and colorectal ade-
nocarcinomas.

2. Materials and Methods

2.1. Cell Lines

COLO201 (a human colorectal cancer cell line), P3X63Ag8U.1 (P3U1; a mouse multi-
ple myeloma), and Chinese hamster ovary (CHO)-K1 cell lines were obtained from the
American Type Culture Collection (ATCC, Manassas, VA, USA). COLO205 (a human col-
orectal cancer cell line) was obtained from the Cell Resource Center for Biomedical Re-
search Institute of Development, Aging, and Cancer at Tohoku University (Miyagi, Ja-
pan). To cultivate these cell lines, we used Roswell Park Memorial Institute (RPMI)-1640
medium (Nacalai Tesque, Inc., Kyoto, Japan), which is supplemented with 10% heat-in-
activated fetal bovine serum (FBS; Thermo Fisher Scientific, Inc., Waltham, MA, USA). We
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further added the antibiotics, including 100 ug/mL streptomycin, 100 U/mL penicillin, and
0.25 pg/mL amphotericin B (Nacalai Tesque, Inc.). All cell lines were grown in a humidi-
fied incubator at 37°C with 5% COs.

We amplified CD44s cDNA from LN229 cDNA using HotStar HiFidelity Polymerase
Kit (Qiagen Inc., Hilden, Germany). We obtained CD44v3-10 ORF from the RIKEN BRC.
CD44v3-10 and CD44s cDNAs were cloned into a pCAG-Ble-ssPA16 vector, which pos-
sesses the signal sequence and the N-terminal PA16 tag (GLEGGVAMPGAEDDVYV)
[24,32-35], which can be detected by an anti-human podoplanin mAb (NZ-1) [36-51]. Us-
ing a Neon transfection system (Thermo Fisher Scientific, Inc.), two stable transfectants,
such as CHO/CD44v3-10 and CHO/CD44s, were established by introducing pCAG-
Ble/PA16-CD44v3-10 and pCAG-Ble/PA16-CD44s into CHO-K1 cells, respectively.

2.2. Production of hybridoma cells

The 6-week-old female BALB/c mice were purchased from CLEA Japan (Tokyo, Ja-
pan). Mice were housed under specific pathogen-free conditions. To minimize animal suf-
fering and distress in the laboratory, all mice experiments were performed according to
relevant guidelines and regulations. Our animal experiments were approved by the Ani-
mal Care and Use Committee of Tohoku University (Permit number: 2019NiA-001). Mice
were monitored every day for health during the period of experiments. Mice were in-
traperitoneally immunized with CHO/CD44v3-10 (1 x 108 cells) with Imject Alum
(Thermo Fisher Scientific Inc.) as an adjuvant. We performed additional immunizations
of CHO/CD44v3-10 (1 x 108 cells, three times), and performed a booster injection of
CHO/CD44v3-10 (1 x 108 cells) 2 days before harvesting the spleen cells. We used poly-
ethylene glycol 1500 (PEG1500; Roche Diagnostics, Indianapolis, IN, USA) to fuse the sple-
nocytes and P3U1 cells. The hybridoma supernatants, which are negative for CHO-K1
cells and positive for CHO/CD44v3-10 cells, were selected using SA3800 Cell Analyzer
(Sony Corp. Tokyo, Japan).

2.3. ELISA

Fifty-eight peptides, which cover the extracellular domain of CD44v3-10 [26], were
obtained from Sigma-Aldrich Corp. (St. Louis, MO, USA). We immobilized them on Nunc
Maxisorp 96-well immunoplates (Thermo Fisher Scientific Inc) at 1 pug/mL for 30 min at
37°C. The palate washing was performed using HydroSpeed Microplate Washer (Tecan,
Zirich, Switzerland) with phosphate-buffered saline (PBS) containing 0.05% (v/v) Tween
20 (PBST; Nacalai Tesque, Inc.). After the blocking with 1% (w/v) bovine serum albumin
(BSA) in PBST for 30 min at 37°C, CuMab-1 (10 ug/mL) was added to each well. Then, the
wells were further incubated with anti-mouse immunoglobulins peroxidase-conjugate
(1:2000 diluted; Agilent Technologies Inc., Santa Clara, CA, USA) for 30 min at 37°C. One-
Step Ultra TMB (Thermo Fisher Scientific Inc.) was used for enzymatic reactions. An
iMark microplate reader (Bio-Rad Laboratories, Inc., Berkeley, CA, USA) was used to
mesure the optical density at 655 nm.

2.4. Flow Cytometry

CHO/CD44v3-10 and CHO-K1 cells were prepared using 0.25% trypsin and 1 mM
ethylenediamine tetraacetic acid (EDTA; Nacalai Tesque, Inc.). COLO201 and COLO205
were obtained by pipetting. The cells were incubated with CsMab-1, C4«Mab-46, or block-
ing buffer (0.1% BSA in PBS; control) for 30 min at 4°C. Then, the cells were treated with
anti-mouse IgG conjugated with Alexa Fluor 488 (1:2000; Cell Signaling Technology, Inc.)
for 30 min at 4°C. Fluorescence data were collected and analyzed using the SA3800 Cell
Analyzer and SA3800 software (ver. 2.05, Sony Corp.), respectively.

2.5. Determination of Apparent Dissociation Constant (Kp) by Flow Cytometry

Serially diluted CuMab-1 was suspended with CHO/CD44v3-10, COLO201, and
COLO205 cells. Then, those cells were treated with anti-mouse IgG conjugated with Alexa
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Fluor 488 (1:200). Fluorescence data were collected and analyzed as indicated above.
GraphPad Prism 8 (the fitting binding isotherms to built-in one-site binding models;
GraphPad Software, Inc., La Jolla, CA, USA) was used to determine the apparent dissoci-
ation constant (Kb).

2.6. Western Blot Analysis

The 10 pg of cell lysates were subjected to SDS-polyacrylamide gel for electrophoresis
using polyacrylamide gels (5-20%; FUJIFILM Wako Pure Chemical Corporation, Osaka,
Japan) and electrotransferred onto polyvinylidene difluoride (PVDF) membranes (Merck
KGaA, Darmstadt, Germany). The blocking was performed using 4% skim milk (Nacalai
Tesque, Inc.) in PBST. The membranes were incubated with 10 ug/mL of C«Mab-1, 10
ug/mL of C4Mab-46, or 1 ug/mL of an anti-isocitrate dehydrogenase 1 (IDH1; RcMab-1;
rat IgGza) [52,53], and then incubated with peroxidase-conjugated anti-mouse immuno-
globulins (diluted 1:1000; Agilent Technologies, Inc.) or peroxidase-conjugated anti-rat
immunoglobulins (diluted 1:10000; Sigma-Aldrich Corp.). Finally, the signals were en-
hanced using a chemiluminescence reagent, ImmunoStar LD (FUJIFILM Wako Pure
Chemical Corporation), and were detected by a Sayaca-Imager (DRC Co. Ltd., Tokyo, Ja-

pan).

2.7. Immunohistochemical Analysis

The formalin-fixed paraffin-embedded (FFPE) oral SCC tissues were obtained as de-
scribed previously [54]. We purchased a colorectal carcinoma tissue array (CO483a) from
US Biomax Inc. (Rockville, MD, USA). The sections were autoclaved in EnVision FLEX
Target Retrieval Solution High pH (Agilent Technologies, Inc.) for 20 min. After blocking
with SuperBlock T20 (Thermo Fisher Scientific, Inc.), we incubated the tissue sections
with Cu4Mab-1 (1 pg/mL) and CuMab-46 (1 pg/mL) for 1 h, and treated with the EnVi-
sion+ Kit for mouse (Agilent Technologies Inc.) for 30 min at room temperature. The chro-
mogenic reaction was conducted using 3,3'-diaminobenzidine tetrahydrochloride (DAB;
Agilent Technologies Inc.). The counterstaining were performed using hematoxylin (FU-
JIFILM Wako Pure Chemical Corporation). To examine the sections and obtain images,
we used Leica DMD108 (Leica Microsystems GmbH, Wetzlar, Germany).

3. Results
2.1. Establishment of an Anti-CD44v9 mAb, C4Mab-1

In the CBIS method, we prepared the CD44v3-10-overexpressed CHO-K1 cells
(CHO/CD44v3-10) as an immunogen. As shown in Figure 1, mice were immunized with
CHO/CD44v3-10 cells, and hybridomas were produced and seeded into 96-well plates.
Then, the supernatants, which were positive to CHO/CD44v3-10 cells and negative to
CHO-K1, were selected by high throughput screening using flow cytometry. After cloning
by the limiting dilution, anti-CD44 mAb-producing clones were finally established. We
next performed the ELISA to determine the epitope of each mAb. Among them, C«Mab-
1 (IgGi, kappa) was shown to recognize the CD44p471-490 peptide
(STSHEGLEEDKDHPTTSTLT), which is corresponding to variant 9-encoded sequence
(Supplementary Table S1). In contrast, C44Mab-1 never recognized other CD44v3-10 ex-
tracellular regions. These results indicated that C«4Mab-1 specifically recognizes the CD44
variant 9-encoded sequence.
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A. Structure of CD44 standard and variant isoforms
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Figure 1. A schematic representation of ant-human CD44 mAbs production. (A) Structure of CD44.
The CD44s mRNA is assembled by the first five (1 to 5) and the last five (16 to 20) exons, and trans-
lates CD44s. The mRNAs of CD44 variant are produced by the alternative splicing of middle variant
exons, and translate multiple CD44v such as CD44v3-10, CD44v4-10, CD44v6-10, and CD44v8-10.
(B) CHO/CD44v3-10 cells were intraperitoneally injected into BALB/c mice. (C) Hybridomas were
produced by fusion of the splenocytes and P3U1 cells (D) The screening was performed by flow
cytometry using CHO/CD44v3-10 and parental CHO-K1 cells. (E) After cloning and additional
screening, a clone Cu4Mab-1 (IgGi, kappa) was established. Furthermore, we used peptides which
cover the extracellular domain of CD44v3-10 (Supplementary Table S1), and determined the
binding epitopes of each mAbs by enzyme-linked immunosorbent assay (ELISA).

2.2. Flow Cytometric Analysis of C4«Mab-1 to CD44-Expressing Cells


https://doi.org/10.20944/preprints202303.0399.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 March 2023 d0i:10.20944/preprints202303.0399.v1

We next investigated the reactivity of CuMab-1 against CHO/CD44v3-10 and
CHO/CD44s cells by flow cytometry. CuMab-1 recognized CHO/CD44v3-10 cells in a
dose-dependent manner (Figure 2A). In contrast, Cs4Mab-1 never recognized CHO/CD44s
(Figure 2B) nor CHO-K1 (Figure 2C) cells. We confirmed that a pan-CD44 mAb, CsuMab-
46 [25], recognized the CHO/CD44s cells (Supplemental Figure S1). Furthermore, Cs4Mab-
1 could recognize endogenous CD44v9 in both COLO201 (Figure 2D) and COLO205 (Fig-
ure 2E) cells in a dose-dependent manner.

A

(=]
™ CMMab-1 CaqMab-‘I C44Mab—1 C.uMab—I
gl 10 pg/mL 1 pg/mL 0.1 pg/mL 200 0.01 pg/mL
& _E 300 300 300 200
by
() E 200 200 200 200
g g 100 100 100 100
0 [
E 10°100 10 1B I 10° 107 10 10100905 10 10° 107 10 1 T TS 0°  J0° 307 T0% 707 707 707 T0e
Fluorescence intensity .
B CMMab-1 CaqMab-‘I CMMBb-I C44Mab-1
g ) 10 pg/mL 1 pg/mL 0.1 pg/mL 0.01 pg/mL
o x| 400 ]
8 é 300
3 ] 200
s Z|™
= 100
5 g [ I E I | LE .
10° 10° 107 10° 10* 10° 10° 10° 10' 10? 10° 10¢ 10° 105 10" 10' 10? 10° 10* 10° 10° 10° 10" 107 10° 10* 105 10°
Fluorescence intensity .
CasMab-1 CasMab-1 CysMab-1 CasMab-1
10 pg/mL 1 pg/mL 0.1 pg/mL 0.01 pg/mL
E g 300 - 300 ] 300 300
o' g 200 200 200 200
L Elw 100 100 100
o 3 ]
g o 0 \ — (R,
109 107 102 10° 10° 10° 10°% 10° 10" 10% 10° 10* 10° 10° 10° 10" 107 10° 10° 10° 10° 10° 10' 102 10° 10 10° 10°
Fluorescence intensity
CyMab-1 CasMab-1 CasMab-1 CasMab-1
10 pg/mL 1 pg/mL 0.1 pg/mL 0.01 pg/mL
E g 250 250 2004
(3] 200 200
(@] § 150 150 200
s E|wo 100 100
0 g 50 50
0 i ] - L e
107107 107 107 10°90° 105 108 10 107 167 10° 105 10° 109 107 10 109107 105 108 10° 107 10% 105 10° 10% 108

Fluorescence intensity

CaMab-1 CaiMab-1 CaMab-1 CuMab-1
10 pg/mL 1 pg/mL 0.1 pg/mL 0.01 pg/mL

COLO205
Cell number

0+ - " ] o e 0+
10° 10" 107 10°10° 10° 10° 107 10" 10% 10° 10°10°10°  10° 10" 102 10° 10° 10° 10°  10° 10' 102 10°10% 10° 10°

Fluorescence intensity

Figure 2. Flow cytometry using C«Mab-1. CHO/CD44v3-10 (A), CHO/CD44s (B), CHO-K1 (C),
COLO201 (D), and COLO205 (E) were treated with 0.01-10 pg/mL of CsuMab-1, followed by
treatment with Alexa Fluor 488-conjugated anti-mouse IgG (Red line). The black line represents the
negative control (blocking buffer).

We next performed the flow cytometry-based measurement of the apparent binding
affinity of CuMab-1 to CHO/CD44v3-10, COLO201, and COLO205 cells. As shown in
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Figure 3, the dissociation constant (Kp) of C4Mab-1 for CHO/CD44v3-10, COLO201, and
COLO205 was 2.5 x 10 M, 3.3 x 108 M, and 6.5 x 10# M, respectively. Results indicated that
CuMab-1 possesses the moderate binding affinity for CD44v3-10 or endogenous CD44v9-
expressing cells.
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Figure 3. The determination of the the binding affinity of Cs4Mab-1. Serially diluted CssMab-1 at
indicated concentrations were treated with CHO/CD44v3-10 (A), COLO201 (B), and COLO205 (C).
Then, cells were treated with anti-mouse IgG conjugated with Alexa Fluor 488. Fluorescence data
were collected, followed by the calculation of the apparent dissociation constant (Kp) by GraphPad
PRISM 8.

2.3. Western Blot Analysis

We next performed western blot analysis to assess the sensitivity of Ca4Mab-1. Total
cell lysates of CHO-K1, CHO/CD44s, and CHO/CD44v3-10 were analyzed. As shown in
Figure 4, Cu4uMab-1 detected CD44v3-10 as more than 180-kDa and ~75 kDa bands mainly.
However, CuaMab-1 never detect any bands from lysates of CHO/CD44s and CHO-K1
cells (Figure 4A). An anti-pan-CD44 mAb, CuMab-46, recognized CD44s (~75 kDa) and
CD44v3-10 (>180 kDa) bands in the lysates of CHO/CD44s and CHO/CD44v3-10, respec-
tively (Figure 4B). These results indicated that CuMab-1 is able to detect exogenous
CD44v3-10.
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Figure 4. Western blot analysis by Cs4Mab-1. The total cell lysates (10 pg of protein) were separated
and transferred onto polyvinylidene difluoride (PVDF) membranes. The membranes were incu-
bated with 10 pg/mL of CuMab-1 (A), 10 pug/mL of CuMab-46 (B), or 1 pg/mL of RcMab-1 (C),
followed by incubation with peroxidase-conjugated anti-mouse (for Ca4Mab-1 and CuMab-46) or
anti-rat (for ReMab-1) immunoglobulins. The red arrows indicate the CD44v3-10 (>180 kDa). The
black arrow indicates the CD44s (~75 kDa). The white arrow indicates lower molecular weight band
recognized by CuMab-1 in CHO/CD44v3-10 lysate (~75 kDa).

2.4. Immunohistochemical Analysis using CaaMab-1 against Tumor Tissues

We next examined whether C4Mab-1 could be used for immunohistochemical anal-
yses using FFPE sections. We first examined the reactivity of C«4«Mab-1 and Cu4Mab-46 in
an oral SCC tissue. As shown in Supplementary Figure 52, CuMab-1 exhibited a clear
membranous staining, and was able to clearly distinguish tumor cells from stromal tis-
sues. In contrast, Cs4sMab-46 stained the both.

We then investigated the reactivity of Cu4Mab-1 and CuMab-46 in the CRC tissue
array. Cu4Mab-1 showed the strong membranous and cytoplasmic staining throughout
CRC cells (Figure 5A). CuMab-46 similarly stained the CRC cells (Figure 5B). In some
CRC tissues, both CsaMab-1 and CuMab-46 stained the basolateral surface of CRC cells
(Figure 5C and D). In contrast, both Cs«4Mab-1 and CuMab-46 never stained CRC cells in
some CRC tissues (Figure 5E and F). In addition, stromal staining by C««Mab-46 was also
observed in several tumor tissues (Figure 5F). In normal colon epithelium, epithelial cells
were rarely stained byCuMab-1 (Figure 5G). In contrast, C4Mab-46 mainly stained stro-
mal tissues in normal colon epithelium (Figure 5H).

We summarized the data of immunohistochemical analyses in Table 1; CsMab-1
stained 16 out of 40 cases (40 %) in CRC. These results indicated that CsMab-1 is useful
for immunohistochemical analysis of FFPE tumor sections.
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Figure 5. Inmunohistochemical analysis using C4sMab1 and Cu4Mab-46 against CRC tissues. Af-
ter antigen retrieval, serial sections of CRC tissue arrays (CO483a) were incubated with 1 pg/mL of
CuMab-1 or CusMab-46 followed by treatment with the Envision+ kit. The color was developed us-
ing 3,3’-diaminobenzidine tetrahydrochloride (DAB), and the sections were counterstained with
hematoxylin. Scale bar = 100 um. (A-F) CRC; (G, H) normal colon epithelium.
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Table 1. Immunohistochemical analysis using C«Mab-1 against colorectal carcinoma tissue array.

No | Age | Sex | Organ | Pathology diagnosis Grade Stage | Type CuMab-1 | CuMab-46
1 67 M Colon | Adenocarcinoma 1 - Malignant + +
2 48 M Colon | Adenocarcinoma 1 ITA Malignant - -
3 58 M Colon | Adenocarcinoma 1--2 ITA Malignant + +
4 75 M Colon | Adenocarcinoma 1 v Malignant - ++
5 86 M Colon | Adenocarcinoma 2 I Malignant - +
6 55 M Colon | Adenocarcinoma 2 1IC Malignant - -
7 38 M Colon | Adenocarcinoma 1 I Malignant - ++
8 52 M Colon | Adenocarcinoma 1 111B Malignant + -
9 46 M Colon | Adenocarcinoma 2 111B Malignant ++ +
10 | 61 M Colon | Mucinous adenocarcinoma 2 1B Malignant + ++
11 |55 M Colon | Mucinous adenocarcinoma with necrosis 2 IIA Malignant - ++
12 | 55 M Colon | Adenocarcinoma 1 111B Malignant + -
13 | 44 M Colon | Adenocarcinoma 1 - Malignant - -
14 |31 M Colon | Adenocarcinoma 2 111B Malignant - +
15 | 74 F Colon | Adenocarcinoma 2 111B Malignant + +
16 | 61 M Colon | Adenocarcinoma 2 I Malignant ++ ++
17 | 45 M Colon | Adenocarcinoma 2 I Malignant + +
18 | 58 M Colon | Adenocarcinoma 2 111B Malignant - ++
19 |58 M Colon | Adenocarcinoma 2 ITA Malignant -+ -+
20 | 69 M Colon | Adenocarcinoma 3 - Malignant - -
21 | 64 F Colon | Adenocarcinoma 2 1IC Malignant ++ ++
22 | 82 M Colon | Adenocarcinoma 2 111B Malignant - -
23 | 34 M Colon | Adenocarcinoma 2 111B Malignant ++ ++
24 | 50 F Colon | Adenocarcinoma 2 11B Malignant - -
25 | 34 F Colon | Adenocarcinoma 1 11B Malignant - +
26 | 52 F Colon | Adenocarcinoma 2 IIA Malignant - +
27 | 53 F Colon | Adenocarcinoma 2 111B Malignant - -
28 | 58 F Colon | Adenocarcinoma 2 I Malignant - +
29 |59 F Colon | Adenocarcinoma 2 ITA Malignant ++ ++
30 |67 M Colon | Adenocarcinoma 2 111B Malignant - ++
31 |31 M Colon | Adenocarcinoma 2 111B Malignant -+ -+
32 | 54 F Colon | Adenocarcinoma 2 11B Malignant - +
33 | 54 F Colon | Adenocarcinoma 2 111B Malignant - -
34 |62 M Colon | Adenocarcinoma 2 - Malignant - +
35 |67 F Colon | Adenocarcinoma 2 - Malignant + -
36 |52 F Colon | Adenocarcinoma 2 1A Malignant - -
37 | 52 F Colon | Adenocarcinoma 3 1B Malignant - -
38 |75 M Colon | Adenocarcinoma 2 - Malignant - -
39 |57 F Colon | Adenocarcinoma 2 11B Malignant + -+
40 | 38 M Colon | Mucinous adenocarcinoma 3 1 Malignant - -

4. Discussion

Using the CBIS method, we developed CuMab-1 (Figure 1), and determined its
epitope as variant 9 encoded region by ELISA (Supplementary Table S1). Then, we
showed the multiple applications of CuMab-1 for flow cytometry (Figures 2 and 3), west-
ern blotting (Figure 4), and immunohistochemistry using OSCC (Supplementary Figure
52) and CRC tissues (Figure 5 and Table 1).
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Ishimoto et al. [22] demonstrated that CD44v interacts with xCT, a glutamate-cystine
transporter, and regulates the level of reduced glutathione (GSH) in gastric cancer cells.
As a result, CD44v contributes to the reduction of intracellular ROS. The knockdown of
CD44 reduced the cell surface expression of xCT and suppressed tumor growth in a mouse
gastric cancer model. Furthermore, they showed that the v8-10 region of CD44v is re-
quired for the specific interaction between CD44v and xCT, and CD44v8-10 (S301A), an
N-linked glycosylation site mutant, failed to interact with xCT. These results showed an
important function for CD44v in the regulation of ROS defense and tumor growth.

Ishimoto ef al. [22] also established a rat mAb (clone RV3) against CD44v8-10 by im-
munizing CD44v8-10-expressed RH7777 cells. The epitope of the mAb was determined
as a variant 9-encoded region using the recombinant CD44v9 protein by ELISA. RV3 was
mainly used in immunohistochemistry and revealed a predictive marker for recurrence
of gastric [55] and urothelial [56] cancers, predicting survival outcome in hepatocellular
carcinomas [57], and an indicator for identifying a cisplatin-resistant population in urothe-
lial cancers [58]. Therefore, CD44v?9 is a critical biomarker to evaluate the malignancy and
prognosis of tumors. Furthermore, sulfasalazine, an xCT inhibitor, was shown to suppress
the survival of CD44v9-positive CSCs both in vitro [59-61] and in vivo [62]. A dose-escala-
tion clinical study in patients with advanced gastric cancers revealed that sulfasalazine
reduced the population of CD44v9-positive cells in tumors [63], suggesting that CD44v9
is a biomarker for patient selection and efficacy of xCT inhibitors.

As mentioned above, RV3 recognized the recombinant CD44v9 protein by ELISA.
Therefore, RV3 is thought to recognize the peptide or glycopeptide structure of CD44v9.
However, the detailed binding epitope of RV3 has not been determined. As shown in
Supplementary Table S1, CuMab-1 recognized a synthetic peptide (CD44p471-490;
STSHEGLEEDKDHPTTSTLT), which possesses multiple predicted and confirmed O-gly-
can sites [64]. As shown in Figure 4A, CuMab-1 recognized a ~75kDa band in
CHO/CD44v3-10 lysate, which is approximately identical to predicted molecular weight
of CD44v3-10 from the amino acid length. Therefore, C4Mab-1 could recognize CD44v3-
10 regardless of the glycosylation. The detailed epitope mapping and the influence of the
glycosylation on C«Mab-1 recognition should be investigated in the future study.

By large-scale genomic analyses, CRCs are classified into 4 subtypes, including mi-
crosatellite instability immune, canonical, metabolic, and mesenchymal types [65]. Since
the CD44v9 was upregulated in 40% of CRC tissues (Figure 5 and Table 1), the relationship
to the subtypes should be determined. Additionally, the mechanism of CD44v9 upregu-
lation including the transcription and the v9 inclusion by alternative splicing should be
investigated. Wielenga et al. [66] demonstrated that CD44 is a target gene of Wnt/[3-
catenin in mice intestinal tumor model, suggesting that 3-catenin signaling pathway could
upregulate CD44 transcription. However, the mechanism of the variant 9 inclusion during
the CRC development remains to be determined.

In immunohistochemical analysis, we observed CD44v9 expression throughout CRC
cells (Figure 5A) and on the basolateral surface of CRC cells (Figure 5C). The basolateral
expression of CD44 was previously observed, and shown to be co-localized with HA [67],
EpCAM-Claudin-7 complex [68], and Annexin II [69]. Therefore, the basolateral expres-
sion of CD44 may function to promote HA/adhesion-mediated signal transduction and
contribute CRC tumorigenesis.

Clinical trials of anti-pan CD44 and CD44v6 mAbs have been conducted [70].
RG7356, an anti-pan CD44 mAb, exhibited an acceptable safety profile. However, the trial
was terminated because of no clinical and dose-response relationship with RG7356 [71].
Clinical trials of an antibody-drug conjugate (ADC), an anti-CD44v6 mAb bi-
vatuzumab-mertansine, were conducted. However, it failed due to the high toxicity to
skin [72,73]. The anti-CD44v6 mAb is further developed to chimeric antigen receptor T
(CAR-T) cell therapy. The CD44v6 CAR-T showed antitumor effects against primary hu-
man multiple myeloma and acute myeloid leukemia [74]. Furthermore, the CD44v6 CAR-
T also suppressed the xenograft tumor growth of lung and ovarian carcinomas [75], which
is expected for the application against solid tumors. Although CD44v?9 is rarely detected
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in normal colon epithelium by C«Mab-1, CD44v9 could be detected in other normal tis-
sues including oral squamous epithelium (Supplementary Figure S2). For the develop-
ment of therapeutic use of CuMab-1, further investigations are required to reduce the tox-
icity to above tissues.

Because anti-CD44 mAbs could have side effects by affecting normal tissues, the clin-
ical applications of anti-CD44 mAbs are still limited We previously developed PDPN-tar-
geting cancer-specific mAbs (CasMabs) [76-79] and podocalyxin-targeting CasMabs [80],
which are currently applied to CAR-T therapy in mice models [46,81,82]. These CasMabs
recognize cancer specific aberrant glycosylation of the target proteins [83]. It is worthwhile
to establish cancer-specific anti-CD44 mAbs using the CasMab method. Anti-CD44
CasMab production can be applicable as a basis for designing and optimizing potent im-
munotherapy modalities, including ADCs and CAR-T therapies.
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of this paper posted on Preprints.org.
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