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Abstract: We define a spinor-Minkowski metric for SL(4,C). It is not a trivial general-
ization of the SL(2,C) metric and it involves the Minkowski metric. We define 4x4 version of 
the Pauli matrices and their 4-component generalized eigenvectors. The generalized eigen-
vectors can be regarded as 4-component spinors and they can be grouped into four categories. 
Each category transforms in its own way. The outer products of pairwise combinations of 4-
component spinors can be associated with 4-vectors.
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0.1 Introduction

Let LA be an element of SL(2, C). In an exponential form with parameters θ and η:

LA = exp(− i
2

(~θ · ~σ + i~η · ~σ)) (1)

~σ is the Pauli vector with σ1 = σx, σ2 = σy, σ3 = σz. The subscript A is introduced in order
to distinguish the other forms of L that will be introduced subsequently.

We rewrite LA and its complex conjugate in the following compact forms:

LA = exp(− i
2
~πA · ~σ), L∗A = exp(

i

2
~π∗A · ~σ∗) (2)

(πA)i = θi + iηi and ∗ denotes complex conjugation. LA corresponds to the Lorentz trans-
formation with θi and ηi being the rotation and boost parameters, respectively.

It is well known that the complex version of the 4× 4 Lorentz transformation matrix can
be written as a matrix direct product of LA and L∗A:

λ = LA ⊗ L∗A (3)

In order to obtain the familiar real matrix form of the Lorentz transformation it is enough
to change the basis:

Λ = A(LA ⊗ L∗A)A−1 (4)

where

A =
1√
2


1 0 0 1
0 1 1 0
0 i −i 0
1 0 0 −1

 , A−1 = A† =
1√
2


1 0 0 1
0 1 −i 0
0 1 i 0
1 0 0 −1

 (5)
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Now, it is straightforward to show that SO(3, 1) can be written as a commutative product
of SL(4, C) and SL(4, C)∗ by simply rewriting Eq.(4) in a factorized form:

Λ = [A(LA ⊗ I)A−1][A(I ⊗ L∗A)A−1] = ZAZ
∗
A = Z∗AZA, (6)

ZA = A(LA ⊗ I)A−1, Z∗A = A(I ⊗ L∗A)A−1. (7)

ZA and Z∗A are the 4×4 versions of LA and L∗A matrices. They can be expressed in terms
of Σi matrices:

ZA = exp(− i
2
~πA · ~Σ), Z∗A = exp(

i

2
~π∗A · ~Σ∗). (8)

~Σ = (Σ1,Σ2,Σ3) and Σi are 4× 4 versions of Pauli matrices:

Σ1 =


0 1 0 0
1 0 0 0
0 0 0 −i
0 0 i 0

 , Σ2 =


0 0 1 0
0 0 0 i
1 0 0 0
0 −i 0 0

 , Σ3 =


0 0 0 1
0 0 −i 0
0 i 0 0
1 0 0 0

 (9)

These are traceless Hermitian matrices and they satisfy the same commutation relations as
σi matrices [

1

2
Σi,

1

2
Σj

]
=
i

2
εijkΣk. (10)

By definition, Σµ = A(σµ ⊗ I)A−1, (µ = 0, 1, 2, 3), Σ0 is the 4× 4 identity. Σµ basis do not
form a complete set for 4× 4 matrices, but the set of ΣµΣ∗ν does.

From the Eq.(7), ZA can be found in terms of the elements of LA:

ZA =


α0 α1 α2 α3

α1 α0 −iα3 iα2

α2 iα3 α0 −iα1

α3 −iα2 iα1 α0

 (11)

where α0 = 1
2
(L11 + L22), α1 = 1

2
(L12 + L21), α2 = i

2
(L12 − L21), and α3 = 1

2
(L11 − L22).

Hence, LA can be written in terms of αµ as

LA =

(
α0 + α3 α1 − iα2

α1 + iα2 α0 − α3

)
(12)

We can write LA and ZA in terms of σµ and Σµ matrices:

LA = α0σ0 + α1σ1 + α2σ2 + α3σ3 (13)

ZA = α0Σ0 + α1Σ1 + α2Σ2 + α3Σ3 (14)

Or, simply
LA = (+ + ++)σ. (15)

ZA = (+ + ++)Σ. (16)
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We also define the spinor metric g for SL(4, C) that corresponds to the spinor metric ε
of SL(2, C):

g = gµν = iηΣ∗2 =


0 0 i 0
0 0 0 −1
−i 0 0 0
0 1 0 0

 ; g−1 = gµν = g†. (17)

η is the mostly minus Minkowski metric1.
ZA preserves the Minkowski metric:

ZT
AηZA = η (18)

Since η is real, ZT
AηZA = η directly entails ΛTηΛ = η. In an analogy with εσiε

−1 = −σ∗i , we
have the following very useful relation:

gΣig
−1 = −Σ∗i (19)

In this note we will show that there are eight generalized eigenvectors of Σ∗3 matrix that
can be interpreted as 4-component covariant spinors. The generalized eigenvectors can be
pairwise grouped into four categories. The first pair transforms in the usual way, but the
other three transform in different ways.

In the following we will study the first and the second pairs in detail, and we will introduce
the remaining two in the subsequent sections.

0.2 The first and the second pairs and their transformation prop-
erties

Let LA = exp(− i
2
~πA · ~σ) be the (1

2
, 0) representation of the Lorentz group that acts on the

2-component left-chiral spinor ξ
L
:

ξ
L
→ ξ′

L
= LAξL . (20)

where

LA =

(
L11 L12

L21 L22

)
(21)

In terms of the components u, v of ξ
L
:

u→ u′ = L11u+ L12v, v → v′ = L21u+ L22v. (22)

Let us call this transformation scheme TA.
Let L̇A = exp(− i

2
~π∗A · ~σ) be the dotted version corresponding to the (0, 1

2
) representation

of the Lorentz group. L̇A = (L−1
A )†. Let ξ

R
be the 2-component right-chiral spinor. ξ

R
= εξ∗

L
,

where

ε = εab =

(
0 1
−1 0

)
, ε−1 = εab = ε†. (23)

1We can define the spinor metric for SL(4, C) as iηΣ∗
1 or iηΣ∗

3 if we like. These metrics also have the
same properties of g.
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ξ
R

transforms as
ξ
R
→ ξ′

R
= L̇AξR (24)

In terms of the components u, v, Eq.(24) is equivalent to the scheme TA given in Eq.(22).
What happens when LA acts on εξ

L
? In this case, in terms of the components

u→ u′ = L22u− L21v, v → v′ = −L12u+ L11v (25)

Let us call this transformation scheme TB. We can write TB in a matrix form:(
u
v

)
→
(
u′

v′

)
=

(
L22 −L21

−L12 L11

)(
u
v

)
(26)

Let us name this transformation matrix as LB. Note that, LB = (L̇A)∗, and Eq.(26) is noth-
ing but the transformation of ξ

L
under the action of LB, which is a type TB transformation.

Now, let ZA = exp(− i
2
~πA · ~Σ) be the (1

2
, 0) representation of SL(4, C) that acts on the

first pair of the 4-component undotted covariant spinors:

χ
(1)
→ ZAχ(1)

, χ
(2)
→ ZAχ(2)

(27)

where χ
(1)

and χ
(2)

are the generalized eigenvectors of Σ∗3
2:

χ
(1)

=
1√
2


u
v
−iv
u

 , χ
(2)

=
1√
2


−v
−u
−iu
v

 (28)

Indices in the parentheses are simply labels for 4-component spinors.
Now consider the second pair of the generalized eigenvectors of Σ∗3:

χ
(3)

=
1√
2


−v
u
−iu
−v

 , χ
(4)

=
1√
2


u
−v
−iv
−u

 (29)

Transformation scheme of χ
(3)

and χ
(4)

is different from that of χ
(1)

and χ
(2)

. Under the
action of ZA, χ

(1)
and χ

(2)
transform according to the scheme TA, but χ

(3)
and χ

(4)
transform

according to the scheme TB. However, we may think in an alternative way: Suppose that
χ

(3)
and χ

(3)
are different kind of objects with different transformation properties, such that

another transformation matrix, ZB, acts on them and under the action of ZB they transform
according to the scheme TA:

χ
(3)
→ ZBχ(3)

, χ
(4)
→ ZBχ(4)

, (30)

2We may use the generalized eigenvectors of Σ1 or Σ2 matrices as well, but, in that case, we have to
employ the other forms of the spinor metric.
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By definition ZB = A(LB ⊗ I)A−1:

ZB =


α0 −α1 α2 −α3

−α1 α0 iα3 iα2

α2 −iα3 α0 iα1

−α3 −iα2 −iα1 α0

 = α0Σ0 − α1Σ1 + α2Σ2 − α3Σ3. (31)

Or, simply
ZB = (+−+−)Σ (32)

Now let ŻA = exp(− i
2
~π∗A · ~Σ) be the (0, 1

2
) representation. ŻA = (Z−1

A )†. We regard the
generalized eigenvectors of Σ3 as 4-component undotted contravariant spinors and we define
the first pair as follows:

χ(1) =
1√
2


v
−u
−iu
v

 , χ(2) =
1√
2


u
−v
iv
−u

 (33)

Under the action of ŻA, dotted versions of χ
(1)

and χ
(1)

transform according to the scheme
TA.

χ̇
(1) → ŻAχ̇

(1)

, χ̇
(2) → ŻAχ̇

(2)

(34)

The second pair of the generalized eigenvectors of Σ3 is defined as

χ(3) =
1√
2


u
v
iv
u

 , χ(4) =
1√
2


v
u
−iu
−v

 (35)

Under the action of ŻA, the dotted versions of χ
(3)

and χ
(4)

transform according to the scheme
TB. But, they transform according to the scheme TA under the action of ŻB:

χ̇
(3) → ŻBχ̇

(3)

, χ̇
(4) → ŻBχ̇

(4)

(36)

where ŻB = (Z−1
B )† by definition. χ

(a)
is related to χ

(a)
by the SL(4, C) metric, χ(a) = gχ

(a)
,

and its dotted version is defined as 3.

χ̇(a) = (gχ
(a)

)∗. (37)

We write various forms of Z and L matrices in compact notation to manifest the paral-
lelism between them:

LA = (+ + ++)σ, LB = (+−+−)σ, L̇A = (+−−−)∗σ, L̇B = (+ +−+)∗σ. (38)

ZA = (+ + ++)Σ, ZB = (+−+−)Σ, ŻA = (+−−−)∗Σ, ŻB = (+ +−+)∗Σ. (39)

3The upper dot on a spinorial object simply means complex conjugation: χ̇
(a)

= (χ
(a)

)∗. But, the upper
dot on an element of SL(2, C) or SL(4, C) has a particular meaning. L̇A = exp(− i

2~π
∗
A · ~σ) 6= L∗

A. Similarly,

ŻA = exp(− i
2~π

∗
A · ~Σ) 6= Z∗

A.
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0.3 Outer products of 4-component spinors and null 4-vectors

Let us define the outer product W
L

= ξ
L
ξ†
L

which transforms as

W
L
→ W ′

L
= (LAξL)(LAξL)† = LAWL

L†A (40)

This is a type TA transformation. Determinant of W
L

is zero, hence W
L

can be associated
with a null 4-vector through the substitutions, t = 1

2
(uu̇ + vv̇), x = 1

2
(uv̇ + vu̇), y =

i
2
(uv̇ − vu̇), z = 1

2
(uu̇− vv̇):

W
L

=

(
t+ z x− iy
x+ iy t− z

)
(41)

We also define the outer product W
R

= ξ
R
ξ†
R

which transforms as

W
R
→ W ′

R
= (L̇AξR)(L̇AξR)† = L̇AWR

L̇†A (42)

This is also a type TA transformation. Determinant of W
R

is zero and W
R

can be associated
with a null 4-vector:

W
R

=

(
t− z −x+ iy
−x− iy t+ z

)
(43)

Note that W
R

can be obtained from W
L

by parity inversion.
There are outer product forms of 4-component spinors that can be associated with null

4-vectors. W
(11)

= χ
(1)
χ†

(1)
and W

(22)
= χ

(2)
χ†

(2)
transform in a similar way with W

L
:

W
(11)

=


uu̇ uv̇ iuv̇ uu̇
vu̇ vv̇ ivv̇ vu̇
−ivu̇ −ivv̇ vv̇ −ivu̇
uu̇ uv̇ iuv̇ uu̇

 , W
(22)

=


vv̇ vu̇ −ivu̇ −vv̇
uv̇ uu̇ −iuu̇ −uv̇
iuv̇ iuu̇ uu̇ −iuv̇
−vv̇ −vu̇ ivu̇ vv̇

 (44)

For a = 1 and a = 2, W
(aa)

transform according to the scheme TA as

W
(aa)
→W ′

(aa)
= (ZAχ(a)

)(ZAχ(a)
)† = ZAW(aa)

Z†A. (45)

This equation is equivalent to the Eq.(40), and it is the main motivation behind the inter-
pretation of χ

(a)
as 4-component spinors for SL(4, C).

Ẇ (11)
= χ̇

(1)
χ̇

(1)†
and Ẇ (22)

= χ̇
(2)
χ̇

(2)†
transform in a similar way with W

R
:

Ẇ (11)

=


vv̇ −uv̇ −iuv̇ vv̇
−vu̇ uu̇ iuu̇ −vu̇
ivu̇ −iuu̇ uu̇ ivu̇
vv̇ −uv̇ −iuv̇ vv̇

 , Ẇ (22)

=


uu̇ −vu̇ ivu̇ −uu̇
−uv̇ vv̇ −ivv̇ uv̇
−iuv̇ ivv̇ vv̇ iuv̇
−uu̇ vu̇ −ivu̇ uu̇

 (46)

For a = 1 and a = 2, Ẇ (aa)
transform according to the scheme TA as

Ẇ (aa) → ŻAẆ
(aa)

Ż†A (47)

W
(aa)

and Ẇ (aa)
are Hermitian and zero determinant matrices, hence they correspond to null

4-vectors.
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We also have outer products of 4-component spinors of the other kind. For a = 3 and
a = 4, W

(aa)
and Ẇ (aa)

transform according to the scheme TA under the action of ZB and

ŻB:
W

(aa)
→ ZBW(aa)

Z†B, Ẇ (aa) → ŻBẆ
(aa)

Ż†B (48)

These are also Hermitian and zero determinant matrices and they correspond to null 4-
vectors.

0.4 Quaternion forms and 4-vectors

In general, we can treat t, x, y and z as variables that do not depend on u and v. Then, we
can associate the following matrices X

L
and X

R
with 4-vectors, which are not necessarily

null:

W
L
→ X

L
=

(
t+ z x− iy
x+ iy t− z

)
= tσ0 + xσ1 + yσ2 + zσ3 = (+ + ++)σ (49)

W
R
→ X

R
=

(
t− z −x+ iy
−x− iy t+ z

)
= tσ0 − xσ1 − yσ2 − zσ3 = (+−−−)σ (50)

detX
L

=detX
R

= t2 − x2 − y2 − z2 and in general not zero. X
L

and X
R

transform as

X
L
→ X ′

L
= LAXL

L†A, X
R
→ X ′

R
= L̇AXR

L̇†A (51)

These are matrix representations of quaternions, because −iσ1,−iσ2,−iσ3 matrices have the
same properties as the Hamilton’s quaternion basis, i, j,k:

X
L

= tσ0 + ix(−iσ1) + iy(−iσ2) + iz(−iσ3) = t1 + ixi + iyj + izk. (52)

Similarly,
X

R
= t1− ixi− iyj− izk. (53)

In order to make the analogy with SL(4, C) we consider the following two column objects
that are pairwise combinations of 4-component spinors:

χ
A

=
1√
2


u −v
v −u
−iv −iu
u v

 , χ
B

=
1√
2


−v u
u −v
−iu −iv
−v −u

 , χ
A

=
1√
2


v u
−u −v
−iu iv
v −u

 , χ
B

=
1√
2


u v
v u
iv −iu
u −v

 (54)

where χ
A

= (χ
(1)
, χ

(2)
), χ

B
= (χ

(3)
, χ

(4)
), χ

A
= (χ

(1)
, χ

(2)
), χ

B
= (χ

(3)
, χ

(4)
).

We define an outer product of 4-component spinor pair in the form W
A

= χ
A
χ†

A
, which

is formally a quaternion:

W
A

=
1

2


uu̇+ vv̇ uv̇ + vu̇ iuv̇ − ivu̇ uu̇− vv̇
vu̇+ uv̇ vv̇ + uu̇ ivv̇ − iuu̇ vu̇− uv̇
−ivu̇+ iuv̇ −ivv̇ + iuu̇ vv̇ + uu̇ −ivu̇− iuv̇
uu̇− vv̇ uv̇ − vu̇ iuv̇ + ivu̇ uu̇+ vv̇

 (55)
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W
A

can be written as a sum of two basic forms: W
A

= W
(11)

+W
(22)

. In its present form
detW

A
= 0 andW

A
corresponds to a null 4-vector, but we can associateW

A
with an arbitrary

4-vector in terms of the variables t, x, y and z:

W
A
→ Q

A
=


t x y z
x t −iz iy
y iz t −ix
z −iy ix t

 = tΣ0 + xΣ1 + yΣ2 + zΣ3. (56)

Q
A

= (+ + ++)Σ and it is the 4× 4 version of X
L
:

Q
A

= A(X
L
⊗ I)A−1 (57)

Similarly, we define ẆA
:

ẆA

= χ̇
A

χ̇
A†

= Ẇ (11)

+Ẇ (22)

=
1

2


v̇v + u̇u −v̇u− u̇v −iv̇u+ iu̇v v̇v − u̇u
−u̇v − v̇u u̇u+ v̇v iu̇u− iv̇v −u̇v + v̇u
iu̇v − iv̇u −iu̇u+ iv̇v u̇u+ v̇v iu̇v + iv̇u
v̇v − u̇u −v̇u+ u̇v −iv̇u− iu̇v v̇v + u̇u

 (58)

In terms of the variables t, x, y and z:

ẆA → Q̇A

=


t −x −y −z
−x t iz −iy
−y −iz t ix
−z iy −ix t

 = tΣ0 − xΣ1 − yΣ2 − zΣ3. (59)

Q̇A
= (+−−−)Σ and it is the 4× 4 version of X

R
:

Q̇A

= A(X
R
⊗ I)A−1. (60)

Q̇A
can be obtained from Q

A
by parity inversion and they transform as

Q
A
→ ZAQA

Z†A, Q̇A → ŻAQ̇
A

Ż†A (61)

These are type TA transformations, hence these forms correspond to 4-vectors.
The outer product W

B
= χ

B
χ†

B
is also a quaternion:

W
B

=
1

2


vv̇ + uu̇ −vu̇− uv̇ −ivu̇+ iuv̇ vv̇ − uu̇
−uv̇ − vu̇ uu̇+ vv̇ iuu̇− ivv̇ −uv̇ + vu̇
iuv̇ − ivu̇ −iuu̇+ ivv̇ uu̇+ vv̇ iuv̇ + ivu̇
vv̇ − uu̇ −vu̇+ uv̇ −ivu̇− iuv̇ vv̇ + uu̇

 (62)

In terms of variables t, x, y and z:

W
B
→ Q

B
=


t −x y −z
−x t iz iy
y −iz t ix
−z −iy −ix t

 = tΣ0 − xΣ1 + yΣ2 − zΣ3. (63)
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Q
B

= (+−+−)Σ.
We also write ẆB

:

ẆB

= χ̇
B

χ̇
B†

=
1

2


u̇u+ v̇v u̇v + v̇u iu̇v − iv̇u u̇u− v̇v
v̇u+ u̇v v̇v + u̇u iv̇v − iu̇u v̇u− u̇v
−iv̇u+ iu̇v −iv̇v + iu̇u v̇v + u̇u −iv̇u− iu̇v
u̇u− v̇v u̇v − v̇u iu̇v + iv̇u u̇u+ v̇v

 (64)

ẆB → Q̇B

=


t x −y z
x t −iz −iy
−y iz t −ix
z iy ix t

 = tΣ0 + xΣ1 − yΣ2 + zΣ3. (65)

Q̇B
= (++−+)Σ and it can be obtained from Q

B
by parity inversion. Q

B
and Q̇B

transform
with ZB and ŻB:

Q
B
→ ZBQB

Z†B, Q̇B → ŻBQ̇
B

Ż†B (66)

These transformations obey the scheme TA also, hence they correspond to 4-vectors.
With the compact notation we can show a very nice symmetry: The form of the transfor-

mation matrix matches the form of the transformed object. For example, ZA = (+ + ++)Σ

acts on the form QA = (+ + ++)Σ, ZB = (+−+−)Σ acts on the form QB = (+−+−)Σ,
ŻA = (+ − −−)∗Σ acts on the form Q̇A = (+ − −−)Σ, and ŻB = (+ + −+)∗Σ acts on the
form Q̇B = (+ +−+)Σ.

0.5 Two more pairs of spinors

There are four eigenvectors of Σ∗3 that constitute a complete orthonormal set of basis:

e1 =


1
0
0
1

 , e2 =


1
0
0
−1

 , e3 =


0
1
−i
0

 , e4 =


0
1
i
0

 . (67)

e1 and e3 correspond to +1 eigenvalue and e2 and e4 correspond to −1 eigenvalue. We obtain
eight generalized eigenvectors by combining the basis corresponding to the same eigenvalue.
For example, we can obtain the four generalized eigenvectors that we have previously studied
as follows:

χ
(1)

= ue1 + ve3, χ
(2)

= −ve2 − ue4, (68)

χ
(3)

= −ve1 + ue3, χ
(4)

= ue2 − ve4, (69)

We can obtain four more generalized eigenvectors of Σ∗3 by changing the sign or swapping u
and v:

χ
(5)

= −ue1 + ve3, χ
(6)

= ve2 − ue4, (70)

χ
(7)

= ve1 + ue3, χ
(8)

= ue2 + ve4, (71)
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Totally we get eight undotted covariant spinors:

χ
(1)

=


u
v
−iv
u

 , χ
(2)

=


−v
−u
−iu
v

 , χ
(3)

=


−v
u
−iu
−v

 , χ
(4)

=


u
−v
−iv
−u

 , (72)

χ
(5)

=


−u
v
−iv
−u

 , χ
(6)

=


v
−u
−iu
−v

 , χ
(7)

=


v
u
−iu
v

 , χ
(8)

=


u
v
iv
−u

 . (73)

We can group χ
(a)

(a = 1, 2, · · · 8) pairwise:

P
A

= {χ
(1)
, χ

(2)
}, P

B
= {χ

(3)
, χ

(4)
}, P

C
= {χ

(5)
, χ

(6)
}, P

D
= {χ

(7)
, χ

(8)
}, (74)

We already know that PA transforms with ZA and PB transforms with ZB. Following the
same procedure that we have applied in the previous sections we can show that PC and PD
transform with ZC and ZD respectively:

ZC = A(LC ⊗ I)A−1, ZD = A(LD ⊗ I)A−1, (75)

where

LC =

(
L11 −L12

−L21 L22

)
=

(
α0 + α3 −α1 + iα2

−α1 − iα2 α0 − α3

)
= (+−−+)σ (76)

LD =

(
L22 L21

L12 L11

)
=

(
α0 − α3 α1 + iα2

α1 − iα2 α0 + α3

)
= (+ +−−)σ (77)

L̇C = (+ + +−)∗σ = L∗D (78)

L̇D = (+−++)∗σ = L∗C (79)

ZC =


α0 −α1 −α2 α3

−α1 α0 −iα3 −iα2

−α2 iα3 α0 iα1

α3 iα2 −iα1 α0

 = (+−−+)Σ (80)

ZD =


α0 α1 −α2 −α3

α1 α0 iα3 −iα2

−α2 −iα3 α0 −iα1

−α3 iα2 iα1 α0

 = (+ +−−)Σ (81)

There are also the dotted versions:

ŻC =


α∗0 α∗1 α∗2 −α∗3
α∗1 α∗0 iα∗3 iα∗2
α∗2 −iα∗3 α∗0 −iα∗1
−α∗3 −iα∗2 iα∗1 α∗0

 = (+ + +−)∗Σ (82)
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ŻD =


α∗0 −α∗1 α∗2 α∗3
−α∗1 α∗0 −iα∗3 iα∗2
α∗2 iα∗3 α∗0 iα∗1
α∗3 −iα∗2 −iα∗1 α∗0

 = (+−++)∗Σ (83)

We also define the contravariat spinors χ
(a)

= gχ
(a)

(a = 1, 2, · · · 8) that correspond to
the generalized eigenvectors of Σ3:

χ
(1)

=


v
−u
−iu
v

 , χ
(2)

=


u
−v
iv
−u

 , χ
(3)

=


u
v
iv
u

 , χ
(4)

=


v
u
−iu
−v

 , (84)

χ
(5)

=


v
u
iu
v

 , χ
(6)

=


u
v
−iv
−u

 , χ
(7)

=


u
−v
−iv
u

 , χ
(8)

=


−v
u
−iu
v

 . (85)

We group them pairwise:

P
A

= {χ(1)

, χ
(2)}, PB

= {χ(3)

, χ
(4)}, P C

= {χ(5)

, χ
(6)}, PD

= {χ(7)

, χ
(8)} (86)

Each pair of the dotted contravariant spinors transform with the associated dotted Z matrix.
We define four two-column covariant objects:

χ
A

= (χ
(1)
, χ

(2)
), χ

B
= (χ

(3)
, χ

(4)
), χ

C
= (χ

(5)
, χ

(6)
), χ

D
= (χ

(7)
, χ

(8)
) (87)

And we define the corresponding two-column contravariant objects

χ
A

= (χ
(1)

, χ
(2)

), χ
B

= (χ
(3)

, χ
(4)

), χ
C

= (χ
(5)

, χ
(6)

), χ
D

= (χ
(7)

, χ
(8)

) (88)

Finally, we construct eight outer products that lead to the following quaternions:

χ
A
χ†

A
→ Q

A
= (+ + ++)Σ, χ̇

A

χ̇
A† → Q̇A

= (+−−−)Σ. (89)

χ
B
χ†

B
→ Q

B
= (+−+−)Σ, χ̇

B

χ̇
B† → Q̇B

= (+ +−+)Σ. (90)

χ
C
χ†

C
→ Q

C
= (+−−+)Σ, χ̇

C

χ̇
C† → Q̇C

= (+ + +−)Σ. (91)

χ
D
χ†

D
→ Q

D
= (+ +−−)Σ, χ̇

D

χ̇
D† → Q̇D

= (+−++)Σ. (92)

Each form transforms in its own way with the matching Z or Ż matrix.

0.6 Complex conjugated forms

Let us write the complex conjugates of the quaternion forms:

Q
A

= (+ + ++)Σ
c.c.−−→ Q̇

A
= (+ + ++)Σ∗ (93)

Q
B

= (+−+−)Σ
c.c.−−→ Q̇

B
= (+−+−)Σ∗ (94)
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Q
C

= (+−−+)Σ
c.c.−−→ Q̇

C
= (+−−+)Σ∗ (95)

Q
D

= (+ +−−)Σ
c.c.−−→ Q̇

D
= (+ +−−)Σ∗ (96)

Q̇A

= (+−−−)Σ
c.c.−−→ QA

= (+−−−)Σ∗ (97)

Q̇B

= (+ +−+)Σ
c.c.−−→ QB

= (+ +−+)Σ∗ (98)

Q̇C

= (+ + +−)Σ
c.c.−−→ QC

= (+ + +−)Σ∗ (99)

Q̇D

= (+−++)Σ
c.c.−−→ QD

= (+−++)Σ∗ (100)

Conjugate forms reside in the dual space that spanned by Σ∗µ. They don’t have any
counterpart in SL(2, C). Dotted lower indexed and undotted upper indexed forms transform
with Z∗··· or with (Ż···)

∗ matrices respectively and all transformations obey the scheme TA.
4-vector scalar product can be defined by using the dual forms in two equivalent ways. Let

Q and P be two 4-vectors and letQ
X

and P
X

be the corresponding quaternions (X = A,B,C,D)

:

Q · P =
1

4
Tr(QT

X
PX

) (101)

Or, noting that PX
= gP

X
g−1, we can write also as:

Q · P =
1

4
(Qµν̇Pµν̇) (102)

where now indices refer to the components and the summation convention is implied.
In general, in order to get something real we have to use both Σ and Σ∗. As an example,

Λ = ZZ∗ = Z∗Z, is the real Lorentz transformation matrix.

Figure 1: Reflections and inversions. Σ∗ space is not shown.
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0.7 Four types of transformations for SL(2, C)

We can suggest a similar formalism for SL(2, C). Let ξ
A
, ξ

B
, ξ

C
and ξ

D
be covariant spinors:

ξ
A

=

(
u
v

)
, ξ

B
=

(
v
−u

)
, ξ

C
=

(
u
−v

)
, ξ

D
=

(
v
u

)
(103)

and let ξ
A
, ξ

B
, ξ

C
and ξ

D
be contravariant spinors:

ξ
A

=

(
v
−u

)
, ξ

B

=

(
−u
−v

)
, ξ

C

=

(
−v
−u

)
, ξ

D
=

(
u
−v

)
(104)

where ξ
A

= ξ
B

, ξ
B

= −ξ
A

, ξ
C

= −ξ
D

and ξ
D

= ξ
C

. This proliferation is necessary for the
symmetry in Fig.1.

We have the following transformation properties:

ξ
A
→ LAξA , ξ

B
→ LBξB , ξ

C
→ LCξC , ξ

D
→ LDξD (105)

ξ̇
A → L̇Aξ

A

, ξ̇
B → L̇Bξ

B

, ξ̇
C → L̇Cξ

C

, ξ̇
D → L̇Dξ

D

, (106)

L̇A = L∗B, L̇B = L∗A, L̇C = L∗D, L̇D = L∗C (107)

All transformations obey the scheme TA.
We have the following outer products:

ξ
A
ξ†
A
→ X

A
= (+ + ++)σ, ξ

B
ξ†
B
→ X

B
= (+−+−)σ (108)

ξ
C
ξ†
C
→ X

C
= (+−−+)σ, ξ

D
ξ†
D
→ X

D
= (+ +−−)σ (109)

ξ̇
A

ξ̇
A† → Ẋ

A

= (+−−−)σ, ξ̇
B

ξ̇
B† → Ẋ

B

= (+ +−+)σ, (110)

ξ̇
C

ξ̇
C† → Ẋ

C

= (+ + +−)σ, ξ̇
D

ξ̇
D† → Ẋ

D

= (+−++)σ, (111)

It is worth noting that complex conjugating these forms does not yield anything new.

1 Appendix

Various forms of Z and L matrices

Let us begin with the exponential form ZA = eR, where R = − i
2
~π · ~Σ, πi = θi + iηi. Let φ

be the complex angle defined as φ = 1
2

√
π2

1 + π2
2 + π2

3. Using the property R2 = −φ2I:

ZA = cosφI − i sinφ

2φ
~π · ~Σ =


α0 α1 α2 α3

α1 α0 −iα3 iα2

α2 iα3 α0 −iα1

α3 −iα2 iα1 α0

 (112)

where

α0 = cosφ, α1 = −i sinφ

2φ
π1, α2 = −i sinφ

2φ
π2, α3 = −i sinφ

2φ
π3. (113)
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Or in a compact form

ZA = α0Σ0 + α1Σ1 + α2Σ2 + α3Σ3 = (+ + ++)Σ. (114)

It is easy to show that

Z−1
A = α0Σ0 − α1Σ1 − α2Σ2 − α3Σ3 = (+−−−)Σ. (115)

and
Z†A = α∗0Σ0 + α∗1Σ1 + α∗2Σ2 + α∗3Σ3 = (+ + ++)∗Σ (116)

where complex conjugation is applied only to αµ.
The corresponding LA is

LA =

(
α0 + α3 α1 − iα2

α1 + iα2 α0 − α3

)
(117)

In terms of the Pauli matrices:

LA = α0σ0 + α1σ1 + α2σ2 + α3σ3 = (+ + ++)σ. (118)

In order to write ZB we first find LB = (L̇A)∗, where

L̇A = (L−1
A )† =

(
α∗0 − α∗3 −α∗1 + iα∗2
−α∗1 − iα∗2 α∗0 + α∗3

)
= (+−−−)∗σ. (119)

From the definition ZB = A(LB ⊗ I)A−1:

ZB =


α0 −α1 α2 −α3

−α1 α0 iα3 iα2

α2 −iα3 α0 iα1

−α3 −iα2 −iα1 α0

 = α0Σ0 − α1Σ1 + α2Σ2 − α3Σ3. (120)

Or, simply
ZB = (+−+−)Σ (121)

We write various forms of Z and L matrices in compact forms:

LA = (+ + ++)σ, LB = (+−+−)σ, L̇A = (+−−−)∗σ, L̇B = (+ +−+)∗σ. (122)

ZA = (+ + ++)Σ, ZB = (+−+−)Σ, ŻA = (+−−−)∗Σ, ŻB = (+ +−+)∗Σ. (123)

Although, all types of Z and L matrices are in the same form, there is a very important
difference between them. Because of the particular property of the Pauli matrices, σ∗1 =
σ1, σ

∗
3 = σ3, but σ∗2 = −σ2, we have the following relations:

LB = L̇∗A, L̇B = L∗A. (124)

For example,

L̇A = (+−−−)∗σ → L̇∗A = (+−−−)σ∗ = (+−+−)σ = LB. (125)
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On the other hand we do not have a similar property with Σ matrices, hence

ZB 6= Ż∗A, ŻB 6= Z∗A. (126)

.
The structural difference between SL(2, C) and SL(4, C) becomes more apparent when

we write the matrices in exponential forms. In order to do this we have to define two types
of ~π: ~πA = (π1, π2, π3) and ~πB = (−π1, π2,−π3).

LA = exp(− i
2
~πA ·~σ), LB = exp(− i

2
~πB ·~σ), L̇A = exp(− i

2
~π∗A ·~σ), L̇B = exp(− i

2
~π∗B ·~σ).

(127)

ZA = exp(− i
2
~πA ·~Σ), ZB = exp(− i

2
~πB ·~Σ), ŻA = exp(− i

2
~π∗A ·~Σ), ŻB = exp(− i

2
~π∗B ·~Σ).

(128)
Due to the properties, −~πB · ~σ = ~πA · ~σ∗ and −~πB · ~σ∗ = ~πA · ~σ, the relations in Eq.(124)
hold. But we do not have similar relations with the Σ matrices.
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