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Abstract: Cancer diseases lead to the second-highest death rate all over the world.  The dynamics of invasion 

of cancer cells into the human body tissues and metastasis are the main causes of death in patients with cancer. 

This study deals with theoretical investigation of the dynamics of invasion of cancer cells for tumour growths 

in human body tissues using discretized Cahn-Hilliard, concentration and reaction-diffusion equations which 

were solved by Finite Difference Method with the aid of MATLAB computer software. A Crank-Nicolson 

numerical scheme was developed for the discretized model equations. The numerical result obtained was used 

to describe the dynamics of cancer invasion of tissues with respect to cancer cells density on tumour growth, 

turbulence and mobility and equilibrium between charge and discharge of cancer cells. The results of the study 

provide new insights into combating cancer disease by providing mitigating and intervention measures to this 

major health problem.   

Keywords: Cancer cells; Finite Difference Method; tumor growth 

 

1.0. Introduction 

Cancer remains the world's primary cause of death, despite continuous therapeutic advances, 

making it a major public health issue with devastating societal consequences (Perthame, 2016 and 

Zhang et al., 2022). From what can be gleaned from the databases of the World Health Organization 

(WHO) and the United Nations (UN), it is clear that cancer is currently, and is likely to remain, one 

of the top causes of mortality around the world. Cancer ranks high on the list of global killers and 

causes a great deal of suffering. Annually, it's responsible for the deaths of around six million 

individuals. In light of this, it is clear why efforts toward cancer prevention, treatment, and discovery 

are so vital (Kolev and Zubik-Kowal, 2010). The anticipated 18.1 million new cases and 9.6 million 

deaths from cancer worldwide in 2018 demonstrate the continued escalation in this disease's global 

burden. It's putting a major burden on healthcare systems and populations worldwide. WHO's 

Global Cancer Observatory projects that ten million people will lose their lives to cancer in 2020, up 

from nine million in 2018, and that number will climb to over sixteen and a half million by 2040 if 

preventative measures aren't implemented (WHO, 2020 & 2018, Roose et al, 2007). 

Some of the biggest obstacles to a comprehensive understanding of cancer development and 

treatment are metastatic colonization, dormancy, relapse, multiple drug therapy, immune resistance, 

and the use of mathematical models and simulations to predict the course of the disease and the 

optimal treatment. What makes this phenomenon so difficult to understand is that cancer is an 

ancient disease that appears to be inherent to the complexity of creatures produced by evolution, in 

contrast to viral infections, which only became major killers with the rise of vast societies a few 

hundred years ago (Perthame, 2016). 

Cancer is a disease characterized by a series of evolutionary steps at the somatic level, including 

tumour initiation, development, dissemination, immune evasion, and the emergence and 

maintenance of drug resistance. The evolutionary history of a tumour can be deduced from molecular 

data, and evolutionary theory can be used to examine the dynamics of tumour cell populations. The 

promise of several approaches to modeling cancer's development has been recently assessed. They 

include the phylogenetic approaches to modeling the evolutionary relationship between tumor 

subclones and the probabilistic graphical models for characterizing dependencies among mutations, 
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as well as models of tumour onset and progression based on the dynamics of the population. 

Understanding the genesis of tumours, as well as the likely course of a disease and the effectiveness 

of treatments like targeted therapy, can be greatly aided by evolutionary modeling. Hence, the 

multistep theory is incorporated into the population dynamics models. Tumour phylogenetic tree, 

single-cell approach, hybrid models, and stochastic models are some of the phylogenetic approaches 

(Beerenwinkel, Schwarz, Gerstung and Markowetz 2015). 

In order to deal with the difficulties associated with tumour growth, Perthame (2016) provides 

some invasion models. First, there are models of interplanetary invasion based on the Reaction-

Diffusion Equations. Considered alongside constrained expansion and dispersal via diffusion, it 

depicts the spread of an infectious disease, the arrival of a new species (with no natural enemies), a 

combustion wave, or a new way of thinking. Second, the Fisher-KPP model is suggested to model 

the spatiotemporal development of a tumour under chemotherapeutic influence. 

In order to tackle the many difficulties associated with tumour development, several models 

based on Ordinary Differential Equations (ODEs) have been presented. Two species, one predator 

and one prey, interacting in a biological system is the focus of several theoretical frameworks, such 

as the Lotka-Volterra model. cells that are both active and dormant, or P-Q, Model; According to the 

NCI's Dictionary of Cancer Terminology, cell proliferation refers to the increase in cell population 

that occurs as a result of normal cellular processes including growth and division. An absence of 

proliferation that is both transitory and reversible characterizes a state called quiescence. To wit. 

When it comes to describing and analyzing the immune response to cancer growth, the ODEs models 

are invaluable tools (Fornier & Sagot, 2011). 

Tumour growth models have been demonstrated to be an essential tool in the development of 

an engineering foundation for cancer therapy through the use of therapeutic procedure design 

coupled with control engineering or the use of the models for simulation and assessment of treatment 

processes. This work further demonstrates the usefulness of mathematical modeling in describing 

tumour formation, a process of great complexity, by highlighting the characteristics and 

physiological processes of the tumours. For this reason, they built a partial differential equation-

based mathematical model for tumour growth and presented its results in their study. In this model, 

the densities of proliferative, quiescent, necrotic, and surrounding cells are described together with 

the flow of nutrients using a deterministic model of an avascular tumour growth framed in a system 

of nonlinear coupled PDEs (Akhtar et al., 2021). 

This paper is organized as follows. First, the background to the study is described in section1. 

Then, the governing mathematical principles and equations are given in section 2 , model 

formulation and applications are presented in section 3, results and discussion on results is provided 

in section 4, summary and conclusion in section 5, and recommendations in section 6. 

2.0. Background 

The mechanisms involved in the evolution of cancer are extremely intricate and dynamic. Due 

to its enormous complexity, cancer has become a very effective human killer in modern times by 

hindering early identification and treatment. The numerous methods and approaches used to treat 

cancer aim to stop the disease's spread at different phases (such as immortalization or unending cell 

development, transformation, and metastasis). Yet, the bigger achievements in science and medicine 

have not yet connected all the dots, leaving us without an apparent solution at this time. We are still 

unable to develop a vaccine or an effective anti-cancer medicine since we still don't fully understand 

how cancer develops and manifests (Fornier & Sagot, 2011). 

One such area that pertains to the cutting-edge study of cancer growth and treatment is 

mathematical modeling. The goal of developing mathematical models of cancer is to forecast tumour 

growth and treatment options. A highly associative topic, mathematical modeling integrates the real-

world issue with multiple simulative models built using mathematical techniques. 

There is still tremendous space for improvement in cancer therapy, despite the fact that it has 

been more effective for many tumours in recent years. Knowing the basics of how tumour cells invade 

can help doctors prescribe treatments and preventative measures for cancer. This cancer invasion 
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process can be mathematically described as a system (or systems) of differential equations, which, 

when solved, will essentially offer a useful contribution to solving the cancer problem. In order to 

maximize the cancer problem, mathematical oncology will be employed to deliver an integrated 

solution without the need for clinical trials and experimentation. Therefore, there will be need to 

determine integrable theoretical solution to the dynamics of cancer invasion in reference to density 

of tumour cells, turbulence and motility of tumour cells and to determine the equilibrium between 

charge and discharge of tumour cells. (Socolofsky, S. A. and Jirka.G.H., 2002). 

2.1. Governing Equations and Theories 

This section discusses the equations that govern the growth rate, concentration and invasion of 

cancer cells with reference to its density, growth rate, degradation, renewal, mobility and 

concentration in the tumour. Since this is a two-dimensional problem, the equations are presented 

along the horizontal and vertical axes. The following universal laws form the basis for the general 

equations in the dynamics of cancer cells: The equations of diffusion and concentration, as well as the 

Cahn-Hilliard equation. In order to facilitate their incorporation into the aforementioned computer 

code, these essential equations are presented in Cartesian form. 

It is not possible to get analytical solutions to the equations driving cancer invasion and tumour 

growth since they are extremely non-linear PDEs. The Navier-Stokes equations are used to 

characterize the dynamics of fluids. Hence, the Navier-Stokes equations are used to model the flow 

of fluids, such as the weather, ocean currents, water flow in a pipe, and air flow over a wing. Its use 

as models extends to other fields, such as the analysis of pollutants, the development of power plants, 

and the research of blood flow. These equations include the following; 

2.1.1. Continuity Equation 

The continuity equation in 3-D is given as 𝜕𝑢𝜕𝑥 + 𝜕𝑣𝜕𝑦 + 𝜕𝑤𝜕𝑧 = 0 (2.1) 

Along with a mathematical definition of the relevant process, the equation for conservation of 

mass (or continuity equation) can be used to derive a differential equation describing the movement 

of cancer cells (Sarah, 2011 & Elaine, 2009). The conservation equation (2.1) can be examined under 

two distinct circumstances. The first scenario is satisfied when the charging and discharging rates of 

the cancer cells are equal. The second scenario involves investigating what occurs when the charging 

and discharging rates of cancer cells are different. The first condition will be considered in this study 

to develop the dynamics of cancer cells in human body.  

2.1.2. Momentum Equation 

According to the principle of momentum conservation in fluid dynamics, the momentum of a 

closed system does not change. The momentum equation, a form of Newton's Second Law, describes 

the relationship between the total force acting on an element and the rate of change in that element's 

momentum or acceleration. These partial differential equations (PDEs) provide the incompressible 

version of the Navier-Stokes equations. The Navier-Stokes equation in x-direction is given as 𝜌 (𝜕𝑢𝜕𝑡 + 𝑢 𝜕𝑢𝜕𝑥 + 𝑢 𝜕𝑢𝜕𝑦) = −𝜕𝑝𝜕𝑥 + 𝜇 (𝜕2𝑢𝜕𝑥2 + 𝜕2𝑢𝜕𝑦2) + 𝜌𝑓   (2.2) 

The Navier-Stokes equation in y-direction is given as 𝜌 (𝜕𝑣𝜕𝑡 + 𝑣 𝜕𝑣𝜕𝑥 + 𝑣 𝜕𝑣𝜕𝑦) = −𝜕𝑝𝜕𝑦 + 𝜇 (𝜕2𝑣𝜕𝑥2 + 𝜕2𝑣𝜕𝑦2) + 𝜌𝑓 (2.3) 
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2.1.3. Concentration Equation  

In fluid mechanics, the concentration equation (derived from the scalar transport equation) 

describes how material is transported (and, thus, mixed) from a continuum viewpoint. In this 

equation, material (with concentration 𝐶)  is passively carried by a velocity field 𝑢  while 

simultaneously undergoing diffusion (where 𝐷  is the diffusion coefficient). In contrast to the 

Navier-Stokes equations, the velocity field  𝑢 is known, and with the given initial condition, the 

evolution of the concentration can be determined for all time. The application of the concentration 

equation to physical systems can shed light onto how these systems diffuse for different parameters.  

The net movement of the cancer cells in  𝑥and 𝑦 respectively are 𝑢𝛿𝑡 ± 𝛿𝑥 𝑢𝛿𝑡 ± 𝛿𝑦 
(2.4) 

Thus, the total flux in the 𝑥  and 𝑦  directions are  𝐽𝑥  and 𝐽𝑦 , respectively including the 

advective transport and a Fickian diffusion term, we obtain 𝐽𝑥 = 𝑢𝐶 + 𝐶𝑥 = 𝑢𝐶 − 𝐷 𝜕𝐶𝜕𝑥  (2.5) 

𝐽𝑦 = 𝑣𝐶 + 𝐶𝑦 = 𝑣𝐶 − 𝐷 𝜕𝐶𝜕𝑦  (2.6) 

𝜕𝐶𝜕𝑡 + 𝑢 𝜕𝐶𝜕𝑥 + 𝑣 𝜕𝐶𝜕𝑦 = 𝐷 (𝜕2𝐶𝜕𝑥2 + 𝜕2𝐶𝜕𝑦2)  (2.7) 

Where 𝑢(𝑥, 𝑦, 𝑡) is the given divergence-free advective velocity vector field, 𝑡 is time and 𝐶(𝑥,𝑦,𝑡) is 

the fluid concentration levels in mixing process, 𝐶(𝑥, 𝑦, 𝑡) is the concentration of cancer cells and 𝐷 

is the diffusion coefficient.   

2.1.4. Energy Equation 

Energy can neither be created nor be destroyed; can only change physical form. Energy equation 

can be written in many different ways, such as the one given below 𝜌𝐶𝑃 (𝜕𝜃𝜕𝑡 + 𝑢 𝜕𝜃𝜕𝑥 + 𝑣 𝜕𝜃𝜕𝑦) = 𝜅𝛻2𝜃 + 𝜇𝜑  (2.8) 

2.1.5. Cahn–Hilliard Equation  

The original governing equations for the tumour growth in Wise et al., (2008), are the Cahn–
Hilliard equation 𝜕𝜑𝜕𝑡 = 𝑀𝜌(𝜕2𝜑𝜕𝑥2 + 𝜕2𝜑𝜕𝑦2 + 𝜕2𝜑𝜕𝑧2) − 𝑣 (𝜕𝜑𝜕𝑥 + 𝜕𝜑𝜕𝑦 + 𝜕𝜑𝜕𝑧) + 𝑆𝑇𝜑 (2.9) 

𝜇 = (𝐹′(𝜑) − 𝜀2𝛥𝜑) (2.10

) 

𝑢 = 𝛻𝑃 − 𝛾𝜀 𝜑𝛻𝜇 
(2.11

) 

where, mobility 𝑀 > 0. 

The diffuse interface model of Wise et al., (2008) is reformulated using the conservative second-

order AC equation with a space–time dependent Lagrange multiplier in Equation (2.11).  

The diffuse interface model of Wise et al (2008), involves the second-order CH equation with a 

source term. The proposed model consists of the following three equations  
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𝜕𝜑𝜕𝑡 = 𝑀𝜌(𝜕2𝜑𝜕𝑥2 + 𝜕2𝜑𝜕𝑦2 + 𝜕2𝜑𝜕𝑧2) − 𝑣 (𝜕𝜑𝜕𝑥 + 𝜕𝜑𝜕𝑦 + 𝜕𝜑𝜕𝑧) + 𝑆𝑇𝜑 
(2.12

) 𝜕𝜓𝜕𝑡 = 𝑀𝜇 (𝜕2𝜓𝜕𝑥2 + 𝜕2𝜓𝜕𝑦2) − 𝑢 (𝜕𝜓𝜕𝑥 + 𝜕𝜓𝜕𝑦) + 𝜑𝑆𝐷  (2.13

) 𝜕𝜑𝜕𝑡 = 𝑀𝜑(−𝐹′(𝜑) + 𝑐2 (𝜕𝜑𝜕𝑥 + 𝜕𝜑𝜕𝑦)𝛽(𝑡)𝐹(𝜑))   (2.14

) 

3.0. Mathematical Formulation 

The final model of this study was solved numerically in two dimensions. With the help of the 

finite difference approximations, spatial discretization was conducted on the model equations, 

reducing them to a set of (time-dependent) partial differential equations that were solved with the 

help of the central difference formulas. 

In Figure 3.1, x is the horizontal coordinate and y is the vertical coordinate. The flowing layer 

depth is 𝛿, and the length of the tissue under consideration is 𝐿. 

 

Figure 3.1. Schematic cancer cell flow chamber. 

There is a cylinder-shaped flow chamber. Cancer cells, which are seen as small, circular particles, 

and blood, which is depicted as the fluid represented by the arrow, enter the chamber and become 

well mixed. A current of fluid is moving through the chamber. Arteries, veins, and capillaries are the 

blood vessels (tubes) via which blood travels throughout the body. The cardiovascular system 

functions like this. It is used to transport gases such as oxygen, carbon dioxide, and others. The 

presence of blood supply is crucial in the metastatic process. Some cancer cells are able to leave the 

main tumour and enter the bloodstream by squeezing through tiny crevices in the walls of blood 

vessels. Modern cancer cells in the circulation are able to adhere to the walls of blood vessels, creating 

microscopic channels through which they can inject genetic information that changes the endothelial 

cells lining the blood vessels, making them far more friendly to other cancer cells. 

In nature, transport occurs in fluids through the combination of advection and diffusion. It is 

therefore necessary to mathematically incorporates advection equation into concentration equation. 
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Figure 3.2. Schematic diagram of a control volume with cross flow. 

The concentration equation is derived using the principle of superposition, which states that 

linearly independent processes such as advection and diffusion can be put together. Each cancer cell, 

over the course of time, will diffuse to the left or right by a single step. Due to diffusion, each cancer 

cells in time 𝑡 will move either one step to the left or one step to the right ( ±𝛿𝑥). Due to advection, 

each cancer cells will also move 𝑢𝛿𝑡  in the cross-flow direction. The crossflow does not affect 

whether or not cancer cells diffuse to the right or left. However, its presence only amplifies the effect 

of the original process. 

3.4. Methods of Solution 

The Finite Difference Technique was used for this research. Cahn-Hilliard, diffusion, and 

concentration equations are solved by means of two numerical schemes: a central Crank-Nicolson 

scheme and a central Difference scheme. By discretizing the supplied equation and developing 

numerical techniques analogous to the equations, the approaches obtain a finite system of linear or 

nonlinear algebraic equations from the Partial Differential Equations. Using the specified boundary 

conditions in mind, we solve the equations using MATLAB software. 

3.4.1. Central Difference Scheme 

The Central Difference scheme is a finite difference method used to get numerical solutions to a 

differential equation in applied mathematics by optimizing the approximation for the differential 

operator at the center of the patch under discussion. Its benefits include a quicker convergence rate 

than other finite differencing methods like the forward and backward differencing methods, as well 

as being straightforward to comprehend and apply at least for simple material relations. 

3.4.2. Crank Nicolson Scheme 

In a central Crank Nicolson scheme, the temporal variable 𝑡 is replaced by forward difference 

scheme: 𝑦 is replaced by central difference scheme while𝑥 is by the average of central difference 

approximation at  𝑗th and  (𝑗 + 1)th level. 

3.5. Dimensionalizing Tumour Concentration Equation 

The focus is to solve the concentration equation for tumour concentration 𝐶(𝑥, 𝑦, 𝑡)  . In 

dimensionless variables, the governing equation, Landau and Lifshitz (1959) is: 𝜕𝐶𝜕𝑡 + 𝑢 𝜕𝐶𝜕𝑥 + 𝑣 𝜕𝐶𝜕𝑦 = 1𝑃𝑒 (𝜕2𝐶𝜕𝑥2 + 𝜕2𝐶𝜕𝑦2) (3.1) 
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where𝑢(𝑥, 𝑦, 𝑡) and 𝑣(𝑥, 𝑦, 𝑡) are the given divergence-free advective velocity vector fields along 𝑥 and  𝑦  directions respectively, 𝑡  is time and  𝐶(𝑥, 𝑦, 𝑡)  is the tumour concentration levels in 

human body tissues.  

But the Peclet number is given by 𝑃𝑒 = 𝑈𝐿𝐷  (3.2) 

Pe is the Peclet number, where 𝑈 is an axial velocity, 𝐿 is arterial length, and 𝐷is the diffusivity of 

the tumour cells. 

Substituting (3.2) into (3.1) gives 𝜕𝐶𝜕𝑡 + 𝑢 𝜕𝐶𝜕𝑥 + 𝑣 𝜕𝐶𝜕𝑦 = 𝑃𝑒 (𝜕2𝐶𝜕𝑥2 + 𝜕2𝐶𝜕𝑦2) (3.3) 

3.6 Discretization of Concentration Equation 

The partial differential equation for concentration was discretized to form a central Crank 

Nicolson scheme which was eventually solved using the finite difference method. In application, 

equation (3.3) is discretized to study the effects of Peclet number for tumour concentration levels. 

Using a central difference numerical scheme, 𝐶𝑡 is replaced by forward difference scheme while 𝐶𝑥𝑥 

is the average of central difference approximation at 𝑗th and 𝑗 + 1 th level, and 𝐶𝑦𝑦 is replaced by 

central difference approximation. When these approximations are substituted into equation (3.3), and 

taking 𝑢 = 𝑣 = 1, the second derivative in concentration equation at node could be represented as 

follows: 𝐶𝑖,𝑗𝑛+1 − 𝐶𝑛𝑖,𝑗𝛥𝑡 + 𝐶𝑖+1,𝑗𝑛 − 𝐶𝑛𝑖−1,𝑗2𝛥𝑥 + 𝐶𝑖,𝑗+1𝑛 − 𝐶𝑛𝑖,𝑗−12𝛥𝑦= 𝑃𝑒 [12 (𝐶𝑖+1,𝑗𝑛 − 2𝐶𝑖,𝑗𝑛 + 𝐶𝑖−1,𝑗𝑛(𝛥𝑥)2 + 𝐶𝑖+1,𝑗+1𝑛 − 2𝐶𝑖,𝑗+1𝑛 + 𝐶𝑖−1,𝑗+1𝑛(𝛥𝑥)2 )+ 𝐶𝑖,𝑗+1𝑛 − 2𝐶𝑖,𝑗𝑛 + 𝐶𝑖,𝑗−1𝑛(𝛥𝑦)2 ] (3.4) 

The effect of Pe number was investigated on the tumour concentration levels. Taking 𝜑 = 𝛥𝑡(𝛥𝑥) =𝛥𝑡(𝛥𝑦) , and 𝜇 = 𝛥𝑡(𝛥𝑥)2 = 𝛥𝑡(𝛥𝑦)2 , 𝛥𝑥 = 𝛥𝑦 and multiplying by 2𝛥𝑡 throughout equation (3.4) and re-

arranging, the scheme below is obtained (𝜑 − 𝜇𝑃𝑒)𝐶𝑖+1,𝑗𝑛 − (𝜑 + 𝜇𝑃𝑒)𝐶𝑖−1,𝑗𝑛 + (6𝜇𝑃𝑒 − 2)𝐶𝑖,𝑗𝑛= −𝜑𝐶𝑖,𝑗+1𝑛 + 𝜇𝑃𝑒𝐶𝑖−1,𝑗+1𝑛 + (2𝜇𝑃𝑒 + 𝜑)𝐶𝑖,𝑗−1𝑛 + 𝜇𝑃𝑒𝐶𝑖+1,𝑗+1𝑛− 2𝐶𝑖,𝑗𝑛+1 
(3.5) 

Taking 𝛥𝑥 = 𝛥𝑦 = 0.1, and 𝛥𝑡 = 0.01, ⇒ 𝜑 = 0.1 and 𝜇 = 2 results to central difference scheme 

below  (0.1 − 2𝑃𝑒)𝐶𝑖+1,𝑗𝑛 − (0.1 + 2𝑃𝑒)𝐶𝑖−1,𝑗𝑛 + (12𝑃𝑒 − 2)𝐶𝑖,𝑗𝑛  

                       = −0.1𝐶𝑖,𝑗+1𝑛 + 2𝑃𝑒𝐶𝑖−1,𝑗+1𝑛 + (4𝑃𝑒 + 0.1)𝐶𝑖,𝑗−1𝑛 + 2𝑃𝑒𝐶𝑖+1,𝑗+1𝑛− 2𝐶𝑖,𝑗𝑛+1 

(3.6) 

The above central difference scheme can be in form of six algebraic equations when i = 1, 2, …,6 
with j = 1 and n = 0 as 
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(0.1 − 2𝑃𝑒)𝐶2,10 − (0.1 + 2𝑃𝑒)𝐶0,10 + (12𝑃𝑒 − 2)𝐶1,10 = −0.1𝐶1,20 + 2𝑃𝑒𝐶0,20 + (4𝑃𝑒 + 0.1)𝐶1,00 + 2𝑃𝑒𝐶2,20 − 2𝐶1,11(0.1 − 2𝑃𝑒)𝐶3,10 − (0.1 + 2𝑃𝑒)𝐶1,10 + (12𝑃𝑒 − 2)𝐶2,10 = −0.1𝐶2,20 + 2𝑃𝑒𝐶1,20 + (4𝑃𝑒 + 0.1)𝐶2,00 + 2𝑃𝑒𝐶3,20 − 2𝐶2,11(0.1 − 2𝑃𝑒)𝐶4,10 − (0.1 + 2𝑃𝑒)𝐶2,10 + (12𝑃𝑒 − 2)𝐶3,10 = −0.1𝐶3,20 + 2𝑃𝑒𝐶2,20 + (4𝑃𝑒 + 0.1)𝐶3,00 + 2𝑃𝑒𝐶4,20 − 2𝐶3,11(0.1 − 2𝑃𝑒)𝐶5,10 − (0.1 + 2𝑃𝑒)𝐶3,10 + (12𝑃𝑒 − 2)𝐶4,10 = −0.1𝐶4,20 + 2𝑃𝑒𝐶3,20 + (4𝑃𝑒 + 0.1)𝐶4,00 + 2𝑃𝑒𝐶5,20 − 2𝐶4,11(0.1 − 2𝑃𝑒)𝐶6,10 − (0.1 + 2𝑃𝑒)𝐶4,10 + (12𝑃𝑒 − 2)𝐶5,10 = −0.1𝐶5,20 + 2𝑃𝑒𝐶4,20 + (4𝑃𝑒 + 0.1)𝐶5,00 + 2𝑃𝑒𝐶6,20 − 2𝐶5,11 }  
  

(3.7) 

the following initial and boundary conditions were applied to equation (3.7)  𝐶(x,y,1) = 0,  t =0 (3.8) C(0,y,t) =10,  C(x,0,t) = C(x,2,t) =0 , t > 0, x ≠  y (3.9) 

The above algebraic equations in (3.7) can be written in matrix form as 

[  
   
(12𝑃𝑒 − 2) (0.1 − 2𝑃𝑒) 0 0 0 0−(0.1 + 2𝑃𝑒) (12𝑃𝑒 − 2) (0.1 − 2𝑃𝑒) 0 0 00 −(0.1 + 2𝑃𝑒) (12𝑃𝑒 − 2) (0.1 − 2𝑃𝑒) 0 00 0 −(0.1 + 2𝑃𝑒) (12𝑃𝑒 − 2) (0.1 − 2𝑃𝑒) 00 0 0 −(0.1 + 2𝑃𝑒) (12𝑃𝑒 − 2) (0.1 − 2𝑃𝑒)0 0 0 0 −(0.1 + 2𝑃𝑒) (12𝑃𝑒 − 2)]  

   
[  
   𝐶1,1

0𝐶2,10𝐶3,10𝐶4,10𝐶5,10 ]  
   

= [   
 1 + 40𝑃𝑒20𝑃𝑒20𝑃𝑒20𝑃𝑒20𝑃𝑒 ]   

    
(3.10

) 

Solving the matrix system (3.10) using MATLAB, solutions were obtained for varying values of 

Pe. The results were provided in table 4.3. 

3.7. Discretization of Cahn-Hilliard Model 

Equation (3.10) was discretized to study the effects of mobility 𝑀, and density 𝜌, of tumour cells. 

Using a central difference numerical scheme, 𝜑𝑡 was replaced by forward difference scheme.  𝜑𝑥𝑥 

was considered the average of central difference approximation at 𝑗th and 𝑗 + 1 th level, and 𝜑𝑦𝑦 

was replaced by central difference approximation.  These approximations were substituted into 

equation (3.11). Letting the superscript 𝑛 indicate the time (temporal variable) while the subscript 𝑖 and 𝑗 indicate the spatial variable 𝑥 and 𝑦, discretization of equation (2.10) gives  𝜑𝑖,𝑗𝑛+1 − 𝜑𝑖,𝑗𝑛𝛥𝑡 = 𝛭𝜌(12((𝜑𝑖+1,𝑗𝑛 − 2𝜑𝑖,𝑗𝑛 + 𝜑𝑖−1,𝑗𝑛 )(𝛥𝑥)2+ 𝜑𝑖+1,𝑗+1𝑛 − 2𝜑𝑖,𝑗+1𝑛 + 𝜑𝑖−1,𝑗+1𝑛(𝛥𝑥)2 ) + 𝜑𝑖,𝑗+1𝑛 − 2𝜑𝑖,𝑗𝑛 + 𝜑𝑖,𝑗−1𝑛(𝛥𝑦)2 ) 

−𝑣 (𝜑𝑖+1,𝑗𝑛 − 𝜑𝑖−1,𝑗𝑛(2𝛥𝑥) + 𝜑𝑖,𝑗+1𝑛 − 𝜑𝑖,𝑗−1𝑛(2𝛥𝑦) ) + 𝜑𝑖+1,𝑗𝑛 + 𝜑𝑖,𝑗𝑛2 𝑆𝑇 

(3.12

) 

Similarly, in three dimension the subscript 𝑖 and 𝑘 indicate the spatial variable 𝑥and 𝑧. 
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𝜑𝑖,𝑘𝑛+1 − 𝜑𝑖,𝑘𝑛𝛥𝑡 = 𝛭𝜌(12((𝜑𝑖+1,𝑘𝑛 − 2𝜑𝑖,𝑘𝑛 + 𝜑𝑖−1,𝑘𝑛 )(𝛥𝑥)2+ 𝜑𝑖+1,𝑘+1𝑛 − 2𝜑𝑖,𝑘+1𝑛 + 𝜑𝑖−1,𝑘+1𝑛(𝛥𝑥)2 )+ 𝜑𝑖,𝑘+1𝑛 − 2𝜑𝑖,𝑘𝑛 + 𝜑𝑖,𝑘−1𝑛(𝛥𝑦)2 ) 

−𝑣 (𝜑𝑖+1,𝑘𝑛 − 𝜑𝑖−1,𝑘𝑛(2𝛥𝑥) + 𝜑𝑖,𝑘+1𝑛 − 𝜑𝑖,𝑘−1𝑛(2𝛥𝑦) ) + 𝜑𝑖+1,𝑘 + 𝜑𝑖,𝑘𝑛2 𝑆𝑇 

(3.13

) 

Taking constant values of 𝑣 and 𝑆𝑇 so that  𝑣 = 𝑆𝑇 = 1 and multiplying by 2𝛥𝑡 with square 

mesh for variables 𝛥𝑥 = 𝛥𝑦 yields 𝜑𝑖,𝑗𝑛+1 − 𝜑𝑖,𝑗𝑛 = 𝑀𝜌𝛥𝑡(𝛥𝑥)2 (𝜑𝑖+1,𝑗𝑛 − 2𝜑𝑖,𝑗𝑛 + 𝜑𝑖−1,𝑗𝑛 + 𝜑𝑖+1,𝑗+1𝑛 − 2𝜑𝑖,𝑗+1𝑛
+ 𝜑𝑖−1,𝑗+1𝑛 + 2𝜑𝑖,𝑗+1𝑛 − 4𝜑𝑖,𝑗𝑛 + 2𝜑𝑖,𝑗−1𝑛 ) 

                          − 𝛥𝑡𝛥𝑥 (𝜑𝑖+1,𝑗𝑛 − 𝜑𝑖−1,𝑗𝑛 + 𝜑𝑖,𝑗+1𝑛 − 𝜑𝑖,𝑗−1𝑛 ) +𝛥𝑡(𝜑𝑖+1,𝑗𝑛 + 𝜑𝑖,𝑗𝑛 )
           

 

(3.14

) 

Taking the mesh sizes 𝑟 = 𝛥𝑡(𝛥𝑥)2 , 𝜏 = 𝛥𝑡𝛥𝑥 , 𝜉 = 𝛥𝑡 𝜑𝑖,𝑗𝑛+1 − 𝜑𝑖,𝑗𝑛 = 𝑀𝜌𝑟(𝜑𝑖+1,𝑗𝑛 − 2𝜑𝑖,𝑗𝑛 + 𝜑𝑖−1,𝑗𝑛 + 𝜑𝑖+1,𝑗+1𝑛 − 2𝜑𝑖,𝑗+1𝑛 + 𝜑𝑖−1,𝑗+1𝑛+ 2𝜑𝑖,𝑗+1𝑛 − 4𝜑𝑖,𝑗𝑛 + 2𝜑𝑖−1,𝑗−1𝑛 ) 

                 −𝜏(𝜑𝑖+1,𝑗𝑛 − 𝜑𝑖−1,𝑗𝑛 + 𝜑𝑖,𝑗+1𝑛 − 𝜑𝑖,𝑗−1𝑛 ) + 𝜉(𝜑𝑖+1,𝑗𝑛 + 𝜑𝑖,𝑗𝑛 ) 
   

(3.15

) 

But if  𝛥𝑡 = 0.01, 𝛥𝑥 = 0.1,𝑟 = 0.01(0.1)2 = 1, 𝜏 = 0.01(0.1) = 0.1, 𝜉 = 0.011 = 0.01,  

Equation (3.15) becomes 𝜑𝑖,𝑗𝑛+1 − 𝜑𝑖,𝑗𝑛 = 𝑀𝜌(𝜑𝑖+1,𝑗𝑛 − 2𝜑𝑖,𝑗𝑛 + 𝜑𝑖−1,𝑗𝑛 + 𝜑𝑖+1,𝑗+1𝑛 − 2𝜑𝑖,𝑗+1𝑛 + 𝜑𝑖−1,𝑗+1𝑛+ 2𝜑𝑖,𝑗+1𝑛 − 4𝜑𝑖,𝑗𝑛 + 2𝜑𝑖,𝑗−1𝑛 ) 
                            −0.1(𝜑𝑖+1,𝑗𝑛 − 𝜑𝑖−1,𝑗𝑛 + 𝜑𝑖,𝑗+1𝑛 − 𝜑𝑖,𝑗−1𝑛 ) +0.01(𝜑𝑖+1,𝑗𝑛 + 𝜑𝑖,𝑗𝑛 ) (3.16

) 

multiplying both sides of equation (3.16) by 100 gives 𝟏00𝜑𝑖,𝑗𝑛+1 − 100𝜑𝑖,𝑗𝑛= 100𝑀𝜌(𝜑𝑖+1,𝑗𝑛 − 2𝜑𝑖,𝑗𝑛 + 𝜑𝑖−1,𝑗𝑛 + 𝜑𝑖+1,𝑗+1𝑛 − 2𝜑𝑖,𝑗+1𝑛
− 𝜑𝑖−1,𝑗+1𝑛 + 2𝜑𝑖,𝑗+1𝑛 − 4𝜑𝑖,𝑗𝑛 + 2𝜑𝑖,𝑗−1𝑛 ) 

   +100𝜑𝑖+1,𝑗𝑛 − 100𝜑𝑖−1,𝑗𝑛 + 100𝜑𝑖,𝑗+1𝑛 − 100𝜑𝑖,𝑗−1𝑛 + 𝜑𝑖+1,𝑗𝑛 +𝜑𝑖,𝑗𝑛  

(3.17

) 

Putting the 𝑗 + 1 level on LHS of equation (3.17) yields 
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−20𝑀𝜌𝜑𝑛𝑖+1,𝑗+1 + (1 − 50𝑀𝜌)𝜑𝑛𝑖,𝑗+1 − 20𝑀𝜌𝜑𝑛𝑖−1,𝑗+1= (10.01 − 40𝑀𝜌)𝜑𝑛𝑖,𝑗 + (10𝑀𝜌 − 0.99)𝜑𝑛𝑖+1,𝑗+ (10𝑀𝜌 + 1)𝜑𝑛𝑖−1,𝑗 + (10𝑀𝜌 +)𝜑𝑖,𝑗−1𝑛 − 10𝜑𝑖,𝑗𝑛+1 

(3.18

) 

Taking 𝑖 = 1,2,3,4,5, …, 𝑛 = 0, 𝑗 = 1 we get the algebraic equations  −20𝑀𝜌𝜑𝑜2,2 + (1 − 50𝑀𝜌)𝜑01,2 − 20𝑀𝜌𝜑00,2= (10𝑀𝜌 − 0.99)𝜑02,1 + (10.01 − 40𝑀𝜌)𝜑01,1+ (10𝑀𝜌 + 1)𝜑00,1 + (10𝑀𝜌 + 1)𝜑01,00 − 10𝜑11,1 −20𝑀𝜌𝜑𝑜32 + (1 − 50𝑀𝜌)𝜑022 − 20𝑀𝜌𝜑01,2= (10𝑀𝜌 − 0.99)𝜑03,1 + (10.01 − 40𝑀𝜌)𝜑02,1+ (10𝑀𝜌 + 1)𝜑01,1 + (10𝑀𝜌 + 1)𝜑02,00 − 10𝜑12,1 −20𝑀𝜌𝜑𝑜4,2 + (1 − 50𝑀𝜌)𝜑03,2 − 20𝑀𝜌𝜑02,2= (10𝑀𝜌 − 0.99)𝜑04,1 + (10.01 − 40𝑀𝜌)𝜑03,1+ (10𝑀𝜌 + 1)𝜑02,1 + (10𝑀𝜌 + 1)𝜑03,00 − 10𝜑13,1 −20𝑀𝜌𝜑𝑜5,2 + (1 − 50𝑀𝜌)𝜑04,2 − 20𝑀𝜌𝜑03,2= (10𝑀𝜌 − 0.99)𝜑05,1 + (10.01 − 40𝑀𝜌)𝜑04,1+ (10𝑀𝜌 + 1)𝜑03,1 + (10𝑀𝜌 + 1)𝜑04,00 − 10𝜑14,1 −20𝑀𝜌𝜑𝑜6,2 + (1 − 50𝑀𝜌)𝜑05,2 − 20𝑀𝜌𝜑04,2= (10𝑀𝜌 − 0.99)𝜑06,1 + (10.01 − 40𝑀𝜌)𝜑05,1+ (10𝑀𝜌 + 1)𝜑04,1 + (10𝑀𝜌 + 1)𝜑05,00 − 10𝜑15,1 

(3.19

) 

Taking the initial 𝜑(x,y,0) = 𝜑(x,1,0) = 1, and boundary conditions, 𝜑(0,y,t) = 𝜑(x,0,t)=1, the 

above system of algebraic equations become 

[  
  (−50𝑀𝜌) −20𝑀𝜌 0 0 0−20𝑀𝜌 (−50𝑀𝜌) −20𝑀𝜌 0 00 −20𝑀𝜌 (−50𝑀𝜌) −20𝑀𝜌 00 0 −20𝑀𝜌 (−50𝑀𝜌) −20𝑀𝜌0 0 0 −20𝑀𝜌 (−50𝑀𝜌)]  

  
[  
   𝜑1,2

0𝜑2,20𝜑3,20𝜑4,20𝜑5,20 ]  
   

= [  
  10𝑀𝜌 − 0.98−10𝑀𝜌 + 1.02−10𝑀𝜌 + 1.02−10𝑀𝜌 + 1.02−10𝑀𝜌 + 1.02]  

  
 

(3.20

) 

Solving the above matrix equation, the solutions for varying values of 𝜌and M were obtained 

and provided in table 4.1 and 4.2. 

3.9. Reaction-diffusion Equation 

A more involved reaction-diffusion model was taken into account, the so-called Cahn-Hilliard 

model which emphasizes the mutually beneficial relationships between ECM and cancer tumour and 

metastatic capacities of cancer cells. More elaborate extensions of the model were explored and its 

various forms, including additional terms related to tumour cell proliferation, ECM renewal, and 

alternative functions representing tumour cell MDE generation. This study focused to uncover how 

cancer cells are able to create and secrete the MDE, which in turn degrades the ECM and initiates 

migration of the cells towards healthy regions of the tissue. The model was given as 𝜕𝑢𝜕𝑡 = 𝐷 (𝜕2𝑢𝜕𝑥2 + 𝜕2𝑢𝜕𝑦2) + 𝛼𝑢 − 𝛽𝑢   (3.21

) 
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3.10. 1Discretization of Reaction-Diffusion Equation 

For simplicity let D =1 𝑀𝑖,𝑗𝑛+1 −𝑀𝑖,𝑗𝑛𝛥𝑡 = 𝑀𝑖+1,𝑗𝑛 − 2𝑀𝑖,𝑗𝑛 +𝑀𝑖−1,𝑗𝑛(𝛥𝑥)2 +𝑀𝑖,𝑗+1𝑛 − 2𝑀𝑖,𝑗𝑛 +𝑀𝑖,𝑗−1𝑛(𝛥𝑦)2 (𝛼 − 𝛽)𝑀𝑖,𝑗𝑛    (3.22

) 

Multiply by 𝛥𝑡 let 𝛥𝑥 = 𝛥𝑦,
𝛥𝑡𝛥𝑥 = 0.010.1 = 10.1 , 𝛥𝑡(𝛥𝑥)2 = 0.01(0.1)2 = 1100 = 0.01 

         𝑀𝑖,𝑗+1 −𝑀𝑖,𝑗 = 0.01𝑀𝑖+1,𝑗 − 0.02𝑀𝑖,𝑗 +0.01𝑀𝑖−1,𝑗 + 0.01𝑀𝑖,𝑗+1 − 0.02𝑀𝑖,𝑗                                                                      +0.01𝑀𝑖,𝑗+1 + 0.01(𝛼 − 𝛽)𝑀𝑖−1,𝑗  

(3.23

) 

0.01𝑀𝑖+1,𝑗𝑛 + (1 − 0.04 + 𝛼 − 𝛽)𝑀𝑖,𝑗𝑛 + 0.01𝑀𝑖−1,𝑗𝑛                                                                                         = (1 − 0.01)𝑀𝑖,𝑗+1𝑛 − 0.01𝑀𝑖,𝑗−1𝑛  

(3.24

) 

Simplifying equation (3.24) gives 0.01𝑀𝑖+1,𝑗𝑛 + (0.96 + 𝛼 − 𝛽)𝑀𝑖,𝑗𝑛 + 0.01𝑀𝑖−1,𝑗𝑛 = 0.99𝑀𝑖,𝑗+1𝑛 − 0.01𝑀𝑖,𝑗−1𝑛  
(3.25

) 

In order for us to solve the system (3.25), we impose some initial conditions to get the algebraic 

equations below 0.01𝑀2,10 + (0.96 + 𝛼 − 𝛽)𝑀1,10 + 0.01𝑀0,10 = 0.99𝑀𝑀1,20 − 0.01𝑀1,00  0.01𝑀3,10 + (0.96 + 𝛼 − 𝛽)𝑀2,10 + 0.01𝑀1,10 = 0.99𝑀𝑀2,20 − 0.01𝑀2,00  0.01𝑀4,10 + (0.96 + 𝛼 − 𝛽)𝑀3,10 + 0.01𝑀2,10 = 0.99𝑀𝑀3,20 − 0.01𝑀3,00  0.01𝑀5,10 + (0.96 + 𝛼 − 𝛽)𝑀4,10 + 0.01𝑀3,10 = 0.99𝑀𝑀4,20 − 0.01𝑀4,00  

                                    0.01𝑀6,10 + (0.96 + 𝛼 − 𝛽)𝑀5,10 +0.01𝑀4,10 = 0.99𝑀𝑀5,20 − 0.01𝑀5,00  

(3.26

) 

Taking the initial 𝑀(x,y,0) = 10and boundary conditions,𝑀(x,0,0) = 10, the above system of 

algebraic equation becomes 

[  
  (0.96 + 𝛼 − 𝛽) 0.01 0 0 00.01 (0.96 + 𝛼 − 𝛽) 0.01 0 00 0.01 (0.96 + 𝛼 − 𝛽) 0.01 00 0 0.01 (0.96 + 𝛼 − 𝛽) 0.010 0 0 0.01 (0.96 + 𝛼 − 𝛽)]  

  
[  
   𝑀1,1

0𝑀2,10𝑀3,10𝑀4,10𝑀5,10 ]  
   

= [   
 8.8959.8959.8959.8959.895]  

  
 

(3.27

) 

Solving the matrix equation (3.27), the solutions for varying values of 𝛼 and 𝛽 obtained and 

provided in table 4.3 and 4.4. 

4. Results and Discussions 

The simulation results given focus on the effects of the mobility, M, tumour density,𝜌,and Peclet 

number, Pe, Extracellular Matrix, 𝛼 and Matrix degradation Enzymes, 𝛽 on tumour growth rate, 

tumour cells concentration and tumour invasion, respectively. 
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4.1. Effects of Cell Density on Tumour Growth Rate 

Equation (3.27) was solved in MATLAB and to obtain the results of the effects of 𝜌 on tumour 

growth rate when we hold M constant and get results as shown in table 4.1 below 

Table 4.1. Value of tumour growth rates for varying density. 

Tumour Density 

Length of tumour spread from source 

0 1 2 3 4 𝝆 = 𝟑𝟎𝟎𝟎𝒌𝒈/𝒎𝟑 3.62859E20 5.664E14 1.283E13 3.333E19 -0.9283E20 𝝆 = 𝟐𝟎𝟎𝟎𝒌𝒈/𝒎𝟑
 5.30254E20 5.4666E19 4.81279E19 7.99666E19 -0.7266E20 𝝆 = 𝟏𝟎𝟎𝟎𝒌𝒈/𝒎𝟑 6.04611E20 1.6999E20 9.31538E19 1.33999E20 -0.6016E20 

The above results were presented in figure 4.1 below 

Figure 4.1 shows how tumour density impacts tumour growth. Figure 4 shows that tumour 

growth slows with increasing tumour density and accelerates in the opposite direction as tumours 

spread from their original location. Tumours formed in high-density cells are suppressed through 

the application of compressive pressures, leading to smaller tumours than those grown in low-

density cells. As a result, an increase in cell density typically results in a smaller tumour. 

 

Figure 4.1. Graph of tumour growth rate against length of tumour spread from source at varying 

tumour density. 

4.2. Effects of Mobility on Tumour Growth Rate 

Equation (3.27) was solved in MATLAB and obtain the results of the effects of M on tumour 

growth rate as shown in table 4.2 below. 
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Table 4.2. Value of tumour growth rates for Mobility. 

Mobility 

Length of tumour spread from source 

0 1 2 3 4 

M = 10 2.2815E20 6.664E14 1.283E13 1.333x108 1.2283E6 

M = 20 4.32E20 1.499E15 2.88E13 1.9999E8 1.9236E6 

M = 30 1.025E21 2.666E15 5.127E13 2.6663E8 2.5646E6 

The above results was presented in figure 4.2 below 

Figure 4.2 shows how the movement of cancer cells affects the formation of tumours. Tumour 

growth rates are observed to rise alongside cell motility. As mobility decreases, the distance a tumour 

can travel from its initial site increases. Tumour and normal host cell motility play a role in tumour 

metastasis at multiple stages, including tumour cell motility during basement membrane breakdown, 

tumour cell motility during escape from the primary tumour, tumour cell motility during migration 

to blood and lymphatic vessels, and tumour cell motility during intravasation, extravasation, and 

metastasis to distant organs. 

 

Figure 4.2. Tumour growth rate against length of tumour spread from source at varying mobility. 

4.3. Effects of P’eclet Number on Tumour Concentration 

Equation (3.14) was solved in MATLAB and to obtain the results of the effects of Peclet number 

on tumour concentration as shown in table 4.3 below. 

Table 4. 3 Value of tumour concentration for various P’eclet number. 

Peclet number 

Length of tumour spread from source 

0 1 2 3 4 

Pe = 2.0 17.4916 21.75409 20.65741 14.59695 6.397966 

Pe = 2.3 17.37959 21.11846 20.08196 14.51852 6.699591 
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Pe = 2.5 20.42459 27.20341 27.65395 21.47235 10.92022 

The above results was presented in figure 4.3 below. 

 

Figure 4.3. Tumour concentration against length of tumour spread from source at varying P’eclet 
number. 

The effect of Peclet number on tumour concentration can be observed from figure 6. Initially, an 

increase in P’eclet number leads to increases in the tumour growth rate. The effect 

of Pe on concentration is seen to have been very significant in two-phase flows in tumour cells. 

From the first phase, it is clearly seen that, with increasing values of Pe, the peak of tumour 

concentration increases from 0 to 1.5 and the profile of concentration becomes flatter. The peak values 

of tumour concentration are 1.5 to 2.0. With increasing values of Pe beyond 2.0, the initial tumour 

cells concentration decreases for a fixed radius from 2.0 to 4.0.  From figure 4.3 it is worth noting 

that the Pe governs the initial concentration of tumour cells in the human body system. For this 

reason, the concentration of the tumour cells reduces for higher values of Pe. The peak of the mean 

concentration decreases with the increase in the value of Pe and this effect is very significant in small 

cell radius. This study may be applied for investigation of the transportation process of drugs or 

plasma proteins in blood flow through small arteries. 

4.4. Effects of ECM on Tumour Invasion 

Equation (3.27) was solved in MATLAB and to obtain the results of the effects of ECM on tumour 

invasion rate as shown in table 4.4 below. 

Table 4. 4. Value of tumour invasion for various ECM. 

ECM VALUES 

Length of tumour spread from source 

0 1 2 3 4 𝜶𝑬𝑪𝑴= 0.01 17.4916 21.75409 20.65741 14.59695 6.397966 𝜶𝑬𝑪𝑴= 0.05 17.37959 21.11846 20.08196 14.51852 6.699591 𝜶𝑬𝑪𝑴= 0.10 20.42459 27.20341 27.65395 21.47235 10.92022 
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The above results was presented in figure 4.4 below 

Figure 4.4 displays the impact of extracellular matrix on tumour invasion. Rise in ECM leads to 

decreases in the tumour invasion rate. The ECM binds soluble substances, such as growth factors and 

other ECM-associated proteins. Skeletal muscle development from embryonic stage to senescence 

involves cell surface receptors interacting with ECM components and ECM-bound substances to 

regulate cell adhesion and cell signaling, consequently regulating activities as varied as proliferation, 

differentiation, migration, and apoptosis. Due to an increase in ECM in the cell milieu of aged muscle, 

satellite cells lose their capacity to differentiate into myogenic lineages. Collagen released by satellite 

cells can keep them dormant, and studies have shown that ECM protein components contribute to 

the myogenesis process of skeletal muscle progenitor cells. Hence, it is safe to say that ECM plays a 

crucial role in preventing tumour growth and sustaining normal cancer cell activity. 

 

Figure 4.4. Tumour invasion against length of tumour spread from source at varying ECM number. 

4.5. Effects of MDE on Tumour Invasion Rate 

Equation (3.27) was solved in MATLAB and to obtain the results of the effects of MDE on tumour 

invasion rate as shown in table 4.5 below. 

Table 4.5. Value of tumour invasion rate for various MDE. 

MDE VALUES 

Length of tumour spread from source 

0 1 2 3 4 𝜷𝑴𝑫𝑬= 0.05 17.4916 21.75409 20.65741 14.59695 6.397966 𝜷𝑴𝑫𝑬= 0.10 17.37959 21.11846 20.08196 14.51852 6.699591 𝜷𝑴𝑫𝑬= 0.15 20.42459 27.20341 27.65395 21.47235 10.92022 

The above results was presented in figure 4.5 below. 

Figure 4.5 shows how MDE affects the pace of tumour invasion. When DME levels rise, tumours 

invade at a faster rate. During DME, the invading tissue's extracellular matrix scaffolds are degraded 

in whole while a new, tumour-derived extracellular matrix is simultaneously formed to support the 

tumour mass's unchecked growth. As a result, it is safe to say that MDE plays a crucial role in 
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promoting tumour growth by degrading cancer cells' physiological function and fostering the 

formation of skeletal muscle. 

 

Figure 4.5. Tumour invasion rate against length of tumour spread from source at varying MDE. 

4.6. Equilibrium point between of ECM and MDEs in tumour invasion 

Equation (3.27) was solved MATLAB and to obtain the results of the point of equilibrium 

between ECM = 0.05 and MDE = 0.05 on tumour invasion rate as shown in table 4.6 below. 

Table 4.6. Value of Equilibrium point between of ECM and MDEs. 

ECM & MDE 

VALUES Length of tumour spread from source 

0 1 2 3 4 𝜶𝑬𝑪𝑴= 0.05 17.37959 21.11846 20.08196 14.51852 6.699591 𝜷𝑴𝑫𝑬= 0.05 17.4916 21.75409 20.65741 14.59695 6.397966 

The above results was presented in figure 4.6 below 

Figure 4.6 demonstrates that the amount of extracellular matrix decreases with tumour size and 

distance from the tumour's origin. This is because the cells are stuck together, whereas the graph of 

matrix degrading enzymes shows a direct correlation between tumour length and tumour depth. 

Collagen, enzymes, and glycoproteins are just a few examples of the macromolecules and minerals 

that make up the extracellular matrix, which provides structural and biochemical support to the cells 

in their immediate vicinity. The integrins on the cells of the tissues it is connecting are the point of 

attachment for the extracellular matrix. Proteins known as integrins bind to the cytoskeleton of cells. 

Molecules of this kind are exudates from neighbouring cells. Yet, tumour cells' own matrix degrading 

enzymes (MDEs) break down the extracellular matrix, freeing cancer cells to spread across the body. 

As the point where the ECM and the MDEs meet, equilibrium is established. 
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Figure 4.6. Tumour invasion rate against length of tumour spread from source at equilibrium point 

between ECM and MDE. 

5.0. Summary and Conclusions 

A numerical study was performed to analyze the effects of the mobility M, tumour density, 𝜇and Peclet number, Pe, Extracellular Matrix,𝛼and Matrix degradation Enzymes, 𝛽  on tumour 

growth rate tumour cells concentration and tumour invasion, respectively. 

The following outcomes can be written from the study. 

• An increase in the mobility leads to an increase in the tumour growth rate. 

• Surface heat transfer tends to decrease with an increase in tumour growth rate  

• An increase in Peclet number leads to a decrease in tumour concentration. 

• An increase in ECM leads to an increase in tumour growth rate. 

• An increase in MDEs causes a decrease in tumour growth rate. 

• An increase in Peclet number leads to a decrease in tumour growth rate. 

6.0. Recommendations 

From this study, the following areas arise for further analysis and development:  

• An extension of this study to factor in a varying sources of tumour, ST and dead cells, SD. 

• An extension of this study to incorporate diffusion coefficient tumour growth rate  
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Nomanclature 𝛭, Mobility Parameter (m2/V.\ s); 𝑁, Number of living cells per unit volume in Nanometers 

(𝑛𝑚); ST, Net sources of tumour cells (nm); SD, Net sources of dead cells (nm); 𝜇, Density of the tumour 

(kg (m-3); 𝐹(𝜑)Double well bulk energy(joule); 𝜀, Parameter related to the thickness of the diffuse 

interface tumour and host domains; 𝑢, Tumour velocity(m/s); 𝛽(𝑡)√𝐹(𝜑); Space–time dependent 

Lagrange multiplier; 𝑝, Pressure (N/m2); 𝑛, Nutrient concentration; 𝜑, Sum of the volume fractions 

of viable and dead tumour cells; 𝜀, Host tissue; 𝜓, Dead tumour cells; 𝑃, Population density; 𝑣, 

Advection cancer invasion velocity; 𝐷, Cancer cells diffusivity (𝜇𝛭2/h); 𝜌, Density of a single tumour 

cell (𝑘𝑔.𝑚3); 𝐷𝑚 , MDE diffusion coefficient; 𝛽, MDE production rate by cells ; 𝛾,  MDE natural 
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decay rate; 𝛺(𝑡),  Area occupied by tumour at time 𝑡; 𝐶𝑝, Specific heat capacity (𝐽. 𝑘𝑔−1. 𝑘−1);  𝛼, 
Repose angle;  𝜅 , Materials conductivity (𝑊.𝑚−1. 𝑘−1) ;  𝛿 , Flowing layer depth; 𝑃𝑟 , Prandtl 

number; 𝑃𝑒, Peclet number; 𝑅𝑒, Reynolds number; 𝑆𝑐, Schmidt number; 𝐽𝑥Total flux of the cancer 

cells 𝑥 -axis; 𝐽𝑦, Total flux of the cancer cells along the 𝑦 -axis. 
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