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Abstract: We define a spinor-Minkowski metric for SL(4,C). It is not a trivial general-
ization of the SL(2,C) metric and it involves the Minkowski metric. We define 4x4 version of
the Pauli matrices and their 4-component generalized eigenvectors. The generalized eigen-
vectors can be regarded as 4-component spinors and they can be grouped into four categories.
Each category transforms in its own way. The outer products of pairwise combinations of 4-
component spinors can be associated with 4-vectors.
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0.1 Introduction

Let L4 be an element of SL(2, C). In an exponential form with parameters 6 and n:

~.

La = eap(—5(0- 5+ - 7)) (1)
7 is the Pauli vector with oy = 0, 09 = 0, 03 = 0. The subscript 4 is introduced in order
to distinguish the other forms of L that will be introduced subsequently.

We rewrite L, and its complex conjugate in the following compact forms:

Z.—» - * Z‘—»\* sk
LA:ea:p(—ﬁﬁA-a), LA:&’E]D(ETFA-O' ) (2)

(ma)i = 0; +in; and * denotes complex conjugation. L, corresponds to the Lorentz trans-
formation with 6; and 7; being the rotation and boost parameters, respectively.

It is well known that the complex version of the 4 x 4 Lorentz transformation matrix can
be written as a matrix direct product of L4 and L%:

A=L,® L} (3)

In order to obtain the familiar real matrix form of the Lorentz transformation it is enough
to change the basis:

A=A(Ly® LA™} (4)
where
10 0 1 10 0 1
1 fo1 1 o0 0 g 101 =i 0
A‘ﬁ 0 i —i ol A _A_ﬁ 01 4 0 (5)
10 0 -1 10 0 -1
1
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Now, it is straightforward to show that SO(3,1) can be written as a commutative product
of SL(4,C) and SL(4,C)* by simply rewriting Eq.(4) in a factorized form:

A=[A(Lx®@ DANA(I @ LY)A™Y = ZuZh = Z3 24, (6)

Za=AL,@ DA™, Zh=Al® LYy)A™" (7)

Z 4 and Z7 are the 4 x 4 versions of L4 and L% matrices. They can be expressed in terms
of ¥; matrices:

Z'_.\ = % Z'—»* ok
ZA:ea:p(—iﬂA-E), ZAIpr(§WA~Z ). (8)

5 = (31,5, %3) and 3; are 4 x 4 versions of Pauli matrices:

010 0 0 0 10 00 0 1
100 0 0 0 0 i 00 —i 0
21_000—1"22_ 1000’23_01 0 0 (%)
00 i 0 0 —i 0 0 10 0 0

These are traceless Hermitian matrices and they satisfy the same commutation relations as
o; matrices

141 T

=%, =8| = ety 10

{2 2 J] 2t ok (10
By definition, ¥, = A(o, @ )A™Y, (1= 10,1,2,3), 5 is the 4 x 4 identity. 3, basis do not
form a complete set for 4 x 4 matrices, but the set of ¥X,>7 does.

From the Eq.(7), Z4 can be found in terms of the elements of L 4:

o (1 &%) Qas
o]« —il 100y
Z4 = 0 50 (11)
(6D) Q3 (7)) —10
Q3 —’iag iozl (%))

where Qo = %(LH + L22), a1 = %(Lu + Lgl), Qo — %(ng — Lgl), and 3 — %(LH — L22).
Hence, L4 can be written in terms of «, as

LA—<CY0+Q3 041—1062> (12)
a1+t g — Qg

We can write L4 and Z4 in terms of o, and ¥, matrices:

LA = Q0o + 101 + Q09 + (303 (13)
ZA = a020 + olel + 06222 + 04323 (14)

Or, simply
La=(++++)o- (15)
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We also define the spinor metric g for SL(4,C) that corresponds to the spinor metric €

of SL(2,C):
0 02 O
0 00 —1
_ouv * . -1 T
g=49 —”722— 75 0 0 0 ’ g _g,ul/_g' (17)
0 1.0 O
7 is the mostly minus Minkowski metric?.
Z 4 preserves the Minkowski metric:
ZanZa=n (18)
Since 7 is real, ZinZ4 = n directly entails ATnA = 7. In an analogy with eo;e™ = —a}, we
have the following very useful relation:
gYig = —%8 (19)

In this note we will show that there are eight generalized eigenvectors of 33 matrix that
can be interpreted as 4-component covariant spinors. The generalized eigenvectors can be
pairwise grouped into four categories. The first pair transforms in the usual way, but the
other three transform in different ways.

In the following we will study the first and the second pairs in detail, and we will introduce
the remaining two in the subsequent sections.

0.2 The first and the second pairs and their transformation prop-
erties

Let La = exp(—%fr’A - 7) be the (%, 0) representation of the Lorentz group that acts on the

2-component left-chiral spinor &, :

€ =&, = Lag,. (20)

(L1 Ly
L= (0 1) 2

In terms of the components u, v of &, :

where

u—u = Lnu + L12U, v = L21U + LQQ’U. (22)

Let us call this transformation scheme T4.

Let Ly = exp(—%ﬁjl - &) be the dotted version corresponding to the (0, 2

/ 2
of the Lorentz group. Ly = (Lzl)T. Let &, be the 2-component right-chiral spinor. &, = €£7,

where
“ 0 1 _
e:eb:(_l 0), el =€y =¢. (23)

"'We can define the spinor metric for SL(4,C) as in¥} or in¥; if we like. These metrics also have the
same properties of g.

) representation
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&, transforms as .
gR — 6;2 = LAgR (24)

In terms of the components u, v, Eq.(24) is equivalent to the scheme T4 given in Eq.(22).
What happens when L, acts on €£, 7 In this case, in terms of the components

u—u = Lopu— Ly, v—v =—Lipu+ Lyjv (25)

Let us call this transformation scheme Tg. We can write Tz in a matrix form:

u u'\ Ly —La\ (u
()= ()= 2 0) &
Let us name this transformation matrix as Lp. Note that, Ly = (L4)*, and Eq.(26) is noth-

ing but the transformation of £, under the action of L, which is a type Tz transformation.

Now, let Z4 = exp(—47a - 53) be the (3,0) representation of SL(4,C) that acts on the

first pair of the 4-component undotted covariant spinors:
Xay 7 ZaXay X = ZaXg (27)

where X, and x, are the generalized eigenvectors of 23 2

u —v
1 v 1 —u
Xoo =75 | —iw | X0 = 5 | =i (28)
u v
Indices in the parentheses are simply labels for 4-component spinors.
Now consider the second pair of the generalized eigenvectors of Xj:
—v u
1 U 1 —v
X = V2 | i | X = 2 | —iv (29)
—v —u

Transformation scheme of x , and x, is different from that of x, and x,. Under the
action of Zy, x,,, and x, transform according to the scheme T4, but x , and x,, transtorm
according to the scheme Tg. However, we may think in an alternative way: Suppose that
X and X, are different kind of objects with different transformation properties, such that
another transformation matrix, Zp, acts on them and under the action of Zg they transform
according to the scheme T'y:

2We may use the generalized eigenvectors of ¥; or ¥, matrices as well, but, in that case, we have to
employ the other forms of the spinor metric.
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By definition Zp = A(Lp @ [)A™!

(%)) —Q (6%) —Q3
— QO (7)) iOég iOéQ

ZB = . . = CY()ZO — 05121 + CKQEQ — 04323. (31)
[6%) —103 (7)) (1651

—Q3 —iOéQ —iOél (7))
Or, simply
ZB - (+ - +—)2 (32)
Now let Z, = exp(—imy - 53) be the (0, 1) representation. Zy = (Z7H'. We regard the

generalized eigenvectors of >3 as 4-component undotted contravariant spinors and we define
the first pair as follows:

v u
1 —u 1 —v
L - 2 -
VoA BT R St o (33)
v —Uu

Under the action of Z4, dotted versions of X(l) and X(l) transform according to the scheme
Ty.

X(l) _ ZAX(I), X(2) . ZAX(2) (34)

The second pair of the generalized eigenvectors of Y3 is defined as

X T2 | ' X T V2 | - (3)

Under the action of Z4, the dotted versions of X(S) and X(4) transform according to the scheme
Tg. But, they transform according to the scheme T4 under the action of Zg:

. (3) > .(3) . (4) L4
X —Zpx , X —Zpx (36)

where Zp = (Z5")1 by definition. v is related to X by the SL(4,C) metric, Y@ = gy
and its dotted version is defined as 3

(a)?

(a) —

X = (9x,,)" (37)

We write various forms of Z and L matrices in compact notation to manifest the paral-
lelism between them:

La=(++++)o, Lp=(+—+-)s La=(+——); Lp=(++-+) (38
Zy=(++++)s, Zp=(+—+-)s, Za=H—-——)% Zp= (+ + )% (39)
3The upper dot on a spinorial object simply means complex conjugation: )'(( “ ( ) But, the upper

dot on an element of SL(2,C) or SL(4,C) has a particular meaning. L4 = exp(— 1@ - @) # LY. Similarly,
Za = exp(—574 - 5) # Z3.

d0i:10.20944/preprints202303.0540.v2
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0.3 Outer products of 4-component spinors and null 4-vectors

Let us define the outer product W, = ¢, {‘I which transforms as

W, = W, = (La&,)(Lag,)" = LaW, L] (40)
This is a type T4 transformation. Determinant of W, is zero, hence W, can be associated
with a null 4-vector through the substitutions, ¢t = 3(ut + v0), x = 3(uv + vi), y =
Lud — vi), z = 3(ut — vo):
[tttz -y
WL_(x—l—iy t—z) (41)

We also define the outer product W, = ¢ R{’L which transforms as
W, = Wi, = (La&,)(La&,)t = LaW, L, (42)

This is also a type T4 transformation. Determinant of W, is zero and W, can be associated

with a null 4-vector:
t—2z —x+4+wy

We= (—:c—iy t+z ) (43)
Note that W, can be obtained from W, by parity inversion.

There are outer product forms of 4-component spinors that can be associated with null
4-vectors. W, = X(l)XL) and W, = X, XL) transform in a similar way with W, :

U uv WY Ul VU v —wu —UU

VU VY WU VU uv Ut —uu —uv
W, = . Ny . R )/V(22 =\ .. .. . . (44)

() —Uu  —U V0 —Ivu ) WY U uY —iu

U uv WY U —V0 —vU U VU
Fora=1and a =2, W, transtorm according to the scheme T4 as
/ . T t

W(aa) - W (aa) ~— (ZAX(a))(ZAX(a)> - ZAW(aa) ZA (45)

This equation is equivalent to the Eq.(40), and it is the main motivation behind the inter-
pretation of x , as 4-component spinors for SL(4,C).

LAY (1) L (F 22 @) @) . o . '
W 7 =x"x and W™ =x x transform in a similar way with W :

VU —uv —un U0 ult  —vu WU —ul
< .(11) —vU Ul wu o —vu :(22) —uv vy —U wo
w =1 .. o . W = . . (46)
WU —un ut n —uY WU V0 U
v0 —ul  —ul VU —ut Vi —0u Ul
+ y(aa) .
Fora=1and a =2, W  transform according to the scheme T4 as
W = Z oW 21 (47)
A A
+ y(aa) . . .
W, and W are Hermitian and zero determinant matrices, hence they correspond to null
4-vectors.
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We also have outer products of 4-component spinors of the other kind. For a = 3 and
a=4,W,, and W transform according to the scheme T4 under the action of Zp and

ZBi

)

W Zh, W = 2" Z, (48)

These are also Hermitian and zero determinant matrices and they correspond to null 4-
vectors.

) — ZBW<M>

(aa

0.4 Quaternion forms and 4-vectors

In general, we can treat ¢, z,y and z as variables that do not depend on u and v. Then, we
can associate the following matrices X, and X, with 4-vectors, which are not necessarily

null:
t+2 x—1y
WL%XL:(m+iy t_z):tao+1‘01+y02+Z03:(++++)a (49)
t—z —x + 1y
WR%XR:(_SE_Zy t+z):t00_$01_902_20’3:(+___>0 <50)

detX, =detX, =t* — 2% — y* — 2% and in general not zero. X, and X, transform as
X, > X! =L4X, LY, X,— X =LsX,Li (51)

These are matrix representations of quaternions, because —ioy, —io9, —io3 matrices have the
same properties as the Hamilton’s quaternion basis, i, j, k:

X, =tog +ix(—ioy) +iy(—ios) + iz(—ios) = t1 +ixi + iyj + izk. (52)

Similarly,
X, =t1 —ixi—iyj —izk. (53)

In order to make the analogy with SL(4,C'") we consider the following two column objects
that are pairwise combinations of 4-component spinors:

u —v —v u v u u v
_ Ll v —u R B IO T el IS S A (54)
Xa= 3 | —iv —iu| X2 T B | —iw —iv| X T A —iw o [X T A i
u v —v —Uu v —U u —v

A 1 (2 B 3 @
where X, = (X1, X)) X5 = (X X))y X =(OC X)X = ,x )
We define an outer product of 4-component spinor pair in the form W, = x, XL, which
is formally a quaternion:

Ut + vo uv + VU U — WU UL — VU
W= Ll vi+wo VO Fun U —dul VU — uD 55
A7 9 | —ivd +dud —ivd + it Vo +ul —ivi — dud (5)
Ut — VU uv —ou v +u w4 oo
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W, can be written as a sum of two basic forms: W, =W,,, + W, . In its present form
detW, = 0 and W, corresponds to a null 4-vector, but we can associate YW, with an arbitrary
4-vector in terms of the variables t, z,y and z:

t x Y z
r t  —iz 1y
WA — QA = Y iz " —ix = tzo + a3 + yEQ + 2’23. (56)
z =1y T t
Q, = (++ ++)x and it is the 4 x 4 version of X :
Q, = A<XL ® [)Ail (57)
Similarly, we define W":
VU + Uu —0U — UV —I0U + Y VU — U
SA AL AF a1 -(22)71 —Uv — VU uu + Vv WU — 10U —UuU + vu
Wo=XX =W W = i —ion —itu o dud oo daw+iou | OO
VU —uu —vu+ UV —ou —tuv VU 4 uu
In terms of the variables ¢, z,y and z:
t —x -y -z
A A |-zt 1z =y |
W — Q9 = —y i " it = tZO le yEQ 223. (59)
—z wy —ixr 1
o' = (+ — ——)x and it is the 4 x 4 version of X :
Q' =AX, @A™ (60)

Q" can be obtained from Q by parity inversion and they transform as
: A A

These are type T4 transformations, hence these forms correspond to 4-vectors.
The outer product W, = x, X]TB is also a quaternion:

VU + Ut —VU — Ul —WWuU 4 uv VU — un
W — 1| —uo—ove  wi+ o0 wu — wu —uv + v 62
57 o | duv —ivd —iud vt wiov b + v (62)
VU — Ul —vU Ul —wl —ul U0 4 ul

In terms of variables ¢, x,y and z:

t —xr y —=z
—r t 1z Wy
y —iz ot 1T
—z -y —ix t

WB — QB = =t2g— a2 + yZz — 223, (63)
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QB = (+ - +_)E' . 5
We also write W™ :

uu + Vv wv +0u WY — 10U UU — Vv
W _ B.si 1 U+ uv VU4 uu v —uu YU — Uv 64
XX T ibu e —iv 4 diu vo 4 du —itu — i (64)

uwu — VU uv —ou  uv +10u U+ v

t T —y z
r t —iz —iy
-y iz t —ix
z 1w T t

W’ = 9" = =150 + 251 — Yy + 255, (65)

QB = (++—+)z and it can be obtained from Q, by parity inversion. Q, and QB transform
with Zp and Z5:
B . .p .
Q, = ZpQ, 7L, QO — ZpQ Z} (66)

These transformations obey the scheme T4 also, hence they correspond to 4-vectors.

With the compact notation we can show a very nice symmetry: The form of the transfor-
mation matrix matches the form of the transformed object. For example, Z4 = (+ + ++)x
acts on the form Q4 = (++ ++)s, Zp = (+ — +—)x acts on the form Qp = (+ — +—)x,
Zy = (+ — ——)% acts on the form Q4 = (+ — =)y, and Zg = (+ + —+)% acts on the
form QF = (+ + —+)s.

0.5 Two more pairs of spinors

There are four eigenvectors of X3 that constitute a complete orthonormal set of basis:

1 1 0 0
0 0 1 1

€1 = 0 5 €y = 0 ) €3 = —i 9 €4 = i (67)
1 -1 0 0

e; and e3 correspond to +1 eigenvalue and ey and e4 correspond to —1 eigenvalue. We obtain
eight generalized eigenvectors by combining the basis corresponding to the same eigenvalue.
For example, we can obtain the four generalized eigenvectors that we have previously studied
as follows:

Xa) = Uer +ves, X, = —vez — uey, (68)

X = —Ver+ues, X, = uey — vey, (69)

We can obtain four more generalized eigenvectors of ¥3 by changing the sign or swapping u
and v:

X = —Ue1 +ves, X = vez — uey, (70)

X = V€1t u€s, X = uez + vey, (71)
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Totally we get eight undotted covariant spinors:

u —v —v u
v —u u —v
Xoy T [ 2 | X T | Ziw | Xe T | Ziw | X = | i | (72)
u v —v —u
—u v v u
v —u u v
X(5) = —iv |’ X(g) = —iu |l X(7) = —iu X(8> iv (73)
—u —v v —u
We can group X, (a=1,2,---8) pairwise:
Py =X X b Ps = Xy X b Po = X X b Po = X Xy 1 (74)

We already know that P, transforms with Z,4 and Pg transforms with Zg. Following the
same procedure that we have applied in the previous sections we can show that Po and Pp
transform with Zo and Zp respectively:

Zo=ALc@ DA™, Zp=ALp®I)A™, (75)
where
Lll —L12 (7)) + a3 —Q1 + iOzQ
Lo = = ) =(+—-——+)s 76
“ <—L21 Lo —Q1 — iy O — Qg ( ) (76)
L22 L21 Qp — Q3 (05) -+ iOéQ
Lp = = ) = ——)s 77
P (le L11> (&1 —1y Qo+ O3 (++ ) (77)
Lo=(+++-);=1L} (78)
Lp=(+—++): =L, (79)
Qp —Qp —Q Qs
. —Q (7)) —iOég —iOéQ . o
ZC o — Q9 iag (7)) ’iOq o (+ +)E <80)
Q3 iOZQ —iOfl (7))
Q) aq —Qy —QO3
- a1 Qp ’iOé3 —iOéQ . L
ZD o — Q9 —’iag (7)) —iozl o <+ + >E <81)
—Q3 ?:Oég z'al (&%)
There are also the dotted versions:
oy o ap  —og
.| o e Te N Yo' I e
Zo = oy —iay o —iag | (+++-)% (82)
—ah oy 10

10


https://doi.org/10.20944/preprints202303.0540.v2

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 April 2023 d0i:10.20944/preprints202303.0540.v2

e S O S I 4
. —of oy —iah ol
_ 1 0 3 2 _ *
ZD — o ik ok it - (+ - ++)Z (83)
2 3 0 1
* -k -k *

We also define the contravariat spinors X(a) = 9X,, (@ =1,2,---8) that correspond to
the generalized eigenvectors of Ys:

v u u v
(1) —U (2) —v (3) v (4) u
—| — |~ —|. | " 84
X P P | X | (84)
v —U u —v
v u u —v
(5) u (6) v (7) —v (8) u
— | | " | | " 85
X | X | x | X Ciw (85)
v —U u v

We group them pairwise:

(1) (2) (3) (4) (5) (6) (7) (8)
P =0 P =0T PO =0 Y P = T XY (86)

Each pair of the dotted contravariant spinors transform with the associated dotted Z matrix.
We define four two-column covariant objects:

Xa = (X(1)’X(2))v X = (X(s)?X(4))’ Xo = (X(5):X(6))7 Xp = (X(7)7X(s)) (87)

And we define the corresponding two-column contravariant objects

A

(1)
X =(x

(3) (4) (e} (5) (6) D (7) (8)
X)L Xx =00 x ) x =0 x ) (88)

Finally, we construct eight outer products that lead to the following quaternions:

(2) B
X ), x = (x

XX = Q=+ 4P, XX Q=) (89)
Xsxb = Q=+ —+)s, XX =@ =+ 1) (90)
XexXh = Qo= ——1s, XX =0 =(+++)s (91)
Xoxh = Q= (++ ), XX = Q" =(+—++)s (92)

Each form transforms in its own way with the matching Z or Z matrix.

0.6 Complex conjugated forms

Let us write the complex conjugates of the quaternion forms:

Q, =+ +++)s 5 Q, = (+++H)s (93)
Q,=H—4+—)s <5 Q, = (+—+—)s- (94)

11
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Q" = (+—4++)s =5 Q" = (+ — ++)w- (100

Conjugate forms reside in the dual space that spanned by ¥7. They don’t have any
counterpart in SL(2, C'). Dotted lower indexed and undotted upper indexed forms transform
with Z* or with (Z)* matrices respectively and all transformations obey the scheme T'4.

4-vector scalar product can be defined by using the dual forms in two equivalent ways. Let
Q and P be two 4-vectors and let Q.. and P, be the corresponding quaternions (X = 4, B,C, D)

1 X
Q-P = TH(Q[P") (101)
Or, noting that P = gP.g~!, we can write also as:
1 .
Q-P=1(QuP") (102)

where now indices refer to the components and the summation convention is implied.
In general, in order to get something real we have to use both ¥ and »*. As an example,
N=77*=7*Z, is the real Lorentz transformation matrix.

Zp Lp Co
.. Qp Xp Zc
ZD LD (‘+—) ZA LA " C j(.
(:?D )E,D Q 2 (++-)
(-++) (+++)
¥
Z.AA L.“‘A . z, L,
s % %
(+--)
Z. L. 2_3 Ly
Qe X, Q8 Xx#
(--+) (+-+)

Figure 1: Reflections and inversions. ¥* space is not shown.

12
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0.7 Four types of transformations for SL(2, C)

We can suggest a similar formalism for SL(2,C). Let £,,€,,&,. and £, be covariant spinors:

€= (“) &= (_u) o= (_“) & = (u) (103)

and let £A, £B, 50 and §D be contravariant spinors:

() () () ()

where §A =¢,, fB = —£,, fc = —¢, and {D = . This proliferation is necessary for the
symmetry in Fig.1.
We have the following transformation properties:

é-A — LA£A7 53 — LB€B7 gc — chca é-D — LDé-D (105)
£ = Lag”, € =it &€ = Lo, € = Lpe”, (106)
Li=1L% Lg=1L% Lc=L%, Lp=L% (107)

All transformations obey the scheme Ty.
We have the following outer products:

EE S X, =(++++H)s & o X, =(+—+-) (108)
8 = Xo=(+——4)s, & X, =(++—), (109)
¢ 5 X =), £ X" =+ -1, (110)
S X = (4 4) £ X = (+ =+, (111)

It is worth noting that complex conjugating these forms does not yield anything new.

1 Appendix

Various forms of Z and L matrices

Let us begin with the exponential form Z, = eff, where R = —%7? . f}, m = 0; +1n;. Let ¢
be the complex angle defined as ¢ = $+/@f + 73 + 3. Using the property R? = —¢*[:

Qp aq Qg a3
ising , = « « —iQ ¥e}
Za = cos ol — ¢7r-§]: b 5o (112)
2¢ Qo 1Q3 ayg  —10q
Qa3 —iag ’iOél (%))
where in 6 in 6 sin 6
7sin 7 8In 7 8In
Qg = COS ap = — s g = — T g = — s 113
0 ¢7 1 Q(b 1 2 Z(b 2 3 2¢ 3 ( )
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Or in a compact form
Za=0pXo+ 121 + ads + azXs = (++ ++)s. (114)
It is easy to show that
Zgl = X — Q12 — QeXo — a3dy = (+ — ——)s. (115)

and
Zh = aiS0 + aiS + Al 4+ aiYs = (+ + ++)5 (116)

where complex conjugation is applied only to «,.
The corresponding L 4 is

[ agtaz ap —i
LA N <a1 + ’iOéQ Qp — CL’3> (117)
In terms of the Pauli matrices:
LA = Qn0g + Q101 + Q909 + (303 = (++++)o’ (118)

In order to write Zg we first find Lp = (L4)*, where

La= (L) = < R e w‘?) y E— (119)

—o] —i0y oy +aj 7

From the definition Zp = A(Lp @ I)A™1:

Qp —Qp y  —O3
— O Qp ’iOég i()ég

Zp = . . = QpXg — Q121 + Qi — (i3di3. (120)
(6%) —103 (7)) (1651

—Q3 —1:Oé2 —iOél (7))

Or, simply
Zp=(+—+-)s (121)

We write various forms of Z and L matrices in compact forms:
Lai=(H++4H)0, Lp=(+—+—)o, La=(+—-—2) Lp=(H+-+); (122

Za=(+++4)s, Zp=(+—+-)s, Za=(+-—) Zp=(++-+i (123)

Although, all types of Z and L matrices are in the same form, there is a very important
difference between them. Because of the particular property of the Pauli matrices, o] =
o1, 03 = 03, but 05 = —09, we have the following relations:

Lg=1L1% Lg=1L% (124)
For example,
La=(+===); 2 Li=(—=")p = (+-+)o = Lp. (125)

14
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On the other hand we do not have a similar property with > matrices, hence

Zp#+ 24, Zp# Zh (126)

The structural difference between SL(2,C) and SL(4,C) becomes more apparent when
we write the matrices in exponential forms. In order to do this we have to define two types
of T T = (m1,me, m3) and 7 = (—my, T2, —73).

La=cop(~57a-3), Lp=cap(—57p-7), La=cap(~574-7), Ln=eop(~575-3).

. . _ - (127)

Za=ewp(—57n-%), Zp=eap(—57p-%), Za=eap(—574-5), Zp = eap(—57p-5),

(128)

Due to the properties, —7'g - & = T4 - 6 and —7p - 0* = T4 - 7, the relations in Eq.(124)
hold. But we do not have similar relations with the X matrices.
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