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Abstract: The following system of equations {x1 · x1 = x2, x2 · x2 = x3, 22x1
= x3, x4 · x5 = x2,

x6 · x7 = x2} has exactly one solution in (N \ {0, 1})7, namely (2, 4, 16, 2, 2, 2, 2). Hypothesis 1 states

that if a system of equations S ⊆ {xi · xj = xk : i, j, k ∈ {1, . . . , 7}}∪ {22
xj

= xk : j, k ∈ {1, . . . , 7}}

has at most five equations and at most finitely many solutions in (N \ {0, 1})7, then each such

solution (x1, . . . , x7) satisfies x1, . . . , x7 6 16. Hypothesis 1 implies that there are infinitely many

composite numbers of the form 22n
+ 1. Hypotheses 2 and 3 are of similar kind. Hypothesis 2 implies

that if the equation x! + 1 = y2 has at most finitely many solutions in positive integers x and y, then

each such solution (x, y) belongs to the set {(4, 5), (5, 11), (7, 71)}. Hypothesis 4 implies that if the

equation x(x + 1) = y! has at most finitely many solutions in positive integers x and y, then each

such solution (x, y) belongs to the set {(1, 2), (2, 3)}.
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+ 1; Erdös’ equation x(x + 1) = y!
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1. Composite numbers of the form 22n
+ 1

Let A denote the following system of equations:

{

xi · xj = xk : i, j, k ∈ {1, . . . , 7}
}

∪
{

22
xj

= xk : j, k ∈ {1, . . . , 7}
}

The following subsystem of A

has exactly one solution in (N \ {0, 1})7, namely (2, 4, 16, 2, 2, 2, 2).

Hypothesis 1. If a system of equations S ⊆ A has at most five equations and at most finitely many solutions

in (N \ {0, 1})7, then each such solution (x1, . . . , x7) satisfies x1, . . . , x7 6 16.
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Lemma 1. ([7, p. 109]). For every non-negative integers x and y, x + 1 = y if and only if 22x
· 22x

= 22y
.

Theorem 1. Hypothesis 1 implies that 22x1
+ 1 is composite for infinitely many integers x1 greater than 1.

Proof. Assume, on the contrary, that Hypothesis 1 holds and 22x1
+ 1 is composite for at most finitely

many integers x1 greater than 1. Then, the equation

x2 · x3 = 22x1
+ 1

has at most finitely many solutions in (N \ {0, 1})3. By Lemma 1, in positive integers greater than 1,

the following subsystem of A

has at most finitely many solutions in (N \ {0, 1})7 and expresses that


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
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
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


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


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
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











x2 · x3 = 22x1
+ 1

x4 = 22x1
+ 1

x5 = 22x1

x6 = 2222x1

x7 = 2222x1
+ 1

Since 641 · 6700417 = 225
+ 1 > 16, we get a contradiction.

Most mathematicians believe that 22n
+ 1 is composite for every integer n > 5, see [2, p. 23].

Open Problem 1. ([3, p. 159]). Are there infinitely many composite numbers of the form 22n
+ 1?

Primes of the form 22n
+ 1 are called Fermat primes, as Fermat conjectured that every integer of

the form 22n
+ 1 is prime, see [3, p. 1]. Fermat remarked that 220

+ 1 = 3, 221
+ 1 = 5, 222

+ 1 = 17,

223
+ 1 = 257, and 224

+ 1 = 65537 are all prime, see [3, p. 1].

Open Problem 2. ([3, p. 158]). Are there infinitely many prime numbers of the form 22n
+ 1?

2. An equivalent form of Hypothesis 1

If k ∈ [1019, 1020 − 1] ∩N, then there are uniquely determined non-negative integers

a(0), . . . , a(19) ∈ {0, . . . , 9} such that

(a(19) > 1) ∧
(

k = a(19) · 1019 + a(18) · 1018 + . . . + a(1) · 101 + a(0) · 100
)
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For every k ∈ [1019, 1020 − 1] ∩N, we define a system of equations Sk ⊆ A. If

{a(0), . . . , a(19)} ∩ {0, 8, 9} 6= ∅, then Sk = ∅. If {a(0), . . . , a(19)} ∩ {0, 8, 9} = ∅, then Sk is

the smallest system of equations S ⊆ A satisfying the following conditions (1a)-(5b).

(1a) If a(3) ∈ {1, 2, 3, 4}, then the equation 22
xa(0)

= xa(1) belongs to S .

(1b) If a(3) ∈ {5, 6, 7}, then the equation xa(0) · xa(1) = xa(2) belongs to S .

(2a) If a(7) ∈ {1, 2, 3, 4}, then the equation 22
xa(4)

= xa(5) belongs to S .

(2b) If a(7) ∈ {5, 6, 7}, then the equation xa(4) · xa(5) = xa(6) belongs to S .

(3a) If a(11) ∈ {1, 2, 3, 4}, then the equation 22
xa(8)

= xa(9) belongs to S .

(3b) If a(11) ∈ {5, 6, 7}, then the equation xa(8) · xa(9) = xa(10) belongs to S .

(4a) If a(15) ∈ {1, 2, 3, 4}, then the equation 22
xa(12)

= xa(13) belongs to S .

(4b) If a(15) ∈ {5, 6, 7}, then the equation xa(12) · xa(13) = xa(14) belongs to S .

(5a) If a(19) ∈ {1, 2, 3, 4}, then the equation 22
xa(16)

= xa(17) belongs to S .

(5b) If a(19) ∈ {5, 6, 7}, then the equation xa(16) · xa(17) = xa(18) belongs to S .

Lemma 2. {Sk : k ∈ [1019, 1020 − 1] ∩N} = {S : (S ⊆ A) ∧ (card(S) 6 5)}.

For a positive integer n, let pn denote the n-th prime number.

Theorem 2. Hypothesis 1 holds if and only if the following semi-algorithm prints consecutive positive integers

starting from 1.

Start

i := 1

∀ n ∈ {1, . . . , 7} an := 2 + the exponent of

pn in the prime decomposition of 215 · i

k := 1019

j := 1

j := j + 1

∀ n ∈ {1, . . . , 7} bn := 2 + the exponent

of pn in the prime decomposition of j

Is
(

max (b1, . . . , b7) > max (a1, . . . , a7)
)

∧
(

(a1, . . . , a7) solves Sk ⇒ (b1, . . . , b7) solves Sk

)

?

Is k < 1020 − 1? k := k + 1

Print i i := i+ 1

No

Yes
Yes

No

Proof. It follows from Lemma 2.
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3. The Brocard-Ramanujan equation x! + 1 = y2

Let B denote the following system of equations:

{xi · xj = xk : i, j, k ∈ {1, . . . , 6}} ∪ {xj! = xk : (j, k ∈ {1, . . . , 6}) ∧ (j 6= k)}

The following subsystem of B

has exactly two solutions in positive integers, namely (1, . . . , 1) and (2, 2, 4, 24, 24!, (24!)!).

Hypothesis 2. If a system of equations S ⊆ B has at most finitely many solutions in positive integers

x1, . . . , x6, then each such solution (x1, . . . , x6) satisfies x1, . . . , x6 6 (24!)!.

Lemma 3. For every positive integers x and y, x! · y = y! if and only if

(x + 1 = y) ∨ (x = y = 1)

Theorem 3. Hypothesis 2 implies that if the equation x1! + 1 = x2
2 has at most finitely many solutions in

positive integers x1 and x2, then each such solution (x1, x2) belongs to the set {(4, 5), (5, 11), (7, 71)}.

Proof. The following system of equations B1

is a subsystem of B. By Lemma 3, in positive integers, the system B1 expresses that x1 = . . . = x6 = 1

or


























x1! + 1 = x2
2

x3 = x1!

x4 = (x1!)!

x5 = x1! + 1

x6 = (x1! + 1)!
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If the equation x1! + 1 = x2
2 has at most finitely many solutions in positive integers x1 and x2,

then B1 has at most finitely many solutions in positive integers x1, . . . , x6 and Hypothesis 2 implies

that every tuple (x1, . . . , x6) of positive integers that solves B1 satisfies (x1! + 1)! = x6 6 (24!)!. Hence,

x1 ∈ {1, . . . , 23}. If x1 ∈ {1, . . . , 23}, then x1! + 1 is a square only for x1 ∈ {4, 5, 7}.

It is conjectured that x! + 1 is a square only for x ∈ {4, 5, 7}, see [8, p. 297]. A weak form of

Szpiro’s conjecture implies that the equation x! + 1 = y2 has only finitely many solutions in positive

integers, see [6].

4. Erdös’ equation x(x + 1) = y!

Let C denote the following system of equations:

{xi · xj = xk : (i, j, k ∈ {1, . . . , 6}) ∧ (i 6= j)} ∪ {xj! = xk : (j, k ∈ {1, . . . , 6}) ∧ (j 6= k)}

The following subsystem of C

has exactly three solutions in positive integers, namely (1, . . . , 1), (1, 1, 2, 2, 2, 2), and

(2, 2, 3, 6, 720, 720!).

Hypothesis 3. If a system of equations S ⊆ C has at most finitely many solutions in positive integers x1, . . . , x6,

then each such solution (x1, . . . , x6) satisfies x1, . . . , x6 6 720!.

Theorem 4. Hypothesis 4 implies that if the equation x1(x1 + 1) = x2! has at most finitely many solutions in

positive integers x1 and x2, then each such solution (x1, x2) belongs to the set {(1, 2), (2, 3)}.

Proof. The following system of equations C1

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 April 2023                   doi:10.20944/preprints202303.0420.v3

https://doi.org/10.20944/preprints202303.0420.v3


6 of 7

is a subsystem of C. By Lemma 3, in positive integers, the system C1 expresses that x1 = . . . = x6 = 1

or


























x1 · (x1 + 1) = x2!

x3 = x1 · (x1 + 1)

x4 = x1!

x5 = x1 + 1

x6 = (x1 + 1)!

If the equation x1(x1 + 1) = x2! has at most finitely many solutions in positive integers x1 and x2,

then C1 has at most finitely many solutions in positive integers x1, . . . , x6 and Hypothesis 3 implies

that every tuple (x1, . . . , x6) of positive integers that solves C1 satisfies x2! = x3 6 720!. Hence,

x2 ∈ {1, . . . , 720}. If x2 ∈ {1, . . . , 720}, then x2! is a product of two consecutive positive integers

only for x2 ∈ {2, 3} because the following MuPAD program

for x2 from 1 to 720 do

x1:=round(sqrt(x2!+(1/4))-(1/2)):

if x1*(x1+1)=x2! then print(x2) end_if:

end_for:

returns 2 and 3.

The question of solving the equation x(x + 1) = y! was posed by P. Erdös, see [1]. F. Luca proved

that the abc conjecture implies that the equation x(x + 1) = y! has only finitely many solutions in

positive integers, see [4].

5. There is no hope for a hypothesis that is similar to Hypothesis 2 or 3 and holds for an arbitrary
number of variables

Let f (1) = 2, f (2) = 4, and let f (n + 1) = f (n)! for every integer n > 2. Let U1 denote the system

of equations {x1! = x1. For an integer n > 2, let Un denote the following system of equations:

For every positive integer n, the system Un has exactly two solutions in positive integers x1, . . . , xn,

namely (1, . . . , 1) and ( f (1), . . . , f (n)). For a positive integer n, let Ψn denote the following statement:

if a system of equations

S ⊆ {xi · xj = xk : i, j, k ∈ {1, . . . , n}} ∪ {xj! = xk : j, k ∈ {1, . . . , n}}

has at most finitely many solutions in positive integers x1, . . . , xn, then each such solution (x1, . . . , xn) satisfies

x1, . . . , xn 6 f (n).

Theorem 5. Every factorial Diophantine equation can be algorithmically transformed into an equivalent system

of equations of the forms xi · xj = xk and xj! = xk. It means that this system of equations satisfies a modified

version of Lemma 4 in [7].

Proof. It follows from Lemmas 2–4 in [7] and Lemma 3.
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The statement ∀n ∈ N \ {0} Ψn is dubious. By Theorem 5, this statement implies that there is

an algorithm which takes as input a factorial Diophantine equation and returns an integer which is

greater than the solutions in positive integers, if these solutions form a finite set. This conclusion is

strange because properties of factorial Diophantine equations are similar to properties of exponential

Diophantine equations and a computable upper bound on non-negative integer solutions does not

exist for exponential Diophantine equations with a finite number of solutions, see [5].
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