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Abstract: Cancer diseases lead to the second-highest death rate all over the world. The dynamics of invasion
of cancer cells into the human body tissues and metastasis are the main causes of death in patients with cancer.
This study deals with theoretical investigation of the dynamics of invasion of cancer cells for tumour growths
in human body tissues using discretized Cahn-Hilliard, concentration and reaction-diffusion equations which
were solved by Finite Difference Method with the aid of MATLAB computer software. A Crank-Nicolson
numerical scheme was developed for the discretized model equations. The numerical result obtained was used
to describe the dynamics of cancer invasion of tissues with respect to cancer cells density on tumour growth,
turbulence and mobility and equilibrium between charge and discharge of cancer cells. The results of the study
provide new insights into combating cancer disease by providing mitigating and intervention measures to this
major health problem.
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1.0. Introduction

Cancer remains the world's primary cause of death, despite continuous therapeutic advances,
making it a major public health issue with devastating societal consequences (Perthame, 2016 and
Zhang et al., 2022). From what can be gleaned from the databases of the World Health Organization
(WHO) and the United Nations (UN), it is clear that cancer is currently, and is likely to remain, one
of the top causes of mortality around the world. Cancer ranks high on the list of global killers and
causes a great deal of suffering. Annually, it's responsible for the deaths of around six million
individuals. In light of this, it is clear why efforts toward cancer prevention, treatment, and discovery
are so vital (Kolev and Zubik-Kowal, 2010). The anticipated 18.1 million new cases and 9.6 million
deaths from cancer worldwide in 2018 demonstrate the continued escalation in this disease's global
burden. It's putting a major burden on healthcare systems and populations worldwide. WHO's
Global Cancer Observatory projects that ten million people will lose their lives to cancer in 2020, up
from nine million in 2018, and that number will climb to over sixteen and a half million by 2040 if
preventative measures aren't implemented (WHO, 2020 & 2018, Roose et al, 2007).

Some of the biggest obstacles to a comprehensive understanding of cancer development and
treatment are metastatic colonization, dormancy, relapse, multiple drug therapy, immune resistance,
and the use of mathematical models and simulations to predict the course of the disease and the
optimal treatment. What makes this phenomenon so difficult to understand is that cancer is an
ancient disease that appears to be inherent to the complexity of creatures produced by evolution, in
contrast to viral infections, which only became major killers with the rise of vast societies a few
hundred years ago (Perthame, 2016).

Cancer is a disease characterized by a series of evolutionary steps at the somatic level, including
tumour initiation, development, dissemination, immune evasion, and the emergence and
maintenance of drug resistance. The evolutionary history of a tumour can be deduced from molecular
data, and evolutionary theory can be used to examine the dynamics of tumour cell populations. The
promise of several approaches to modeling cancer's development has been recently assessed. They
include the phylogenetic approaches to modeling the evolutionary relationship between tumor
subclones and the probabilistic graphical models for characterizing dependencies among mutations,
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as well as models of tumour onset and progression based on the dynamics of the population.
Understanding the genesis of tumours, as well as the likely course of a disease and the effectiveness
of treatments like targeted therapy, can be greatly aided by evolutionary modeling. Hence, the
multistep theory is incorporated into the population dynamics models. Tumour phylogenetic tree,
single-cell approach, hybrid models, and stochastic models are some of the phylogenetic approaches
(Beerenwinkel, Schwarz, Gerstung and Markowetz 2015).

In order to deal with the difficulties associated with tumour growth, Perthame (2016) provides
some invasion models. First, there are models of interplanetary invasion based on the Reaction-
Diffusion Equations. Considered alongside constrained expansion and dispersal via diffusion, it
depicts the spread of an infectious disease, the arrival of a new species (with no natural enemies), a
combustion wave, or a new way of thinking. Second, the Fisher-KPP model is suggested to model
the spatiotemporal development of a tumour under chemotherapeutic influence.

In order to tackle the many difficulties associated with tumour development, several models
based on Ordinary Differential Equations (ODEs) have been presented. Two species, one predator
and one prey, interacting in a biological system is the focus of several theoretical frameworks, such
as the Lotka-Volterra model. cells that are both active and dormant, or P-Q, Model; According to the
NCTI's Dictionary of Cancer Terminology, cell proliferation refers to the increase in cell population
that occurs as a result of normal cellular processes including growth and division. An absence of
proliferation that is both transitory and reversible characterizes a state called quiescence. To wit.
When it comes to describing and analyzing the immune response to cancer growth, the ODEs models
are invaluable tools (Fornier & Sagot, 2011).

Tumour growth models have been demonstrated to be an essential tool in the development of
an engineering foundation for cancer therapy through the use of therapeutic procedure design
coupled with control engineering or the use of the models for simulation and assessment of treatment
processes. This work further demonstrates the usefulness of mathematical modeling in describing
tumour formation, a process of great complexity, by highlighting the characteristics and
physiological processes of the tumours. For this reason, they built a partial differential equation-
based mathematical model for tumour growth and presented its results in their study. In this model,
the densities of proliferative, quiescent, necrotic, and surrounding cells are described together with
the flow of nutrients using a deterministic model of an avascular tumour growth framed in a system
of nonlinear coupled PDEs (Akhtar et al., 2021).

This paper is organized as follows. First, the background to the study is described in sectionl.
Then, the governing mathematical principles and equations are given in section 2, model
formulation and applications are presented in section 3, results and discussion on results is provided
in section 4, summary and conclusion in section 5, and recommendations in section 6.

2.0. Background

The mechanisms involved in the evolution of cancer are extremely intricate and dynamic. Due
to its enormous complexity, cancer has become a very effective human killer in modern times by
hindering early identification and treatment. The numerous methods and approaches used to treat
cancer aim to stop the disease's spread at different phases (such as immortalization or unending cell
development, transformation, and metastasis). Yet, the bigger achievements in science and medicine
have not yet connected all the dots, leaving us without an apparent solution at this time. We are still
unable to develop a vaccine or an effective anti-cancer medicine since we still don't fully understand
how cancer develops and manifests (Fornier & Sagot, 2011).

One such area that pertains to the cutting-edge study of cancer growth and treatment is
mathematical modeling. The goal of developing mathematical models of cancer is to forecast tumour
growth and treatment options. A highly associative topic, mathematical modeling integrates the real-
world issue with multiple simulative models built using mathematical techniques.

There is still tremendous space for improvement in cancer therapy, despite the fact that it has
been more effective for many tumours in recent years. Knowing the basics of how tumour cells invade
can help doctors prescribe treatments and preventative measures for cancer. This cancer invasion
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process can be mathematically described as a system (or systems) of differential equations, which,
when solved, will essentially offer a useful contribution to solving the cancer problem. In order to
maximize the cancer problem, mathematical oncology will be employed to deliver an integrated
solution without the need for clinical trials and experimentation. Therefore, there will be need to
determine integrable theoretical solution to the dynamics of cancer invasion in reference to density
of tumour cells, turbulence and motility of tumour cells and to determine the equilibrium between
charge and discharge of tumour cells. (Socolofsky, S. A. and Jirka.G.H., 2002).

2.1. Governing Equations and Theories

This section discusses the equations that govern the growth rate, concentration and invasion of
cancer cells with reference to its density, growth rate, degradation, renewal, mobility and
concentration in the tumour. Since this is a two-dimensional problem, the equations are presented
along the horizontal and vertical axes. The following universal laws form the basis for the general
equations in the dynamics of cancer cells: The equations of diffusion and concentration, as well as the
Cahn-Hilliard equation. In order to facilitate their incorporation into the aforementioned computer
code, these essential equations are presented in Cartesian form.

It is not possible to get analytical solutions to the equations driving cancer invasion and tumour
growth since they are extremely non-linear PDEs. The Navier-Stokes equations are used to
characterize the dynamics of fluids. Hence, the Navier-Stokes equations are used to model the flow
of fluids, such as the weather, ocean currents, water flow in a pipe, and air flow over a wing. Its use
as models extends to other fields, such as the analysis of pollutants, the development of power plants,
and the research of blood flow. These equations include the following;

2.1.1. Continuity Equation

The continuity equation in 3-D is given as

Ju dv ow
o + @ + i 0 (2.1)

Along with a mathematical definition of the relevant process, the equation for conservation of
mass (or continuity equation) can be used to derive a differential equation describing the movement
of cancer cells (Sarah, 2011 & Elaine, 2009). The conservation equation (2.1) can be examined under
two distinct circumstances. The first scenario is satisfied when the charging and discharging rates of
the cancer cells are equal. The second scenario involves investigating what occurs when the charging
and discharging rates of cancer cells are different. The first condition will be considered in this study
to develop the dynamics of cancer cells in human body.

2.1.2. Momentum Equation

According to the principle of momentum conservation in fluid dynamics, the momentum of a
closed system does not change. The momentum equation, a form of Newton's Second Law, describes
the relationship between the total force acting on an element and the rate of change in that element's
momentum or acceleration. These partial differential equations (PDEs) provide the incompressible
version of the Navier-Stokes equations. The Navier-Stokes equation in x-direction is given as

ou ou ou op 0%u  9%u
o )=-E+u

ox =" M e tar

§+uax+u@ )+pf (2.2)

The Navier-Stokes equation in y-direction is given as

<6v+ 6v+ av)_ 6p+ 62v+62v N ’3
Pt Vot P5y) = oy T H e T ay2) TP (23)
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2.1.3. Concentration Equation

In fluid mechanics, the concentration equation (derived from the scalar transport equation)
describes how material is transported (and, thus, mixed) from a continuum viewpoint. In this
equation, material (with concentration () is passively carried by a velocity field u while
simultaneously undergoing diffusion (where D is the diffusion coefficient). In contrast to the
Navier-Stokes equations, the velocity field wu is known, and with the given initial condition, the
evolution of the concentration can be determined for all time. The application of the concentration
equation to physical systems can shed light onto how these systems diffuse for different parameters.

The net movement of the cancer cellsin xand y respectively are

udt + ox

24
udt + 6y @4

Thus, the total flux in the x and y directions are J, and J,, respectively including the
advective transport and a Fickian diffusion term, we obtain

ac

Jx=uC+Cy=uC—D—— (2.5)
ac

]y=UC+Cy=UC—DE (26)

ac  aC  acC 92C  9%C
— 2.7)

—tu—+v—= +—
ot dx dy dx?  dy?
Where u(x,y,t) is the given divergence-free advective velocity vector field, tis time and Clay,p)is

the fluid concentration levels in mixing process, C(x,y,t) is the concentration of cancer cells and D
is the diffusion coefficient.

2.1.4. Energy Equation

Energy can neither be created nor be destroyed; can only change physical form. Energy equation
can be written in many different ways, such as the one given below
06 a6 00

- - )= 2
pCP(6t+uax+vay> KkV“0 + up (2.8)

2.1.5. Cahn-Hilliard Equation

The original governing equations for the tumour growth in Wise et al., (2008), are the Cahn-
Hilliard equation

d¢ 0’9 0%¢ %@ dp 0 O¢
E_M’D(W-l-a_yz-l_ﬁ —U<a+5+£)+57~(p (2.9)
, 2.10
u = (F(g) — £24¢) ( )
u="vpP— g(pVy (2'11)

where, mobility M > 0.

The diffuse interface model of Wise et al., (2008) is reformulated using the conservative second-
order AC equation with a space-time dependent Lagrange multiplier in Equation (2.11).

The diffuse interface model of Wise et al (2008), involves the second-order CH equation with a
source term. The proposed model consists of the following three equations
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3.0. Mathematical Formulation

The final model of this study was solved numerically in two dimensions. With the help of the
finite difference approximations, spatial discretization was conducted on the model equations,
reducing them to a set of (time-dependent) partial differential equations that were solved with the
help of the central difference formulas.

In Figure 3.1, x is the horizontal coordinate and y is the vertical coordinate. The flowing layer
depth is 4, and the length of the tissue under consideration is L.

o

OO > Cancer cell flow in human body tissues

OO

A

Figure 3.1. Schematic cancer cell flow chamber.

There is a cylinder-shaped flow chamber. Cancer cells, which are seen as small, circular particles,
and blood, which is depicted as the fluid represented by the arrow, enter the chamber and become
well mixed. A current of fluid is moving through the chamber. Arteries, veins, and capillaries are the
blood vessels (tubes) via which blood travels throughout the body. The cardiovascular system
functions like this. It is used to transport gases such as oxygen, carbon dioxide, and others. The
presence of blood supply is crucial in the metastatic process. Some cancer cells are able to leave the
main tumour and enter the bloodstream by squeezing through tiny crevices in the walls of blood
vessels. Modern cancer cells in the circulation are able to adhere to the walls of blood vessels, creating
microscopic channels through which they can inject genetic information that changes the endothelial
cells lining the blood vessels, making them far more friendly to other cancer cells.

In nature, transport occurs in fluids through the combination of advection and diffusion. It is
therefore necessary to mathematically incorporates advection equation into concentration equation.
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Figure 3.2. Schematic diagram of a control volume with cross flow.

The concentration equation is derived using the principle of superposition, which states that
linearly independent processes such as advection and diffusion can be put together. Each cancer cell,
over the course of time, will diffuse to the left or right by a single step. Due to diffusion, each cancer
cells in time t will move either one step to the left or one step to the right ( +6x). Due to advection,
each cancer cells will also move uét in the cross-flow direction. The crossflow does not affect
whether or not cancer cells diffuse to the right or left. However, its presence only amplifies the effect
of the original process.

3.4. Methods of Solution

The Finite Difference Technique was used for this research. Cahn-Hilliard, diffusion, and
concentration equations are solved by means of two numerical schemes: a central Crank-Nicolson
scheme and a central Difference scheme. By discretizing the supplied equation and developing
numerical techniques analogous to the equations, the approaches obtain a finite system of linear or
nonlinear algebraic equations from the Partial Differential Equations. Using the specified boundary
conditions in mind, we solve the equations using MATLAB software.

3.4.1. Central Difference Scheme

The Central Difference scheme is a finite difference method used to get numerical solutions to a
differential equation in applied mathematics by optimizing the approximation for the differential
operator at the center of the patch under discussion. Its benefits include a quicker convergence rate
than other finite differencing methods like the forward and backward differencing methods, as well
as being straightforward to comprehend and apply at least for simple material relations.

3.4.2. Crank Nicolson Scheme

In a central Crank Nicolson scheme, the temporal variable t is replaced by forward difference
scheme: y is replaced by central difference scheme whilex is by the average of central difference
approximation at jthand (j + 1)thlevel

3.5. Dimensionalizing Tumour Concentration Equation

The focus is to solve the concentration equation for tumour concentration C(x,y,t) . In
dimensionless variables, the governing equation, Landau and Lifshitz (1959) is:
ac ac ac 1 (E)ZC E)ZC)

E-l-ua-l_v@_ﬁ mﬁ'a—yz (3.1)
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whereu(x,y,t) and v(x,y,t) are the given divergence-free advective velocity vector fields along
x and y directions respectively, t is time and C(x,y,t) is the tumour concentration levels in
human body tissues.

But the Peclet number is given by

UL
= — 3.2
Pe D (3.2)

Pe is the Peclet number, where U is an axial velocity, L is arterial length, and Dis the diffusivity of
the tumour cells.
Substituting (3.2) into (3.1) gives
oc oc  oC (626 9%c )
e

ax Ve =\ T oy

FTRRE AL 3.3)

3.6 Discretization of Concentration Equation

The partial differential equation for concentration was discretized to form a central Crank
Nicolson scheme which was eventually solved using the finite difference method. In application,
equation (3.3) is discretized to study the effects of Peclet number for tumour concentration levels.
Using a central difference numerical scheme, C, is replaced by forward difference scheme while C,,
is the average of central difference approximation at jth and j + 1 thlevel, and C,, is replaced by
central difference approximation. When these approximations are substituted into equation (3.3), and
taking u = v = 1, the second derivative in concentration equation at node could be represented as

follows:
Ot =CMyy Ol = CMiay Ol —CMija
At 24x 24y
— Pe l Cir-ll—l,j B ZCir,lj + Cin—1,j + Cﬁr1,j+1 B 2Ci’,lj+1 + Cin—1,j+1 (3.4)
2 (4x)? (4x)? ’
Cliya — 2C0 + Ci’fj_l]
(4y)?
The effect of Pe number was investigated on the tumour concentration levels. Taking ¢ = % =
At At . .

@ and p= @07 = @2’ Ax = Ay and multiplying by 24t throughout equation (3.4) and re-

arranging, the scheme below is obtained
(¢ —uPe)Clyy; — (@ + pPe)CiLy ; + (6uPe — 2)C7;
= _(PCiT,lj+1 + #Pecin—1,j+1 + (2uPe + (P)Cir,lj—1 + #Peclgr}f-l,j"'l (3.5)
_ 2Ci1:lj+1
Taking Ax = Ay = 0.1, and 4t = 0.01, = ¢ = 0.1 and u = 2 results to central difference scheme
below

(0.1 —2Pe) iﬁl,j —(0.1+ ZPe)Cl-n_l_j + (12Pe — Z)Cﬁj
(3.6)
= —0.1C]Y41 + 2PeClt, ;4 + (4Pe + 0.1)C_; + 2PeCliq 11
— ZCZL;'H
The above central difference scheme can be in form of six algebraic equations wheni=1, 2, ...,6
withj=1andn=0as


https://doi.org/10.20944/preprints202304.0146.v2

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 April 2023 doi:10.20944/preprints202304.0146.v2

(0.1 —2Pe)CY; — (0.1 + 2Pe)CY; + (12Pe — 2)C2, = —0.1CY, + 2PeCy, + (4Pe + 0.1
(0.1 — 2Pe)C2; — (0.1 + 2Pe)CY, + (12Pe — 2)CY; = —0.1CL, + 2PeCl, + (4Pe + 0.1,
(0.1 — 2Pe)CL; — (0.1 + 2Pe)CY, + (12Pe — 2)CY, = —0.1CY, + 2PeCy, + (4Pe + 0.1, (3.7)
(0.1 = 2Pe)CY; — (0.1 + 2Pe)CY; + (12Pe — 2)C2; = —0.1CL, + 2PeCY, + (4Pe + 0.1,
(0.1 —2Pe)CY; — (0.1 + 2Pe)CYy + (12Pe — 2)C8; = —0.1CS, + 2PeCy, + (4Pe + 0.1,

the following initial and boundary conditions were applied to equation (3.7)

Cxy1)=0, t=0 (3.8)
A0yH =10, Ax00) =Ux20) =0,t>0,x + y (3.9)
The above algebraic equations in (3.7) can be written in matrix form as
(12Pe—2) (0.1 —2Pe) 0 0 0 0
—(0.14+2Pe) (12Pe—2) (0.1 —2Pe) 0 0 0
0 —(0.1+2Pe) (12Pe—2) (0.1—2Pe) 0 0
0 0 —(0.1+2Pe) (12Pe—2) (0.1—2Pe) 0
0 0 0 —(0.1+2Pe) (12Pe—-2) (0.1- (3.10
0 0 0 0 —(0.1+2Pe) (12Pe )
[1+40Pe)
20Pe
=| 20Pe
20Pe
20Pe

Solving the matrix system (3.10) using MATLAB, solutions were obtained for varying values of
Pe. The results were provided in table 4.3.

3.7. Discretization of Cahn-Hilliard Model

Equation (3.10) was discretized to study the effects of mobility M, and density p, of tumour cells.
Using a central difference numerical scheme, ¢, was replaced by forward difference scheme. ¢,
was considered the average of central difference approximation at jth and j + 1 th level, and ¢,,
was replaced by central difference approximation. These approximations were substituted into
equation (3.11). Letting the superscript n indicate the time (temporal variable) while the subscript
i and j indicate the spatial variable x and y, discretization of equation (2.10) gives

<p%?,-“—<p%?,-_M 1((@F1; — 200 + 01 )
ac . P\2 (Ax)?

Piv1j+1 — 2P0 T+ (pln—l,j+1) Pijr1 — 200 + ‘PlT,lj—1> (8.12

(4x)? (4y)? )
Ol — Pitrj  Pije1— Prj-1) | Piv1j T PL S
(24x) (24y) 2 T

Similarly, in three dimension the subscript i and k indicate the spatial variable xand z.
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9031:1 - 9031( - Mp <1 ((‘P?ﬂ,k - Z‘P;,lk + ‘P?—Lk)

At 2 (4x)?

+ Olikr1 — 2Piks1 T Ol ks
(4x)? (3.13
(ngﬂ - Z‘ng + ‘P{,lk—1> )
+ 2
(4y)
(Pl — Ptk | Piker — Pik-a 4 Pk + ol S
(24x) (24y) 2 T

Taking constant values of vand S; so that v = S; = 1 and multiplying by 24t with square
mesh for variables Ax = Ay yields

MpAt
<P§,l;r1 - <P§,lj = (AT)Z(QO?HJ - 29031' + 90?—1,]' + (pln+1,]'+1 - 2¢2j+1

+ (pln_l’j+1 + Z(P:,l]+1 - 4(p:,l] + 2(p:.l]—1) (314

At
_E((pin+1,j - (P{l—1,j + (Piy,lj+1 - (pir.lj—l) +
At(‘l’?ﬂ,j + ‘P{,lj)

. . at at
Taking the mesh sizes r = @ T s =4t
ot =l = MP’"(‘P?H,}' =20+ @iy Oivrje1 — 20041 T 01 jan
+ 20041 — 407 + 2011 ;1) (3.15
—T(fl’?ﬂ,j — @ity t O — QDL'T,lj—1) + f((pln+1,j + <P?j) )
Butif At=001,4x=01r=—2 =17=22-01,¢=22=001,
, (0.1)2 (0.1) 1
Equation (3.15) becomes
ot =l = MP(<P?+1,j =20+ @Oy + Oivrjr1 — 20041 T Oigjin
+ 2081 — 40l + 207_1) (3.16
—0.1(pfr; = OFrj + Pliar — 9F-1) + )

0.01(@fy1; + 1)
multiplying both sides of equation (3.16) by 100 gives

10097 — 1009,

= 100MP(<P?+1,]' =200+ @ii1j + Pivrje1 — 2P0
(3.17
- <P?—1,j+1 + 2‘P?j+1 - 4"031' + 29031’—1) )

L)
Putting the j + 1 level on LHS of equation (3.17) yields
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10

—20Mpp™ + (1 —50Mp)p™ — 20Mpo™

i+1,j+1 ij+1 i—1,j+1 (318
= (10.01 — 40Mp)(pni’j + (10Mp — 0.99)(p”i+1,j ’ )
+ (10Mp + o™, + (10Mp +)o; 4 — 101t
Taking i = 1,2,34,5,..., n =0, j =1 we get the algebraic equations
—20Mpg°,, + (1 = 50Mp)¢°, , — 20Mpe° ,
_ 0 0
= (10Mp — 0.99)¢°, , + (10.01 — 40Mp)¢°, |
+(10Mp + 1)g° | + (10Mp + 1)¢°, [0 — 109" |
—20Mpg°,, + (1 — 50Mp)¢°,, — 20Mpg° ,
_ 0 0
= (10Mp - 0.99)¢°, , + (10.01 — 40Mp)¢°, |
+(10Mp + 1)g°, | + (10Mp + 1)¢°, [0 — 109", |
—20Mpg°,, + (1 = 50Mp)¢p°, , — 20Mpyp°,, (3.19

= (10Mp — 0.990)g0°4’1 +(10.01 — 4(?Mp)(p°3_1 1 )

+ (10Mp + D¢°, | + (10Mp + D¢°, [0 — 109", |
—20Mpg°,, + (1 —50Mp)¢°,, — 20Mpyp°,,

= (10Mp — 0.99)¢° , + (10.01 — 40Mp)¢°, |

0 0 1

+ (10Mp + )¢ 51 T (10Mp + D)o 400 — 1097, |
—20Mpg°, + (1 — 50Mp)¢p°;, — 20Mpy°, ,

= (10Mp — 0.99)¢°, , + (10.01 — 40Mp)g° |

+ (10Mp + 1)g°, | + (10Mp + 1)g° 0 — 10,

Taking the initial ¢ (x)y,0) = ¢(x1,0) = 1, and boundary conditions, ¢(0,y,t) = ¢(x,0,t)=1, the
above system of algebraic equations become

(—50Mp) —20Mp 0 0 0 P12
—20Mp (—50Mp) —20Mp 0 0 ®22
0 —-20Mp (=50Mp) —20Mp 0 ®3,
l 0 0 —20Mp  (=50Mp) —20Mp |[eg,
0 0 0 —20Mp  (=50Mp)l{ 0, (3.20
10Mp — 0.98 ' )
—10Mp + 1.02
= [-10Mp + 1.02
—10Mp + 1.02
—10Mp + 1.02

Solving the above matrix equation, the solutions for varying values of pand M were obtained
and provided in table 4.1 and 4.2.

3.9. Reaction-diffusion Equation

A more involved reaction-diffusion model was taken into account, the so-called Cahn-Hilliard
model which emphasizes the mutually beneficial relationships between ECM and cancer tumour and
metastatic capacities of cancer cells. More elaborate extensions of the model were explored and its
various forms, including additional terms related to tumour cell proliferation, ECM renewal, and
alternative functions representing tumour cell MDE generation. This study focused to uncover how
cancer cells are able to create and secrete the MDE, which in turn degrades the ECM and initiates
migration of the cells towards healthy regions of the tissue. The model was given as
ou 9*u  9%u

g

E= W+a—yz>+au—ﬂu

(.21
)
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3.10. 1Discretization of Reaction-Diffusion Equation

For simplicity let D =1

ML??].”A; My _ My, —(ZAI\iZ)}]-z+ MLy M, —(ZAI\;I;;‘]-Z+ My (a— )M, (3.22)

Multiply by At let Ax = Ay5- = T2 = 0—11(:‘722 = (22‘1’)12 = — =001
M;jyy —M;; = 0.01M;,4; — 0.02M; ; + (3.23
0.01M;_4; + 0.01M; j,; — 0.02M, ; )

+0.01M; ;.1 + 0.01(a — B)M;_, ;
O.OlM{fHJ- +(1-0.044+a- B)Ml??j + 0.01Ml-”_1'j (3.24
= (1-0.01)M};,, — 0.01M},_, )

Simplifying equation (3.24) gives

0.01M%, ; + (0.96 + a — MY, + 0.01MP, ; = 0.99M},, — 0.01M]_, (3'25)

In order for us to solve the system (3.25), we impose some initial conditions to get the algebraic
equations below

0.01M2, + (0.96 + a — B)M?, + 0.01MS, = 0.99MM?, — 0.01M?,
0.01M2, + (0.96 + a — B)MS, + 0.01M?; = 0.99MMY, — 0.01M2,,
0.01M2, + (0.96 + a — B)MS, + 0.01MY, = 0.99MMY, — 0.01M¢,, (3.26
0.01M2, + (0.96 + & — BYMY, + 0.01MS, = 0.99MM, — 0.01M2, )
0.01M2; + (0.96 + a — B)M2, +
0.01M2, = 0.99MMY, — 0.01M2,,

Taking the initial M(x,y,0) = 10and boundary conditions,M (x,0,0) = 10, the above system of
algebraic equation becomes

(0.96 +a — B) 0.01 0 0 0 [*
0.01 (096 +a—p) 0.01 0 0 [
0 0.01 (0.96 + a — B) 0.01 0 l
0 0 0.01 (0.96 + a — B) 0.01 ,
0 0 0 0.01 096 +a - p)l|, 37
8.895 )
9.895
=19.895
9.895
9,895

Solving the matrix equation (3.27), the solutions for varying values of @ and f obtained and
provided in table 4.3 and 4.4.
4. Results and Discussions

The simulation results given focus on the effects of the mobility, M, tumour density,p and Peclet

number, Pe, Extracellular Matrix, « and Matrix degradation Enzymes, f on tumour growth rate,
tumour cells concentration and tumour invasion, respectively.
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4.1. Effects of Cell Density on Tumour Growth Rate

Equation (3.27) was solved in MATLAB and to obtain the results of the effects of p on tumour
growth rate when we hold M constant and get results as shown in table 4.1 below

Table 4.1. Value of tumour growth rates for varying density.

Length of tumour spread from source
0 1 2 3 4
p =3000kg/m3®  3.62859E20  5.664E14 1.283E13 3.333E19 -0.9283E20
p =2000kg/m3  5.30254E20  5.4666E19 4.81279E19 | 7.99666E19  -0.7266E20
p =1000kg/m3  6.04611E20  1.6999E20 9.31538E19  1.33999E20  -0.6016E20

The above results were presented in figure 4.1 below

Figure 4.1 shows how tumour density impacts tumour growth. Figure 4 shows that tumour
growth slows with increasing tumour density and accelerates in the opposite direction as tumours
spread from their original location. Tumours formed in high-density cells are suppressed through
the application of compressive pressures, leading to smaller tumours than those grown in low-
density cells. As a result, an increase in cell density typically results in a smaller tumour.

20

- X 10 .

6 -
fé 5 Decreasing 1 )
E.

- 4 B
X
£ 3 —— n =3000 kg/m*> i
E —— u =2000 kg/m>
s 2 —— n =1000 kg/m° ]
£
=
- 1 -

0 -

_1 Il I I

(8 1 2 3 4

Length ot tumor spread from source, x

Figure 4.1. Graph of tumour growth rate against length of tumour spread from source at varying
tumour density.

4.2. Effects of Mobility on Tumour Growth Rate

Equation (3.27) was solved in MATLAB and obtain the results of the effects of M on tumour
growth rate as shown in table 4.2 below.
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Table 4.2. Value of tumour growth rates for Mobility.

Length of tumour spread from source

0 1 2 3 4
M=10 2.2815E20 6.664E14 1.283E13 1.333x108 1.2283E6
M=20 4.32E20 1.499E15 2.88E13 1.9999E8 1.9236E6
M=30 1.025E21 2.666E15 5.127E13 2.6663E8 2.5646E6

The above results was presented in figure 4.2 below

Figure 4.2 shows how the movement of cancer cells affects the formation of tumours. Tumour
growth rates are observed to rise alongside cell motility. As mobility decreases, the distance a tumour
can travel from its initial site increases. Tumour and normal host cell motility play a role in tumour
metastasis at multiple stages, including tumour cell motility during basement membrane breakdown,
tumour cell motility during escape from the primary tumour, tumour cell motility during migration
to blood and lymphatic vessels, and tumour cell motility during intravasation, extravasation, and
metastasis to distant organs.

20
-x 10 .
6 a
% 5 Increasing M
=
|
&
= 3
=
e
o> 2
2
S 1
|
0
_1 L 1 L
0 1 2 3 4

Length of tumor spread from source , x
Figure 4.2. Tumour growth rate against length of tumour spread from source at varying mobility.

4.3. Effects of P’eclet Number on Tumour Concentration

Equation (3.14) was solved in MATLAB and to obtain the results of the effects of Peclet number
on tumour concentration as shown in table 4.3 below.

Table 4. 3 Value of tumour concentration for various P’eclet number.

Length of tumour spread from source
0 1 2 3 4
Pe=2.0 17.4916 21.75409 20.65741 14.59695 6.397966
Pe=2.3 17.37959 21.11846 20.08196 14.51852 6.699591
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Pe=25 20.42459 27.20341 27.65395 21.47235 10.92022

The above results was presented in figure 4.3 below.

40 T

Icreasing Pe number

&

W
[=]

Tumor concentration, C (x,y1)
a8 &

-
(=]

] 0.5 1 1.5 2 25 3 3.5 4
Legth of tumor spread from source, X

5 I I I 1

Figure 4.3. Tumour concentration against length of tumour spread from source at varying P’eclet
number.

The effect of Peclet number on tumour concentration can be observed from figure 6. Initially, an
increase in P’eclet number leads to increases in the tumour growth rate. The effect
of Pe on concentration is seen to have been very significant in two-phase flows in tumour cells.
From the first phase, it is clearly seen that, with increasing values of Pe, the peak of tumour
concentration increases from 0 to 1.5 and the profile of concentration becomes flatter. The peak values
of tumour concentration are 1.5 to 2.0. With increasing values of Pe beyond 2.0, the initial tumour
cells concentration decreases for a fixed radius from 2.0 to 4.0. From figure 4.3 it is worth noting
that the Pe governs the initial concentration of tumour cells in the human body system. For this
reason, the concentration of the tumour cells reduces for higher values of Pe. The peak of the mean
concentration decreases with the increase in the value of Pe and this effect is very significant in small
cell radius. This study may be applied for investigation of the transportation process of drugs or
plasma proteins in blood flow through small arteries.

4.4. Effects of ECM on Tumour Invasion

Equation (3.27) was solved in MATLAB and to obtain the results of the effects of ECM on tumour
invasion rate as shown in table 4.4 below.

Table 4. 4. Value of tumour invasion for various ECM.

Length of tumour spread from source

0 1 2 3 4
agey=0.01 17.4916 21.75409 20.65741 14.59695 6.397966
agcey=0.05 17.37959 21.11846 20.08196 14.51852 6.699591

agey=0.10 20.42459 27.20341 27.65395 21.47235 10.92022
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The above results was presented in figure 4.4 below

Figure 4.4 displays the impact of extracellular matrix on tumour invasion. Rise in ECM leads to
decreases in the tumour invasion rate. The ECM binds soluble substances, such as growth factors and
other ECM-associated proteins. Skeletal muscle development from embryonic stage to senescence
involves cell surface receptors interacting with ECM components and ECM-bound substances to
regulate cell adhesion and cell signaling, consequently regulating activities as varied as proliferation,
differentiation, migration, and apoptosis. Due to an increase in ECM in the cell milieu of aged muscle,
satellite cells lose their capacity to differentiate into myogenic lineages. Collagen released by satellite
cells can keep them dormant, and studies have shown that ECM protein components contribute to
the myogenesis process of skeletal muscle progenitor cells. Hence, it is safe to say that ECM plays a
crucial role in preventing tumour growth and sustaining normal cancer cell activity.

11 .
10.5
£
[}
®
= 10
=
(7]
(1]
=
= 95 .
E Increasing Ceem
,E ° — %gem = 0.01 |
— %eem = 0.05
— %em = 0.10
8'50 1 2 3 4

Length of tumor spread from source, x

Figure 4.4. Tumour invasion against length of tumour spread from source at varying ECM number.

4.5. Effects of MDE on Tumour Invasion Rate

Equation (3.27) was solved in MATLAB and to obtain the results of the effects of MDE on tumour
invasion rate as shown in table 4.5 below.

Table 4.5. Value of tumour invasion rate for various MDE.

Length of tumour spread from source

0 1 2 3 4
Bupie=0.05 17.4916 21.75409 20.65741 14.59695 6.397966
Bupe=0.10 17.37959 21.11846 20.08196 14.51852 6.699591
Bupe=0.15 20.42459 27.20341 27.65395 21.47235 10.92022

The above results was presented in figure 4.5 below.

Figure 4.5 shows how MDE affects the pace of tumour invasion. When DME levels rise, tumours
invade at a faster rate. During DME, the invading tissue's extracellular matrix scaffolds are degraded
in whole while a new, tumour-derived extracellular matrix is simultaneously formed to support the
tumour mass's unchecked growth. As a result, it is safe to say that MDE plays a crucial role in
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promoting tumour growth by degrading cancer cells' physiological function and fostering the
formation of skeletal muscle.
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Figure 4.5. Tumour invasion rate against length of tumour spread from source at varying MDE.

4.6. Equilibrium point between of ECM and MDEs in tumour invasion

Equation (3.27) was solved MATLAB and to obtain the results of the point of equilibrium
between ECM = 0.05 and MDE = 0.05 on tumour invasion rate as shown in table 4.6 below.

Table 4.6. Value of Equilibrium point between of ECM and MDEs.

Length of tumour spread from source

0 1 2 3 4
agcy=0.05 17.37959 21.11846 20.08196 14.51852 6.699591
Bupe=0.05 17.4916 21.75409 20.65741 14.59695 6.397966

The above results was presented in figure 4.6 below

Figure 4.6 demonstrates that the amount of extracellular matrix decreases with tumour size and
distance from the tumour's origin. This is because the cells are stuck together, whereas the graph of
matrix degrading enzymes shows a direct correlation between tumour length and tumour depth.
Collagen, enzymes, and glycoproteins are just a few examples of the macromolecules and minerals
that make up the extracellular matrix, which provides structural and biochemical support to the cells
in their immediate vicinity. The integrins on the cells of the tissues it is connecting are the point of
attachment for the extracellular matrix. Proteins known as integrins bind to the cytoskeleton of cells.
Molecules of this kind are exudates from neighbouring cells. Yet, tumour cells' own matrix degrading
enzymes (MDEs) break down the extracellular matrix, freeing cancer cells to spread across the body.
As the point where the ECM and the MDEs meet, equilibrium is established.
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Figure 4.6. Tumour invasion rate against length of tumour spread from source at equilibrium point
between ECM and MDE.

5.0. Summary and Conclusions

A numerical study was performed to analyze the effects of the mobility M, tumour density,
pand Peclet number, Pe, Extracellular Matrix,aand Matrix degradation Enzymes, f on tumour
growth rate tumour cells concentration and tumour invasion, respectively.

The following outcomes can be written from the study.

e Anincrease in the mobility leads to an increase in the tumour growth rate.

e  Surface heat transfer tends to decrease with an increase in tumour growth rate
e Anincrease in Peclet number leads to a decrease in tumour concentration.

¢ Anincrease in ECM leads to an increase in tumour growth rate.

¢ Anincrease in MDEs causes a decrease in tumour growth rate.

e Anincrease in Peclet number leads to a decrease in tumour growth rate.

6.0. Recommendations

From this study, the following areas arise for further analysis and development:

e  An extension of this study to factor in a varying sources of tumour, ST and dead cells, SD.
e An extension of this study to incorporate diffusion coefficient tumour growth rate
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Nomanclature

M, Mobility Parameter (m?/V.\ s); N, Number of living cells per unit volume in Nanometers
(nm); St, Net sources of tumour cells (nm); Sp, Net sources of dead cells (nm); u, Density of the tumour
(kg (m3); F(p)Double well bulk energy(joule); &, Parameter related to the thickness of the diffuse
interface tumour and host domains; u, Tumour velocity(m/s); B(t)/F(¢); Space-time dependent
Lagrange multiplier; p, Pressure (N/m?); n, Nutrient concentration; ¢, Sum of the volume fractions
of viable and dead tumour cells; &, Host tissue; 1, Dead tumour cells; P, Population density; v,
Advection cancer invasion velocity; D, Cancer cells diffusivity (uM?/h); p, Density of a single tumour
cell (kg.m?); D,,, MDE diffusion coefficient; , MDE production rate by cells; y, MDE natural
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decay rate; 2(t), Area occupied by tumour at time t; C,, Specific heat capacity (J.kg™".k7'); a,
Repose angle; k, Materials conductivity (W.m 1. k™'); &, Flowing layer depth; Pr, Prandtl
number; Pe, Peclet number; Re, Reynolds number; Sc, Schmidt number; J,Total flux of the cancer
cells x -axis; J,, Total flux of the cancer cells along the y -axis.
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