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Abstract 

The genetic code conceals a ‘code within the codons’, which hints at biophysical interactions 

between amino acids and their cognate nucleotides. But research over decades has failed to 

corroborate systematic biophysical interactions across the code. Using molecular dynamics 

simulations and NMR, we have analysed interactions between the 20 standard proteinogenic 

amino acids and four RNA mononucleotides in three charge states. Our simulations show 

that 50% of amino acids bind best with their anticodonic middle base in the −1 charge state 

common to the backbone of RNA, while 95% of amino acids interact most strongly with at 

least one of their codonic or anticodonic bases. Preference for the cognate anticodonic 

middle base was greater than 99% of randomized assignments. We verify a selection of our 

results using NMR, and highlight challenges with both techniques for interrogating large 

numbers of weak interactions. Finally, we extend our simulations to a range of amino acids 

and dinucleotides, and corroborate similar preferences for cognate nucleotides. Despite 

some discrepancies between the predicted patterns and those observed in biology, the 

existence of weak stereochemical interactions means that random RNA sequences could 

template non-random peptides. This offers a compelling explanation for the emergence of 

genetic information in biology. 
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1. Introduction 

“The whole case here rests upon the demonstration that codon-amino acid pairing 

interactions exist and that the codon assignments in some way reflect these interactions… 

all-or-none specificities are not required for such interactions to determine the form of the 

codon catalog, either a general form or one specified down to the very last detail. All that is 

required here is that a sufficient number of slight preferences be shown.” Carl Woese, 1969. 

 

The origin of the genetic code and the emergence of biological information is a notoriously 

elusive question. Even on its discovery, it was clear there are non-random patterns in the 

code [1–3]. These patterns loosely correspond to the biosynthetic precursors of the amino 

acids encoded [4–7], the hydrophobicity of those amino acids [8,9], and less clearly, their 

size [4,10], all of which point to some kind of direct biophysical interactions. Nonetheless, as 

suspected by Woese as early as 1969, ‘all-or-none preferences’ do not exist [1,11]. Woese 

argued that a large number of slight preferences (weak and not highly specific) could still 

have played a strong role in fixing the codon assignments [11]. But this prescient argument 

was displaced by Crick’s adaptor hypothesis, which highlighted the lack of direct interactions 

between amino acids and either the codon or anticodon in tRNA [12,13]. Crick’s position was 

unequivocal: since neither evidence for such interactions nor a reasonable model for them 

existed, the interactions themselves did not exist under any circumstances [9,14]. While 

others have continued to pursue the idea that direct stereochemical interactions underpin the 

code, even the most promising experiments and simulations over the following half century 

[15–22] did little to dispel the prevailing scepticism [23–25].  

 

A second theme of Woese’s early ideas on the code has also been largely neglected since 

the rise of the RNA world hypothesis. Woese noted that the main ideas on the optimization 

of the code implicitly assumed selection at the level of the cell, whether through minimizing 

the effects of mutations [26,27], constraining ambiguity [28–31], expanding an early amino-

acid vocabulary [13], or fine-tuning weak biophysical preferences into the all-or-none 

assignments seen today [9,11,31]. In contrast, the RNA world hypothesis advocated 

selection at the level of the gene. Beginning with another foundational paper in 1968, Orgel 

questioned how far complexity could emerge in a peptide world versus an RNA world [32]. 

He concluded that only the simple copying of RNA templates could account for the 

emergence of natural selection, and so focused attention on the replication of RNA as a unit 

of selection [32]. By the early 1980s, the discovery of ribozymes gave the RNA world a 

sense of concrete reality [33–36]. Orgel’s influential scenario held that “the very first 

replicators were ‘naked genes’ adsorbed on the surface of mineral particles”; and later on 
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“impermeable membrane caps were ‘invented’ by the genetic system as it became 

metabolically competent [37].” While these ideas do not rule out the emergence of the 

genetic code in cells, selection at the level of RNA is proposed to generate a set of functional 

RNA catalysts that sustain exponential growth in a prebiotic environment [36]. Metabolism 

emerged with ‘RNA cofactors’ such as NAD, and the first proteins performed the same 

reactions as ribozymes, but more effectively, thereby eventually displacing RNA [36,38]. 

Neither the code nor cells are emphasised as critical early steps.  

 

There is no doubt that RNA played a determining role in the early translational system and 

the emergence of the code [35,39]. Yet the idea that RNA ‘invented metabolism’, though 

dominant, has not been expansively developed. Attention has instead focused on the difficult 

problem of RNA replication [38,40,41], and escaping the tendency to select for replication 

speed, often leading to parasitic collapse [42–46]. Producing stable longer chain RNAs has 

been an end in itself [47], on the assumption that natural selection can then drive the 

emergence of metabolism, ‘bit by bit’ [48]. But this scenario overlooks the complexity of 

metabolic pathways, the known endpoint of evolution. While cofactors probably played an 

important role, by no means do they catalyse every step. And if RNA encoded ribozymes or 

enzymes that each catalyzed individual steps, introducing them one at a time would have no 

benefit if the rest of the pathway was missing [49–51]. Building metabolic pathways step by 

step from one end or the other lowers the combinatorial odds but requires that all 

intermediates be stable, useful and available [52–54], which is certainly not the case for 

pathways such as purine synthesis. The problem is not simply combinatorial. As observed 

by Walker and Davies, “biological information has an additional quality which may roughly be 

called ‘functionality’ – or ‘contextuality’ – that sets it apart from a collection of mere bits as 

characterized by its Shannon information content.” [55] The simplest solution to this near-

intractable problem is to assume that the core of metabolism is thermodynamically and 

kinetically favoured in a propitious environment [56–58], so the first RNA genes only had to 

enhance flux through the protometabolic network [59]. But that presumes a lot from prebiotic 

chemistry, to the point that Orgel memorably dismissed it as ‘an appeal to magic’ [60]. 

 

Experimental work over the last decade has now weakened Orgel’s position. Starting from 

CO2 and H2 – the autotrophic core of all life – much of intermediary metabolism is not only 

thermodynamically favoured but occurs spontaneously following the universally conserved 

biochemical pathways. Mineral catalysts [61,62] or proton gradients across inorganic barriers 

[63] can drive CO2 fixation, directly generating the carboxylic-acid intermediates of the acetyl 

CoA pathway [64] and reverse Krebs cycle [65,66]. From these universal precursors, α-
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amino acids [66–69], acetyl phosphate [70], sugars [71–74], and some nucleobases [75] 

have been formed via pathways that prefigure metabolism in the absence of genes and 

enzymes. While much still needs to be done, the concept of a spontaneous protometabolism 

is no longer an appeal to magic. Going further, modelling shows that catalytic positive 

feedbacks from nucleotide cofactors could drive flux through protometabolism, giving rise to 

autotrophic protocells growing from CO2 and H2 [59]. If RNA polymerization could occur 

within these replicating protocells, the emergence of the genetic code through weak 

biophysical interactions between amino acids and cognate bases could solve the RNA-world 

problem along the lines postulated by Woese [11]. 

 

Reexamining patterns in the code from the standpoint of autotrophic protometabolism is little 

short of revelatory. Harrison et al. have shown that the base at the first position of the codon 

corresponds to the distance from CO2 fixation, following the universal metabolic map [59,76]. 

Amino acids encoded by a G at the first position of the codon are usually the closest to CO2 

fixation, followed by A, then C and U, which might suggest a purine-rich early metabolism 

[76]. Given that most nucleotide cofactors are derived from purines, including NAD, FAD, 

CoA, ATP, folates and pterins, the idea of a purine-rich early metabolism is consistent with 

cofactor-catalyzed positive feedbacks. When structured according to the base at the first 

position of the codon, there is a much stronger relationship between the hydrophobicity of 

the amino acid and the base at the second position of the anticodon – in other words, the 

correlation is stronger for earlier amino acids (closer to CO2 fixation) than for later amino 

acids [76]. Finally, the patterns of redundancy across the code are far from random but are 

governed by rules pertaining partly to the size of the amino acid and adjoining bases [76]. 

These patterns predict weak biophysical interactions between amino acids and cognate 

bases. As noted, while there are tantalizing hints that such interactions do exist [15–22], they 

have not yet been systematically demonstrated across the full code [23,24]. Here, we have 

taken a novel approach, using molecular dynamics simulations to analyze the forces acting 

between atoms, which has allowed us to revisit the interactions between the 20 standard 

proteinogenic amino acids and four RNA mono-nucleotides in three distinct charge states. 

We find that half of the amino acids do bind best with their anticodonic middle base in the −1 

charge state common to the backbone of RNA (which is greater than 99% of randomized 

assignments), while 95% of amino acids interact most strongly with at least one of their 

cognate codonic or anticodonic bases. We verify a selection of our results using NMR. Our 

results corroborate Woese’s proposals from more than half a century ago, and offer a 

compelling framework for the emergence of genetic information in biology. 

  



6 

 

2. Methods 

2.1 Molecular dynamics pipeline 

Mol2 files representing the 20 standard proteinogenic L-amino acids in a zwitterionic state 

and with protonation states representative of pH 7 were produced in Avogadro [77]. Where 

used, dinucleotides were simulated in the NpN format. Three files for each of AMP, CMP, 

GMP, and UMP were also produced with the phosphate at either a −2, −1, or neutral 

charge. These files were then uploaded to CHARMM-GUI’s Ligand Reader and Modeller 

[78,79], which output psf, crd, prm, and rtf files for the molecules. These were passed to 

CHARMM-GUI’s Multicomponent Assembler [80] to produce the input files for the MD 

simulations. Each system contained 10 copies of an amino acid and 1 nucleotide in order to 

increase the frequency of collisions. A 40 Ångstrom periodic box was used, with water as the 

solvent. 150 mM MgCl2 was added using Monte Carlo ion placement, for charge 

neutralization, resulting in a variable number of ions depending on the charge states of the 

monophosphate and amino acid. Default PME parameters were used. The temperature was 

set at 25 °C using an NVT ensemble.  

 

The input files were then used as starting points for the simulations using NAMD 2.0 [81] and 

the CHARMM-36m forcefield [80]. Simulations were minimized and equilibrated for 10000 

and 125000 timesteps respectively, and run for 48 hours using 2 MPI cores 100 times in 

parallel on UCL’s myriad cluster, with randomized initial velocities in each parallel run. This 

produced total simulation times of approximately 1.5 microseconds.  

 

Output trajectories were extracted in MATLAB R2020b using MDtoolbox [82]. The Euclidian 

distance between the nucleotide and the closest amino acid was calculated, as determined 

by the distance between the closest atom of each molecule. Binding was approximated by 

time spent within a 5 Å threshold. This value was chosen qualitatively as a single threshold 

covering the many varied binding modes observed between the large range of molecules. 

Uncertainty was calculated by treating the 100 parallel runs as individual experiments and 

bootstrap sampling these 100,000 times, recalculating the binding in each pseudo-repeat, 

and finding the range in which 95% of these values fell. 

 

Because larger molecules are more likely to be close to each other simply as a result of their 

size, the volume of the molecules needed to be determined to enable comparisons. This was 

conducted through a Monte Carlo method in which 100,000 random coordinates within the 

periodic box were selected and the fraction of these points within 5 Å of the molecule was 

calculated. In order to account for molecular flexibility, this was repeated at 150 randomly 
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chosen simulation frames. The uncertainty presented is the 95% range of these volume 

fractions (SI Tables S1-3). The calculated volume fractions were determined to have a 96% 

correlation with empirical volume measurements for amino acids made by Tien et al., 2013 

[83]. Expected time spent within the 5 Å threshold was observed to increase linearly with 

increasing molecular volume fraction, so artefactual “binding” resulting from larger molecular 

volumes was eliminated by dividing the proximity-based binding measure by the molecular 

volume (SI Tables S7,S8, S12, S13, S17, S18, S22, S23). This enabled comparison 

between the various systems. The preferred binding nucleotide for each amino acid was 

determined by ranking the size adjusted proximity measure, and this was then compared to 

cognate nucleotide assignments in the genetic code, with a null hypothesis of uniform 

random preferences based on a binomial distribution. For overall elevation in preference, 

200,000 randomized rank preferences of nucleotides to amino acids were generated and the 

sum of these ranks was calculated for each randomized run. Additional assignments for 

amino acids with multiple codons were included. For amino acids with multiple cognate 

dinucleotides in the dinucleotide simulations, randomized preferences for the cognate 

dinucleotides were not allowed to be identical. 

 

2.2 Hydrophobicity trends 

The influence of hydrophobicity was determined by using multiple linear regression. The 

proxy binding measures were compared against the volume of amino acids (before and after 

dividing by volume), the volume of nucleotides (again before and after dividing by volume), 

and hydrophobicity. Hydrophobicity was mainly determined using a composite scale where 

an amino acid’s position was determined as the mean hydrophobicity rank of the amino acid 

across 43 hydrophobicity scales compiled by Trinquier and Sanejouand [8,76]. The 

individual scales were also compared on their own (SI Tables S28 and S29). Regressions 

were performed in MATLAB R2020b using the “fitlm” function. 

 

2.3 Rings 

Where mentioned, instead of calculating the distance between all atoms, only the distance 

between the nitrogen atoms in the NMP rings and atoms in the amino acids were calculated. 

This is an imperfect measure as nitrogen atoms are not homogenously laid out around the 

bases, but greatly simplified calculations due to irregular atom labelling produced by the 

software pipeline. This crude representation of the rings is flawed, but sufficient for some 

broad comparisons. Where considered, the volume of the rings was estimated using the 

same Monte Carlo method as for the full molecules, but using just the ring nitrogens. 
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2.4 NMR 

Samples were created in HPLC Gradient Grade H2O. Monophosphate nucleotides were 

added at 0.1 mM, while amino acid concentrations varied from 0.1-100 mM. All samples 

were in 10 mM phosphate buffer with 0.6 mM MgCl2. The pH was adjusted to 7.40-7.42 

using NaOH and HCl (measured with Fisher Scientific accumet AE150 meter with VWR 

semi-micro pH electrode) to mimic MD conditions. All chemicals were obtained from Fisher 

Chemicals and Sigma Aldrich. If required, samples were stored in a 4 °C fridge. The 

samples were transferred to 5 mm diameter borosilicate glass NMR tubes for 600 MHz 

frequencies with 10% (v/v) D2O as the lock signal and 0.001 (w/v) DSS as an internal 

chemical shift reference. Proton (1H) spectra were recorded at 298.2K on a Bruker Avance II 

600 MHz spectrometer equipped with a TXO cryogenic probe. 

 

Peak locations and other features were determined using Topspin v.4.1.4 and then binding 

parameters including KD and max shift were inferred by fitting the results to the ligand 

binding equation (equation 6) from Williamson (2013).The following protons were used as 

probes: CMP H5 and H6, AMP H2 and H8, UMP H5, and GMP H8. 500 fits were conducted 

using the “fit” function in MATLAB R2020b, with the following conditions: lower bounds of KD 

= 0 M-1, delta shift max = 0 ppm; no upper bounds; starting point for delta shift max = 0 ppm, 

and starting point for kD was randomly selected in the interval 0.5-1.5 M-1. In order to 

mitigate noise in the data, one datapoint was randomly excluded in each fit. The KD was 

determined as the mean of these fits, with uncertainty as the range in which 95% of the fitted 

constants fell. The relative preferences for NMPs were further compared by randomly 

selecting inferred binding constants and ranking them 10,000 times. 

 

3. Results 

3.1 Amino acids prefer cognate nucleotides  

We simulated all 20 proteinogenic amino acids as zwitterions in the protonation state 

expected at pH 7, with mononucleotides in each of three charge states; −2, −1 and 0. Each 

simulation had a 10:1 ratio of amino acids to mononucleotides, as well as 150 mM MgCl2. 

The large number of amino acids increased the frequency of collisions in the simulations, 

strengthening the signal from subtle differences between the weakly interacting molecules. 

The systems were simulated for approximately 1.5 μs timescales. The charge state for 

dissolved mononucleotides at pH 7 should be −2,  but we also used the −1 charge state as 

that is more representative of what would be found in an RNA backbone (while lowering the 

combinatorial odds of interacting). Mononucleotides are unlikely to ever be in the neutral 
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state under any relevant situations, but we performed these experiments anyway to better 

understand the effect of charge on the interactions. 

 

Figure 1 gives a selection of examples showing how the interactions vary between amino-

acid–mononucleotide pairs, with mononucleotides in the −1 charge state. The figure 

demonstrates how preference for spending time at a given proximity varies. The proximity 

distribution is adjusted for molecular volume because larger molecules tend to be closer to 

one another simply due to the fact that they take up more of the simulation space. Figure 1A 

shows that proline spends a large proportion of simulation time bound to GMP at 1.9 Å, but 

is much less likely to be found at the same distance from the other three nucleotides. 

Another interaction mode is demonstrated at 2.5 Å, but proline behaves similarly with the 

four nucleotides here. There is third interaction mode at 4 Å, but for proline this is relatively 

indistinct.  

 

Figure 1B shows arginine, which demonstrates more subtle and complex differences in 

preferences between the four nucleotides. Figure 1C shows aspartate, which also shows 

relatively weak binding overall, but quite dramatic preferences for GMP and UMP at 2.5 Å. 

Figure 1D shows phenylalanine, which most commonly interacts at 2.5 Å rather than 1.9 Å. 

Finally, Figure 1E shows glycine, which interacts similarly with each of the four nucleotides, 

and demonstrates most clearly the 4 Å binding mode. Because of the wide range and 

complexity of the binding interactions, an agnostic approach was taken to determining 

relative preferences, whereby the total amount of time the molecules spent within 5 Å of one 

another was calculated (by integrating the area under the peaks within 5 Å). This threshold, 

as demonstrated by the vertical red dotted lines in Figure 1, aims to encompass all observed 

binding modes while avoiding the ‘free-in-solution’ behaviour where the closest unbound 

amino acid tends to be around 5.5 Å from the mononucleotide on average. 

 

Figure 2 shows a summary of binding preferences between the full set of 20 amino acids 

and the four nucleotides in the −1 charge state. Binding preferences were calculated based 

on the proportion of simulation time spent within the 5 Å threshold, as shown in Figure 1. 

This measure has been adjusted to account for amino acid and nucleotide volume, and 

focuses specifically on interactions with the nucleobase. Three additional pairings were 

included for amino acids with multiple cognate 1st and 2nd nucleotide base assignments. 

Figure 2A shows a significant elevation in amino acids that spend the greatest proportion of 

simulation time with their cognate anticodonic middle base [P = 0.0139] in the −1 charge 

state (which best matches the RNA backbone). This is the case for half of all amino acids 
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(11 of 23 cognate nucleotides). There is a corresponding significant reduction in the number 

of amino acids that have the least favourable interactions with their anticodonic middle base 

[P = 0.0492]. Figure 2B shows that 95% of amino acids bound best to at least one cognate 

nucleotide in either their codon or anticodon (excluding base 3) [P = 0.0243] under these 

conditions. Glycine was the only exception. We included the same three additional cognate 

codons/anticodons for the same reasons as in Figure 2A. However, no specific first choice 

preferences for cognate nucleotides in the −2 or neutral charge states were predicted using 

these measures (SI Figures 2 and 3).  

 

Figure 2C breaks down these preferences more granularly, giving the ranked preferences of 

each amino acid by hydrophobicity. This reveals the prediction that hydrophilic amino acids 

are more likely to bind to the anticodonic middle base than more hydrophobic amino acids. 

We can also see that UMP is predicted to be the most commonly preferred binding partner, 

which matches the observation from the modern codon table that UMP is the most common 

anticodonic middle base, utilized by 7 of 20 amino acids, and it is never redundant [76]. This 

trend was repeated in the neutral state, but did not appear in the −2 state (SI Figure 3). 

Notably, AMP was predicted to be the least favoured binding partner; it was never ranked as 

first choice by any amino acids in either the −1 or neutral state (Figure 2C, SI Figure 2), 

though this bias was not displayed in the −2 state. Given that AMP is the most hydrophobic 

nucleotide, this finding seems to indicate that our molecular dynamics simulations do not 

model hydrophobic interactions well. 

 

Figure 2D compares the predicted preferences of the cognate middle bases to randomized 

preferences. For example, in the scenario where all amino acids spent the highest proportion 

of simulation time within 5 Å of their anticodonic middle base nucleotide, the score for this 

base would be rank 1 x 20 = 20. The worst case scenario would be the cognate base being 

rank 4 x 20 = 80. The three nucleotides with multiple codon assignments are also included, 

increasing the minimum possible score by 3. Left of the red dotted line represents the best 

5% of randomized assignments. Compared to random assignments, cognate anticodonic 

middle bases were more strongly preferred than 99% of randomized pairings. An elevated 

preference was also observed for codon base 1, which gave a higher rank preference than 

82% of randomized assignments. Elevations in affinity to codon base 1 nucleotides were 

also observed in the −2 state, with rank preferences greater than 95% of randomized 

assignments, but no elevation was observed for anticodonic nucleotides (SI Figure 3). With 

nucleotides in the neutral charge state, behaviour was indistinguishable from random (SI 

Figure 2). 
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3.2 Hydrophobicity plays a role in binding 

To explore how far amino-acid–nucleotide interactions were influenced by their relative 

hydrophobicity, we compared the interactions between the nucleobase rings against the 

hydrophobicity of the amino acids. We continued to use the volume-adjusted proximity 

measure. Due to the large variation in hydrophobicity given by different scales, we primarily 

utilized the mean of 43 scales collated by Trinquier and Sanejouand [8]. Figure 3 shows how 

the interactions were influenced by relative hydrophobicity in neutral, −1 and −2 charge 

states for each of the four nucleotides. The hydrophobicity rankings on the X axis of Figure 3 

are the same as those in Figure 2C, with the most hydrophobic amino acids being allocated 

the lowest numbers (at left), and the most hydrophilic with the highest numbers (at right).  

 

Overall, we found hydrophobicity to be a significant factor influencing binding in some cases, 

but not all (SI Tables S24 and S25). In the neutral (Figure 3A) and −1 states (Figure 3B), the 

more hydrophobic amino acids tended to bind more strongly across the board, i.e. the slight 

negative correlation indicates that the more hydrophobic amino acids bound best. But we 

expected to see the strongest inverse relationship with the most hydrophobic base (A), and 

that was not the case. Conversely, we expected the opposite relationship with uracil, the 

most hydrophilic base, but again that was not the case. GMP was the only exception in the 

−1 state. In this case, the positive correlation shows that the more hydrophobic amino acids 

bound less well than their hydrophilic counterparts. While G is sometimes considered to be a 

relatively hydrophobic base, the hydrophobicity of the bases is ambiguous, and we have 

followed Lacey et al. [15,85] in considering C to be more hydrophobic than G.   

 

In the −2 state (Figure 3C), the trends were less clear and not statistically significant at the 

5% threshold. However, if the entire nucleotide was considered instead of just the rings, the 

−2 state showed a very strong negative dependence on hydrophobicity, meaning the most 

hydrophilic amino acids bound most strongly to all nucleotides (SI Figure 4). A similar 

relative decrease in the binding of hydrophobic amino acids was observed for the other 

charge states when considering the whole mononucleotide, suggesting that the phosphate, 

especially when charged, was generally interacting with hydrophilic amino acids, whereas 

the rings were usually interacting with hydrophobic amino acids. 

 

We also found that different specific hydrophobicity scales predicted different dependencies 

on hydrophobicity, but broadly trends were similar across scales (SI Tables 28 and 29). The 

strongest hydrophobicity dependence for ring interactions in the −1 state was predicted by 
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the Krigbaum scale [86] (based on protein geometry) and the Sweet scale [87] (derived from 

mutational matrices) for the whole-molecule interactions. Krigbaum also predicted the 

strongest hydrophobicity dependence for the neutral state, but Sweet was once again the 

most predictive scale in the −2 state. This further suggests a complex interplay between ring 

and phosphate interactions, where the −1 state may balance both dynamics in these 

simulations. 

 

3.3 NMR corroborates binding interactions 

In order to validate the existence of preferential binding of the sort predicted by the 

molecular dynamics, we attempted to measure and compare the behaviour of a small 

selection of amino acid-mononucleotide pairs using NMR. We chose to use phenylalanine, 

arginine, glycine, and aspartate, hoping to cover a variety of hydrophobicities and charges. 

We produced mixtures of amino acids and mononucleotides with 150 mM MgCl2 in 

potassium phosphate buffer at pH 7. We generated a range of ratios of amino acids to 

mononucleotides, maintaining the mononucleotides as 0.1 mM concentration and varying 

amino acid concentrations from 0.1 mM up to 100 mM. Increasing the concentration of a 

binding ligand, in this case the amino acids, should increase the proportion of the 

nucleotides in a bound complex. Effective binding changes the local environment of protons 

near the binding site, resulting in chemical shift perturbations (CSPs) of their peaks on the 

NMR spectra (Figure 4). The extent of CSPs will be modulated by varying amino acid 

concentrations, which allows us to infer details of the binding, such as binding strength, KD 

[84]. KD measures the proportion of molecules in a complex for a given set of concentrations, 

where a lower KD indicates that more molecules form a complex as a result of stronger 

binding. 

 

Shifts in proton peak location characteristic of binding interactions were identified in the 

overwhelming majority of amino acid-mononucleotide pairs (SI Tables S30-S33). While 

some systems appeared to reach maximum peak shift quickly (glycine and certain proton 

probes for aspartate), we were unable to reach saturation while retaining consistent 

conditions for certain pairings of phenylalanine and arginine. This supports the prediction of 

diverse and distinctive interactions from the molecular dynamics. We found that many of 

these systems were also very sensitive, producing noisy results at low concentrations. The 

inability to achieve binding saturation also produced large ranges for the inferred binding 

constants for some pairs. The varied structures of the different nucleobases also meant that 

proton probes are not distributed consistently (SI Figure 1), making direct comparisons of 

binding challenging because not all binding sites have corresponding proton probes. 
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Despite these issues, the results show that two of the four tested amino acids preferentially 

bound their anticodonic middle base (Figure 5), as determined by comparing the inferred Kd 

between curve fits. These were arginine, which bound best to CMP (the cognate anticodon) 

in 85% of fits, and aspartate which bound best to UMP (the cognate anticodon) in 76% of 

fits. Aspartate also demonstrated elevated preference for AMP (the cognate codon) in 23% 

of fits. In contrast, phenylalanine demonstrated binding preferences for its codonic middle 

base instead, binding best to UMP (the cognate codon) in 60% of fits. AMP (the cognate 

anticodon) was actually its worst binding partner in 77% of fits. Glycine was the only amino 

acid that had no strong preference for either its codonic or anticodonic middle base, though 

GMP (the cognate codon) was its second best partner in 93% of fits. However, we note that 

glycine almost always interacted preferentially with AMP 8, whereas AMP 2 was typically the 

worst binding partner. AMP 8 is the proton next to the glycosidic nitrogen, while AMP 2 is the 

on the opposite side of the nucleobase (SI Figure S1), suggesting that smaller amino acids 

might interact with only parts of larger nucleobase rings. This sort of regional preference may 

be important, as ignoring AMP 8 would make GMP (the cognate codon) the preferred 

binding partner in 95% of fits and CMP (cognate anticodon) the best in 5%, with this 

preference swapped for second best partner. Conversely, AMP 8 was a poor binding target 

for aspartate, whereas AMP 2 displayed relatively strong binding in this case. Similar 

variation appears to be present for CMP 5 vs CMP 6, highlighting the wider problem of 

inconsistency in the proton probes between nucleotides. 

 

Importantly, our NMR results follow similar behaviour to the molecular dynamic simulations 

on the microscale, wherein an elevated preference for the cognate nucleotides appears to 

be demonstrated. We note that the preference for the anticodonic middle base is predicted 

by both NMR and MD for arginine and aspartate, and that phenylalanine’s preference for 

UMP is repeated in both cases (even though this is not the cognate anticodon). Glycine’s 

lack of clear preference for cognate nucleotides is also predicted by both techniques. While 

our NMR investigations only analysed 20% of proteinogenic amino acids, we suspect that 

these patterns would continue to emerge over larger numbers of amino acids. Extending this 

experimental avenue is a goal for future research, although it will also be worth moving 

towards polynucleotides, which could allow for greater demonstrations of specificity and 

wider options for proton probes.             

 

3.4 Dinucleotides also show affinity for their cognate amino acids: 
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In order to take the first steps towards more complex systems, we simulated a selection 

(approximately 20%) of the 320 proteinogenic amino acid and dinucleotide pairs, using the 

same simulation and analysis pipelines as we did for the mononucleotides. This included six 

amino acids (Phe, Arg, Ser, Gly, Ala and Asp) and 11 of the 16 dinucleotides, including all 

the codons and anticodons for the six amino acids plus a selection of other dinucleotides, 

including homodimers and heterodimers (SI Table S19-23). Figure 6 shows that these amino 

acids had weak elevations in preference for cognate dinucleotides.  

 

We observed that amino acids had a higher preference for their codonic nucleotides than 

about 73% of randomized assignments when considering either whole dinucleotides or the 

rings in isolation (Figure 6A and B). The amino acids had a higher affinity for their cognate 

anticodonic nucleotides than 65% of randomized assignments when considering the whole 

molecule (Figure 6A), which increased to 83% when considering the ring alone (Figure 6B). 

The previously observed high affinity for U was repeated with the dinucleotides – in this 

case, the dinucleotides with the highest average affinity across the six amino acids were UU, 

CU, and UC in order of most to least favoured. Directionality effects were also observed for a 

small subset of pairings, with differences in preferences predicted for glycine with AG vs GA 

and with arginine and glycine for CG vs GC. This was also observed for the rings in isolation, 

with differences between CG and GC for glycine, arginine and phenylalanine, as well as 

between CU and UC for glycine and phenylalanine (SI Table S22 and S23). 

 

4. Discussion 

In this work, we have explored whether preferential stereochemical interactions between 

amino acids and nucleotides exist, and if so, whether the interactions match the patterns 

observed in the genetic code. Our results, using both MD and NMR, strongly support the 

hypothesis that stereochemical interactions do exist, and we find they often do match the 

modern codon assignments. The interactions are weak and probabilistic, but at scale they 

can be identified through the noise. Other notable features of the codon table, such as the 

frequency and non-redundance of uracil at anticodon base 2, and the patterning related to 

hydrophobicity, also appear to arise from these biophysical interactions. These patterns 

even hold true in modern codon reassignments, with 77% of known codon reassignments 

retaining the same middle base [88,89]. Taken together, our results corroborate Woese’s 

prescient conjectures from more half a century ago, that the genetic code is based on a set 

of ancient and spontaneous interactions that have not been overwritten since the origin of 

life [1,11]. 
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While this central idea is supported by both MD and NMR, some discrepancies remain. In 

the NMR, all the nucleotides are likely to be in the −2 charge state at pH 7 [90] but the MD 

simulations mainly predicted cognate preferences in the −1 state (which matters because 

this corresponds to the charge state in the RNA backbone). Exact rank preferences were 

also not replicated perfectly between the two techniques. More generally, while our results 

support the hypothesis that hydrophobicity shapes interactions, we have struggled to identify 

patterns that directly resemble those observed in the codon table. For example, being the 

most hydrophobic base [15,85] we expected AMP to interact most strongly with hydrophobic 

amino acids. UMP is the least hydrophobic base [15,85], so we expected it to interact most 

strongly with hydrophilic amino acids. We anticipated similar but weaker patterning for CMP 

and GMP, which are intermediate in their hydrophobicity. But none of these differences were 

recovered in our simulations. We suspect that this discrepancy may reflect limitations in the 

fixed-charge forcefields used in our MD simulations, which also struggle to model dynamic 

charges and subtle changes in electron densities [91,92]. If so, then hydrophobic effects 

were poorly captured in our simulations, which could explain the poor overall binding of 

amino acids to AMP. This interpretation is supported by Figure 2, which shows that our 

simulations correctly predicted the cognate anticodon middle base for most hydrophilic 

amino acids (to the right end of the Trinquier scale) but fared badly with the hydrophobic 

amino acids (to the left). The negative charge on the phosphate group might then be an 

overpowering factor in our simulations, as suggested by the strong negative correlation 

between hydrophobicity and amino-acid binding in the −2 state across all nucleotides (SI 

Figure 4). Because this trend reverses as charge is decreased towards zero (SI Figure 3) 

the charge on the phosphate seems to play a dominant role.  

 

Another puzzle relates to the striking prediction that the anticodonic middle base and first 

codonic base were both preferred binding partners for cognate amino acids (Figure 2). This 

matches the observation that clear patterning is observed for both these bases in the codon 

table [76]. It also matches the complementary prediction from Figure 6, showing an elevated 

affinity of amino acids to the cognate anticodonic and codonic dinucleotides. These findings 

suggest the emergence of coding in some sort of binding pocket containing both the codon 

and anticodon. Nonetheless, it is still surprising that the binding affinities of amino acids to 

dinucleotides were not greater than those for mononucleotides. One possible explanation 

might be that very short polynucleotides are a known weak-spot for MD [93]. Or it could be 

that our results reflect a sampling bias due to the relatively limited number of amino-acid–

dinucleotide pairs simulated. More interesting: if the patterns do reflect binding to a pocket, 

this would probably require the cognate nucleotides to be positioned opposite one another 
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(as in normal codon-anticodon interactions). Without this multidirectional binding, the extra 

complexity of dinucleotides might confound preferences rather than strengthen specificity. 

 

If our results do indeed point to some sort of selective RNA binding pocket for amino acids, 

then the challenge becomes: how could this pocket evolve into to the modern translational 

and informational system? While much remains ambiguous, we imagine a model in which 

non-enzymatic chemistry and stereochemical interactions between amino acids and their 

cognate nucleotides could build incrementally towards the modern translational system. At 

issue here, once more, is Crick’s adaptor hypothesis [12,13], which stresses the absence of 

any direct correspondence between either the codon or anticodon and amino-acid binding. 

On the contrary, on tRNA, the amino acid always binds to a CCA acceptor stem at one end 

of the molecule, while the anticodon-codon interactions take place far away at another end 

of the molecule. While there may be interactions between anticodons and amino acids in the 

ribosome [94], these have nothing to do with amino-acid loading of the tRNA by aminoacyl 

tRNA synthetases. The question then becomes how, physically, could the interaction 

between a binding pocket containing the anticodon and its cognate amino acid become 

separated into an interaction between a CCA acceptor stem and the cognate amino acid, 

and elsewhere, between the anticodon on tRNA and the codon on mRNA? We sketch a 

possible model in Figure 7. 

 

We propose that translation began in autotrophically growing protocells, as outlined in the 

Introduction [59,76]. In this structured setting, the undirected polymerization of nucleotides 

and amino acids could in theory occur spontaneously, driven by nucleoside triphosphates, 

notably ATP [95], and catalysed by metal ions such as Mg2+ and amino acids such as 

aspartate (which is conserved in the active sites of modern RNA polymerases [96]) or lysine 

(which is conserved in the active site of modern RNA ligase enzymes [97]). Nucleotide 

polymerization in turn should form short non-templated RNA aptamers, some of which may 

resemble a single hairpin loop of tRNA in structure [18,98] as depicted in Figure 7A. We 

imagine amino acids binding to these RNA pockets by way of the weak biophysical affinities 

demonstrated here, giving a statistical likelihood of repeatability. This biophysical patterning 

can in principle explain the emergence of information in biology. Consider: if random RNA 

sequences bind amino acids in a non-random fashion, and this facilitates the polymerization 

of those amino acids into short templated peptides with non-random sequences, then 

biological meaning, linked with function, is introduced in the context of autotrophically 

growing protocells. Functions in growing protocells could include CO2 fixation, RNA 
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polymerization and cofactor binding, all of which would facilitate protocell growth and 

heritability [59,76].  

 

For RNA to template functional peptides, the next necessary step would be the transfer of 

the amino acid from its binding pocket onto the proto-tRNA acceptor stem. The universal 

acceptor stem is the CCA terminal of tRNA, and this is rigorously enforced in biology [99]. 

Curiously, CCA is an anticodon for glycine, the simplest amino acid with only an H for an R 

group, meaning that CCA is most likely to interact with the amino or carboxyl groups rather 

than the R group. This general binding affinity means that the CCA could act as a universal 

‘fishing rod’ for all amino acids; the presence of a CCA terminus could facilitate the binding 

of amino acids and may have been what initially began to differentiate proto-tRNA from other 

sequences. In effect, any short RNA hairpin with a terminal CCA would behave like a proto-

tRNA. The stacking of ATP on the terminal AMP of the CCA stem would help colocalise the 

ATP and amino acid, which is an essential function of amino acyl-tRNA synthetases (aaRS) 

as depicted in Figure 7A. Progenitors of aaRS, even very short polypeptides [18,100], have 

been shown to catalyse amino-acid adenylation and even tRNA acylation, by protecting the 

adenylate from water, and colocalising reactants. We show the adenylation of amino acid in 

Figure 7B, followed by transfer of the amino acid onto the CCA acceptor stem in Figure 7C, 

which acylates the tRNA. Thus, with no more than a short tRNA, we can picture the binding 

of an amino acid to a specific pocket, followed by its adenylation and acylation of the tRNA. 

These simple proto-tRNA molecules could eventually augment their specificity beyond the 

simple biophysical preferences shown here, for example through the size discrimination of 

amino acids, which constitutes the deep split between the two classes of aaRS [101]. 

 

Exactly how such a tRNA could facilitate amino acid polymerization is another question. As 

depicted in Figure 7D, we imagine that the anticodon was initially positioned at the opposite 

end of the tRNA hairpin loop to the CCA acceptor stem, on a flexible hinge that could twist 

around to interact directly with the codon on a proto-rRNA. In Figure 7D, we depict a small 

peptide growing from these interactions, but have not specified a mechanism. It is feasible 

that other short RNAs could catalyse amino-acid polymerization by colocalizing proto-tRNA 

and mRNA templates. Such an assemblage of RNA would be the first steps to forming the 

proto-ribosome, and there is some evidence of this process in the structure and sequences 

of modern ribosomes [102,103]. These RNA complexes presumably catalysed peptide bond 

formation, but later proto-ribosomes had to facilitate alignment with templates and begin to 

enforce reading frames from looser stereochemical roots.  
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This model is admittedly based on some rather large extrapolations from the literature, but 

provides a route to build a full translational system from the simple biophysical interactions 

observed here. The critical steps to test will be the non-enzymatic chemistry of nucleotide 

polymerization in water, the specificity of RNA pockets for amino acids, and the templated 

polymerization of peptides on RNA. We will also address some of the mechanistic puzzles 

relating to the complexification of key components, notably tRNA, which eventually moves 

the cognate nucleotides away from the acceptor stem. More mundane but immediate goals 

include exploring a wider range of experimental conditions for MD simulations. Advances in 

polarizable forcefields would also improve our results if they are able to simulate non-polar 

interactions with more sophistication. There is also plenty of scope for further work with the 

NMR, including improving the precision of the experimentally determined binding constants, 

investigating more amino acids, and progressing to polynucleotides, though the number of 

possible combinations when using longer RNAs will present a challenge to comprehensive 

exploration.  

 

In conclusion, the results presented here support the existence of weak and probabilistic 

binding preferences between amino acids and nucleotides, as argued by Woese more than 

50 years ago. Our results point to the origin of translation in binding pockets in RNA hairpin 

loops. The fact that these interactions are evident even with mononucleotides suggests that 

genetic information is based on spontaneous interactions built into the structure of the code 

from the very origins of polymerization. That these biophysical interactions still shine through 

the genetic code shows they form a cornerstone that has supported the dazzling complexity 

of life ever since.  
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Figures 

 

 

Figure 1. Volume adjusted proximity probability distributions for a selection different 

combinations of amino acids and nucleotides. Proximity is the closest atom of the nucleotide 

to the closest atom of the closest of 10 amino acids in the 40 Å periodic box. Proportion of 

simulation time is adjusted for the volume of the amino acid and nucleotide, so that different 

systems are comparable. Most interactions demonstrate multiple binding modes, at ~ 1.9 Å, 

2.5 Å and 4 Å. An additional peak at around 5.5 Å is also visible, which is interpreted as the 

average distance of the closest amino acid when not bound. The vertical red line indicates 

the 5 Å threshold for binding. (A) proline; (B) arginine; (C) aspartate; (D) phenylalanine; (E) 

glycine.  
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Figure 2. (A) Rank preference of the anticodonic middle base nucleotide for each the 20 

amino acids as predicted by MD simulations. Three additional cognate assignments are 

included for amino acids with multiple 1st and 2nd base assignments. Random allocation 

shows equal chance of each amino acid interacting most strongly with any nucleotide. (B) 

Number of amino acids predicted to interact most strongly with both, one, or no nucleotides 

cognate at either the 1st or 2nd position of either the anticodon or codon, compared to random 

allocations where the probability of interacting with any given nucleotide is equal. (C) Rank 

preference of each amino acid for each nucleotide, ordered by mean hydrophobicity rank of 

amino acids 8,76. The true anticodonic middle base for each amino acid is circled. Circular 

datapoints show pyrimidines; square datapoints are purines. Green is UMP, blue CMP, 

orange GMP and grey AMP. (D) Sum of rank preferences of the amino acids for their 

cognate nucleotides compared to randomized preferences. Highlighted bars are scores for: 

codon base 1 (purple), codon base 2 (green), anticodon base 1 (yellow), anticodon base 2 

(red). All nucleotides are in the −1 charge state in all panels and interactions are given with 

respect to ring nitrogens. 
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Figure 3. Proportion of simulation time for each amino acid within 5 Å of a nucleotide, 

adjusted for molecular volume. Amino acids are denoted by their single letter codes, and 

organised by mean hydrophobicity rank, calculated from Trinquier’s 43 scales 8,76. (A) 

phosphate charge state = 0; (B) phosphate charge state = −1. (C) phosphate charge state = 

−2. Dotted red line shows best fit from a linear regression. Distance is measured relative to 

nucleobase rings. 
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Figure 4. 1H NMR spectra showing characteristic changes in proton chemical shift 

perturbations (or changes) as the ratio of amino acid to nucleotide increases. The panels 

show mixtures of phenylalanine with each of the four mononucleotides, at two representative 

ratios: 1:150 nucleotide to amino acid, and 1:500 nucleotide to amino acid. Numbers next to 

each NMP refer to the proton probes used for measurement of peak shifts (see SI Figure 1 

for numbering). 
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Figure 5. Inferred NMR binding constants (KD) for phenylalanine, aspartate, arginine and 

glycine, with each of the four RNA bases. Lower KD indicates stronger binding. Numbers 

next to each NMP refer to the proton probes used for measurement of peak shifts (see SI 

Figure 1 for numbering). Red boxes highlight the cognate anticodonic middle bases for each 

amino acid. 
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Figure 6. Sum of rank preferences for a selection of amino acids and dinucleotides with 

respect to proportion of simulation time spent within 5 Å, for (A) whole dinucleotide (B) ring 

nitrogens, adjusted for molecular volumes. If all amino acids had their cognate nucleotides 

as their best binding partner, this gives the lowest score. Red = bases 1 and 2, anticodonic 

dinucleotide. Green = bases 1 and 2, codonic dinucleotide. Left of red line is the top 5% of 

randomized assignments. 
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Figure 7. Possible mechanism for amino acid binding and adenylation on a proto-tRNA. (A) 

An amino acid (yellow oblong) binds to its cognate anticodon on a short RNA with a hairpin 

loop. An ATP (blue) stacks onto the terminal A adjacent to the anticodon. (B) Nucleophilic 

attack of the carboxylate oxygen on the α-phosphate releases the pyrophosphate tail (blue 

oblongs), which adenylates the amino acid. (C) Transfer of the amino acid from the 

adenosine to the 2’ ribose of the terminal A on the ‘acceptor stem’ results in an amino-

acylated RNA. (D) Possible primordial mechanism of translation, where a flexible hinge of 

the proto-tRNA allows binding of the anticodon to a ‘codon’ on an adjacent proto-mRNA 

(where the reading frame is also determined by stereochemical interactions) enabling 

synthesis of short peptide sequences specified by the RNA sequence. 

 


