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Abstract: Coastal wave modeling and forecasting are essential in oceanography, sustainable marine energy, 
and ocean engineering. Precise forecasting of wave speed and direction are crucial for offshore operations, 
marine energy, risk management, environmental management, coastal and sustainable maritime management. 
The coastline of Brunei Darussalam can generate between 15 and 126 Giga Watt of wave energy. In this 
experimental research, we used two numerical approaches, the finite difference, and spectral element methods, 
to model and simulate wave speed and direction. We calculated the mean error between numerical and 
analytical solutions. We proposed a novel, promising, univariate time series forecasting model by combining 
the Long Short-Term (LSTM) with KerasTuner hyperparameters tuning and optimization techniques. This 
method helps us to improve the accuracy and efficiency of time-series forecasting.. The experimental data was 
computed from high-precision Acoustic Doppler Current Profiler (ADCP) sensor data. This research is part of 
the preliminary feasibility analysis of wave energy production in Brunei Darussalam and net zero commitment 
for a sustainable environment. Seven independent forecast experiments were performed for wave speed and 
direction in degree and radian units for 1, 3, 6, 8, 10, 12, and 24 hours. Mean squared error (MSE) was adopted 
as a metric for both training and testing. The experimental results reveal that the wave speed forecast has the 
lowest MSE compared to direction, regardless of the unit of measure, but has a longer duration. In addition, 
the direction forecast in the degree unit has the lowest errors compared to the unit of radians; the latter has a 
longer running time than the former. The model has delivered optimal results throughout the experiments 
with minor training and test errors. We conducted a thorough evaluations on two benchmark time series 
datasets, which include the study dataset and air quality index dataset, to validate the performance of the 
proposed model with other models. The proposed model outperforms cutting-edge forecasting models, such 
as the conventional LSTM, ARIMA, and Prophet. The model has the slightest forecast error compared to the 
existing literature’s result. 

Keywords: numerical methods; hyperparameters optimization; ocean energy; sustainable energy; 
Recurrent neural network (RNN); time series forecasting; sustainability and environmental 
management 

 

1. Introduction 

Coastal wave modeling has improved significantly in recent decades, due to the emergence of 
artificial intelligence applications. However, they still have a long way to go. Such modeling has a 
wide range of applications in fishing, maritime transport, naval navigation, environmental research, 
risk management and sustainable energy [1,2]. The advancement of activities in both nearshore and 
offshore waters requires knowledge of the wave condition [3,4] and the need to develop state-of-art 
wave forecasting systems. The wave prediction models are essential for disaster prevention and 
preparedness, optimization of shipping routes, climate change awareness, and ocean power 
generation [5]. Many research work has been done in the domain of coastal wave modeling, and the 
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researchers have made a great breakthrough in forecasting wave conditions. However, wave 
predictions are sometimes inaccurate. 

The wave modeling is frequently applied to simulate the significant physical occurrence in the 
coastal area [6-7]. For modeling and forecasting wave conditions, there is a need to consider and 
understand features like direction, frequency, speed, timing of waves, pressure, and wave height 
(amplitude), among others, and the correlation between these features. Different approaches are 
employed for coastal wave modeling [8-10]. The three primary modeling methods used are physical, 
numerical, and composite.  Numerical models (NM) refer to the usage of computer codes 
(commercial, open source, or home-produced software) [11], and physical models (PM) refer to the 
usage of laboratory models at a suitable scale (micro, small, medium, and large-scale models) to study 
the process of interest, while composite models (CM) refer to the combined and proportional use of 
physical and numerical models [12]. At this phase, the conventional method of forecasting waves by 
oceanographers is numerical models [6]. To solve complex equations, the numerical models use 
various oceanic features as inputs, such as direction, speed, height, temperature, and pressure. 

The most commonly used models nowadays are Simulating Waves Nearshore (SWAN) [6-13], 
which the Delft University of Technology developed and introduced by Booij et al. in 1999 [14], and 
WaveWatch III (WW3) was introduced by Tolman et al. in 2009 [15]. WaveWatch III (WW3) is a third-
generation wave model developed by National Oceanic and Atmospheric Administration (NOAA)/ 
National Centers for Environmental Prediction (NCEP) [16]. 

The advantages of physical simulation and data-driven techniques are combined in traditional 
numerical model forecasting techniques to produce high spatial and sequential resolution predictions 
[17-18]. However, it has substantial drawbacks in real-world offshore sector applications because the 
accuracy and time lag are not guaranteed. Additionally, the numerical model should be carefully 
considered as an operational application due to the high computational and maintenance expenses 
[19–21]. 

Machine learning techniques have increasingly incorporated ocean wave prediction due to their 
advantages in establishing nonlinear mapping relationships, which can significantly boost prediction 
accuracy [22]. By combining the correlations between wind and wind waves with the data produced 
by a numerical model, Song et al. [6] developed a hybrid method called ConvLSTM by coupling CNN 
with LSTM to improve the predictions of significant height.  Berbić et al. [23] use two classification 
models, ANN, and support vector machine (SVM), for significant wave height prediction. 

Barbara et al. [24] use artificial neural networks (ANN) to forecast wave reflection from coastal 
and harbor structures. Elbisy et al. [25] developed a model using SVM with a genetic algorithm to 
predict wave direction and height and compare it with a neural network.  The findings of this study 
show that the SVM model (RBF kernel) is a suitable alternative to NN for predicting wave parameters. 

Even though the use of AI in wave condition forecasting is becoming increasingly common [6], 
hyperparameter optimization and training instability are amongst the biggest challenges of time 
series forecasting. In most of the literature, we found in various academic databases for ocean wave  
characteristics forecast such as speed, direction, and wave height parameters; among others, one of 
their biggest limitations is the optimization hyperparameters which leads to building overfitted 
models or models with high forecast errors.   

Forecasting wave speed and direction is critical in sustainable marine energy harvesting because 
of the significant impact of these elements [26]. In this study, we aimed to propose a novel univariate 
time series forecast that will solve the problems of optimization and training instability, and this can 
be achieved by combining LSTM with hyperparameter tuning and optimization techniques. Our 
proposed model performs better than the models used in the research carried out by [6], [23], and 
[25]. 

The efficiency of wave power generation, which uses the energy of ocean or sea waves to 
generate electricity, is highly dependent on the direction and speed of the waves [27]. The direction 
of the waves can be used to determine the orientation of wave energy converters or wave farms, and 
the waves' speed impacts the amount of energy that can be generated [28,29]. By means of forecasting 
the speed and direction of sea waves, wave energy devices can be placed and operated to maximize 
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their ability to generate energy [1, 30]. Additionally, precise wave direction and speed forecasts can 
reduce the risk of damage to infrastructure and ensure worker safety when using wave energy [29–
31] Although wave energy harvesting technologies now exist at coastal sites, wave farms can have 
significant capital costs [29], making forecasting the energy generated in advance critical. 

As part of Brunei Darussalam's vision for 2035 and energy transition, the country plans to 
harness vast marine energy from the South China Sea and fulfill its net zero commitment to a 
sustainable environment. According to Brunei Darussalam 2012 report prepared by the United 
Nations Climate Technology Centre and Network (UNCTCN). Approximately 269 km of Brunei 
Darussalam's coastline has the capacity to generate between 15 and 126 GW of wave energy, with an 
annual theoretical potential of 66 x 1010 W [32].  This study aims to conduct a preliminary efficiency 
and feasibility assessment of wave energy harvesting in Brunei Darussalam waters in the South China 
Sea. This research will help Brunei government achieve one of the sustainable development goals of 
affordable and clean energy. 

The major objectives of this experiment are as follows: 
 To simulate wave conditions using numerical schemes.  
 To compute the mean error by comparing the difference between numerical and analytical 

solutions for each simulation. 
 To propose a time series forecasting model capable of forecasting dynamic ocean conditions, 

and sustainable coastal and maritime operations using a hybrid method that combines LSTM 
with advanced hyperparameters tuning and optimization techniques. 

 To validate the proposed model by comparing its performance with other models and datasets. 
The rest of the paper is organized as follows: Section 2 describes the research area and the data 

used throughout the study. Section 3 presents the materials and methods of the study. With a 
discussion, Section 4 demonstrates and evaluates the results of the experiments. Section 5 presents a 
plan for future studies, while Section 6 summarizes the study. 

2. Study Area and Data 

Data for this experiment was computed using a high-precision underwater Acoustic Doppler 
Current Profiler (ADCP) sensor data collected in the territorial waters of Brunei Darussalam. Along 
the South China Sea coast at coordinates GPS (05 06.988 N, 114 59.833 E), procured by Universiti 
Brunei Darussalam for research purposes. The raw data collected by the sensor consists of many wave 
condition parameters, including temperature, pressure, significant wave height (Hm0), frequency, 
and current speed, and direction of different depths. Initially, professional divers placed the ADCP 
sensor on the seabed for data collection. Later, the sensor was retaken, and the raw data was retrieved 
using AquaPro. This software can also be used to monitor the wave condition captured by the sensor 
in real-time. The raw data file can be obtained by connecting the ADCP sensor with AquaPro.  The 
raw data file was then uploaded to Storm64 for data visualization and preprocessing. The processed 
wave elements datasets can be generated at this stage and exported in different file formats like csv, 
txt, Whr, etc. AquaPro and Storm64 are developed by the sensor manufacturer Nortek Group, 
Australia. The exported preprocessed dataset underwent a data cleaning process before use. The 
wave speed and direction were estimated using the processed data collected from the sensor. 
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Figure 1. Google map indicating the location of the ADCP sensor on the South China Sea. 

3. Materials and Methods 

The methodology in this experiment consists of two parts. The first subsection is the wave speed 
and direction simulation using numerical methods for modeling and simulation. In contrast, the 
second subsections contain the details of univariate time series optimization and forecast using 
KerasTuner with long-short term memory (LSTM). 

3.1. Numerical Modelling and Simulation 

Numerical methods are mathematical techniques used to approximate solutions to problems 
that are difficult or impossible to solve analytically [33–35]. One such problem is wave speed and 
direction simulation, which can be approximated using the finite difference method and the Fourier 
transform. We used arbitrary values (sample data) in each simulation to simulate the wave speed and 
direction using the numerical method and compare them with analytical solutions [36,37].  

In numerical modeling, the continuous values are converted into a discretized form. 
Discretization approximates a continuous function or system by a discrete set of points or values 
[33,38]. This process is commonly used in numerical methods such as the finite difference method 
and the Fourier transform. Below is a brief explanation of the two numerical approaches used in this 
study to simulate wave speed and direction. 

3.1.1. Finite Difference Method 

The finite difference method is a numerical method that discretizes a continuous function or 
system by dividing it into a finite number of points or nodes [39]. The function values at surrounding 
points then approximate the function values at each point. This approximation is based on a finite 
difference formula that connects the function's values at surrounding places to its derivative [40]. It 
is a widely used scheme for solving differential equations and is mainly suitable for problems 
comprising asymmetrical domains or boundary conditions. 

This study used a one-dimensional finite difference approximation method to model the wave 
speed. The centered difference approach was used for analyzing the wave equation. The centered 
difference technique approximates the derivative as the slope of a line that passes through two points, 
which mitigates the influence of numerical errors caused by utilizing only one point, making it more 
accurate than the forward and backward difference methods. 
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Wave speed can be expressed as:  � = ��                                       (1) 
Where v is the wave speed,  � is wavelength, and T is the period.  
The first-order wave equation: ���� + � ���� = 0,   �(�, 0) = �� (�)      (2) 
Wave equation in one dimension (1D): ������ = �� ������                                  (3) 
Initial condition:  �(0, �) = ��(�) and ��(0, �) = ��(�) 
Where c represents wave the speed, x represents space, and t represents time a function that 

describes how much the sea wave is displaced (amplitude) from its initial position at a particular 
point (x) and time (t) due to the wave passing through it, and v0 represents the speed. 

3.1.2. Fourier Transform 

On the other hand, a function or signal can be converted from the time domain to the frequency 
domain using the Fourier transform [41]. Through this transformation, the frequency components of 
a signal can be examined and employed for tasks like filtering or smoothing. The Fourier transform 
is a continuous function [34–38].  

It is usually calculated using a discrete algorithm, such as the fast Fourier transform (FFT), which 
approximates the transform at a finite number of discrete frequencies. 

The Fourier transform function can be expressed as:  �(�) =  ∫ �(�)��(���)������                   (4) 
Where F(ω) is the Fourier transform of f(t) with respect to the frequency ω, i is the imaginary 

number (i.e., (√(−1) ), ω is the angular frequency in radians per unit time ��(���)  is the complex 
exponential function. We used a fast Fourier transform to implement the numerical solution of the 
wave direction. To calculate the directional spectrum, we applied the Pierson-Moskowitz spectrum 
equation.  

Which can be expressed as:  �(�) = ���(2�)�����exp (− �� (��� )�)    (5) 

3.2. Univariate Time Series Forecast 

Univariate time series forecasting is the process of forecasting future values of a single variable 
over a period of time. This type of forecasting is commonly used in several fields, such as engineering, 
economics, and finance. This experiment focuses on the wave speed and direction of a specific 
location within the territorial waters of Brunei Darussalam.  This study proposes a univariate time 
series approach to forecast wave speed and direction using LSTM recurrent neural network using the 
Python programming language. In this experiment, we used the stacking method to stack two layers 
of LSTM, two dense activation layers for relu and sigmoid, and one output dense layer. Stochastic 
gradient descent (SGD) optimizer was used for optimization, while Mean Squared Error (MSE) was 
chosen as a metric in both training and testing. In each hour, the sensor measured speed, direction, 
and other parameters five times, which means that each hour has 5 data points.  

The dataset consists of 4925 rows and three columns for Date-Time, Direction, and Speed. Since 
we are conducting univariate time series forecast, we extracted separate datasets for direction and 
speed from the primary dataset by creating a data frame for each separately with DateTime as an 
index. The unit of direction measured is in degrees. We performed seven independent experiments 
for direction forecast for the next 1, 3, 6, 8, 10, 12, and 24 hours separately. We also converted the 
direction values from degrees to radians and ran another set of experiments using the same hours as 
in degrees. Furthermore, we run seven independent forecast experiments for speed using the same 
algorithm and hours as in the previous experiments. KerasTuner was used for hyperparameter 
tuning throughout the experiments, and the batch size was 32 for each experiment. During the 
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experiments, the sliding window size changes for each experiment, so we run seven experiment for 
each session.  

The dataset was shuffled for every 1000 data points and divided into training and test sets 
throughout the experiments, making the models learn ideally and reducing the prediction's error to 
a minimal level. The training and validation set contains 3700, while the test set takes the remaining 
part. Each experiment was run as a single project because the Keras tuner saved the best model with 
hyperparameters for deployment or used later in JSON format and other folders like logs, etc. The 
maximum trial of each run is 2, and in each trial, the Keras tuner will find the best model, and at the 
end of the last trial execution, it will display the model with the lowest mean squared error (MSE) as 
the best model. The time elapsed will also be displayed.  

TensorBoard was employed to display the learning curve. Typically, the KerasTuner saves the 
loss chart log history in a designated folder inside the project's main folder. After displaying the 
learning curve, the next is to test the best-trained model with the lowest MSE using the test set. We 
used the best model with the least MSE and made forecasts. Using the test set, we evaluated the MSE 
between the predicted and actual values. This study used NVIDIA GeForce GTX 1660 SUPER in 
terms of hardware CUDA Core 1408, RAM 64 GB, memory interface 192-bit, and a memory data rate 
of 14.00Gbps. Regarding the software, Jupyter Notebook with Keras 10.5 and Windows 10 was used 
in this experiment. 

We used this research dataset, and made a forecast with other time series techniques. This 
comparative analysis will enable us to validate the performance of the newly proposed model. The 
time-series models we employ for the comparative study include ARIMA, Prophet, and the 
conventional LSTM. We also used the air quality index dataset and compared the performance of the 
proposed model with other models. 

3.3. Long Short-Term Memory (LSTM) 

Long short-term memory (LSTM) is a particular type of recurrent neural network (RNN), a 
broad name for a group of neural networks that can process sequential inputs. Hochreiter and Jürgen 
Schmidhuber first proposed RNN in 1997 [6, 42]. LSTM neural networks can handle some problems 
that need a long period because they employ "gates" to manage the memory process [43][44]. When 
learning long-term dependencies, recurrent neural networks encounter challenges such as bursting 
or vanishing gradients. LSTM was explicitly developed to deal with these issues. Vanilla LSTM 
consists of a cell, an input gate, and an output gate, a well-composed fundamental LSTM structure 
[45]. Later, Gers et al. [46] invented the forget gate, which can remove memory blocks whenever their 
information becomes worthless. The introduction of three gates in LSTM makes it different from 
RNN in most ways [47]. Careful regulation of the gate structure is required for the LSTM to add or 
remove information from nodes to change the information flow state [6, 48]. Figure 10 demonstrates 
the fundamental LSTM. 

 
Figure 2. An LSTM's sequence component consists of four interacting layers. 

An LSTM is typically comprised of the following gates: 
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Input gate: After the data is imported, the information must first pass through the input gate. 
Depending on the state of the cell, the switch selects whether or not to store the information. The 
input gate consists of two steps. First, the sigmoid layer selects which data needs to be updated. 
Second, the tanh layer generates new data Xt. They can be included in the state of the cell [43,49,50]. 

Output gate: The output gate determines how much information can be output. First, the 
sigmoid layer generates an initial output by scaling Xt with tanh to [–1,1]. Finally, the output of the 
model can be generated by multiplying the sigmoid output pair by pair [43,49]. 

Forgot gate: The sigmoid in the forget gate is in charge of controlling this. According to a ft value, 
which ranges between 0 and 1, it determines whether to allow the information collected (Xt-1) to flow. 
An LSTM layer exists in the LSTM neural network. The surrounding neurons in the same layer are 
also affected along with the output layer [43,51]. 

3.3.1. LSTM in Univariate Time Series Forecasting 

Long Short-Term Memory (LSTM) is a form of recurrent neural network (RNN) designed to 
process sequential input, such as time series. LSTM is powerful and successful in univariate time 
series forecasting, outperforming standard statistical methods such as ARIMA and exponential 
smoothing in many scenarios [43,49–51]. 

The successful performance of LSTM in univariate time series forecasting is due to its capacity 
to identify complex patterns and correlations in the data [50]. In contrast to conventional modeling 
techniques, LSTM may detect long-term and non-linear dependencies in the data. It is, therefore, 
perfect for modeling time series data with trends, seasonality, and other intricate patterns [47,48]. 

Numerous applications, including financial, energy demand, and weather forecasting, have 
shown that LSTM is effective for univariate time series forecasting. 

3.4. Evaluation Metrics 

A widely popular evaluation metric, Mean Square Error (MSE), is used to evaluate models. MSE 
evaluates the mean squared deviation between the predicted and actual data value and averages it 
across the entire train or test dataset since MSE can be used in both situations [52]. The value of MSE 
is always positive since it is always taking the square of error. The following equation define the MSE: 

MSE = �� ∑ (�� − ���)�����                      (6) 
Where N represents the population or number of data points, ��  is the actual values, and ��� is 

the predicted values. The MSE is excellent for assuring that our trained model does not contain outlier 
predictions with significant errors since it gives more weight to these errors thanks to the squaring 
component of the function. However, in many practical situations, we do not worry about such 
outliers and instead seek a balanced model that performs satisfactorily on the majority 

4. Result and Discussion 

This study's experiment is based on wave speed, direction modeling, and forecasting using a 
numerical method and artificial intelligence techniques. We used two numerical methods, finite 
difference, and spectral element methods, to simulate wave speed and direction and compare the 
result with analytical solutions using Python codes. In the second part, we used LSTM stacking to 
forecast wave speed and direction in two units of measurement.  

4.1. Wave Speed Simulation Using Centered Finite Difference Method 

In this simulation, we model an ocean wave speed propagating along a one dimensional of the 
ocean surface using the centered difference method.  

We first sets up a grid of points on the ocean surface with a total of points (nx = length(x)) and a 
total of time steps (nt = len(t)). The wave is transcribed off as by its amplitude A, and its wavelength 
k and frequency f are calculated from these parameters. 

The initial condition of the wave is set to be a sinusoidal wave of amplitude A, and the wave 
equation is solved numerically for each time step using the centered difference method. 
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The mean error between the numerical and the analytical solution is calculated and displayed 
as shown in Figure 3. 

 

Figure 3. Wave speed simulation. 

4.2. Wave Direction Simulation Using Fast Fourier Transformation 

In this simulation, sample wave data is generated initially by combining two sinusoidal waves. 
The fftpack.fft() function from the scipy package is then used to calculate the Fourier transform of the 
wave data. We may determine the power spectrum by squaring the absolute value of the Fourier 
coefficients in each dimension. 

To calculate the directional wave spectrum, we first define a set of angles (theta) and initialize 
an array for the directional spectrum. We then loop over each angle and calculate the directional 
spectrum using the equation 5 above.  

In order to determine the mean wave direction, we used analytical and numerical solutions. The 
analytical method ascertain the power spectrum's angle of maximum power. The directional 
spectrum's highest value's angle is determined numerically. Then the results are plotted as shown in 
Figure 4. 
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Figure 4. Wave direction simulation. 

4.3. Wave Condition Forecasting with LSTM 

This study's experiment is based on the wave direction and speed forecast, which consists of 
4925 data points. Initially, the model training and validation were performed using a Keras tuner. 
The epoch versus loss and metric (mean squared error) graph was plotted using Tensorboard for each 
forecast experiment. The best model was tested with the test dataset, and the mean squared error was 
measured for each forecast experiment. The results of the experiment will be discussed in detail in 
this section. 

4.3.1. Wave Direction Forecast (Degree) 

In this experiment, wave direction forecasts were performed using degree and radian units. The 
main essence of running two wave direction forecasts in two different units of measurement is to 
identify the unit that can fit our model very well with minor prediction errors. This subsection will 
discuss and analyze the wave direction forecast in degree units. Figure 12 below illustrate the 
learning curve of wave direction forecasts. 

Table 1 contains the experimental results. The forecast of wave direction (degrees) for the next 
10 hours has the lowest MSE for training and testing. In contrast, the prediction for the next 1 hour 
has the highest MSE for training and testing. The predictions for the next 3 and 6 hours also have low 
training and test errors. Epoch loss decreased to zero at some point in both the first and second trials 
as shown in Figure 5. 

Table 1. Direction Forecast (Degree). 

Direction (Degree) Forecast 
Forecast Hours Training MSE Test MSE No. of Epoch Max. trial Elapsed Time

1 0.0234 0.0302 100 2  18m 36s
3 0.0185 0.0261 1000 2 01h 01m 09s
6 0.0185 0.0245 1000 2 50m 42s
8 0.0196 0.0253 1000 2  01h 18m 38s

10 0.0183 0.0238 1000 2 01h 41m 30s
12 0.0198 0.0244 1000 2  02h 24m 09s
24 0.0197 0.0271 1000 2 03h 25m 50s
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Figure 6 illustrates the training and test MSEs result in form of bar chart, and as expected, the 
test values are higher than the training values. The model is familiar with the training dataset and 
knows nothing about the test dataset. That is why the mean squared errors of the test are higher when 
compared to that of training. The average errors from 7 experiments for training and testing are 0.019 
and 0.0259, respectively. 

 
(a) Direction (degree) 1 hour forecast 

 
(b) Direction (degree) 3 hours forecast. 
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(c) Direction (degree) 6 hours forecast. 

 
(d) Direction (degree) 8 hours forecast. 

 
(e) Direction (degree) 10 hours forecast. 

 
(f) Direction (degree) 12 hours forecast. 
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(g) Direction (degree) 12 hours forecast. 

Figure 5. Direction forecasts of 1, 3, 6, 8, 10, 12, and 24 hours. 

 
Figure 6. Training versus test MSE for wave direction forecasts in degree units. 

4.3.2. Wave Direction Forecast (Radian) 

The second wave direction predictions used radian units instead of the default unit degree. As 
part of the preprocessing of our data, the wave direction dataset in the dataframe was initially 
converted to a NumPy array. We then used the function numpy. radians and another dataframe were 
created and assigned the converted degree to radian values. This subsection analyzes the seven 
forecasts using the wave direction dataset in the radian unit. 

Table 2 shows the experimental results of wave direction forecast in radian units, as in the 
previous experiments with degree units, with the next 10 hours of prediction showing the lowest 
MSE in both training and test situations. Moreover, in this experiment the forecasts for the next 10 
hours have the lowest training and test errors. In contrast, 1 hour has the highest training and testing 
error. 
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Table 2. Direction forecast (Radian). 

Direction (Radian) Forecast 
Hour Training MSE Test MSE No. of Epoch Max. trial Elapsed Time 

1 0.0469 0.0648 1000 2  16m 43s 
3 0.0187 0.0249 1000 2  42m 46s 
6 0.0199 0.0285 1000 2 56m 27s 
8 0.0185 0.0259 1000 2 01h 08m 25s 

10 0.0185 0.0245 1000 2 01h 06m 44s 
12 0.0228 0.0313 1000 2  01h 50m 15s 
24 0.0204 0.0261 1000 2 04h 08m 15s 

Figure 8 illustrates the training and test MSEs; compared to the previous experiment result, the 
test MSEs are higher than training, which is quite good. The average errors for training and test are 
0.0237 and 0.0322, respectively. 

The learning curves of epoch versus loss are shown in Figure 7. In all seven experiments, the 
loss dropped to zero at some points in both the first and second trials. 

 
(a) Direction (radian) 1 hour forecast. 

 
(b) Direction (radian) 3 hours forecast. 
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(c) Direction (radian) 6 hours forecast. 

 
(d) Direction (radian) 8 hours forecast. 

 
(e) Direction (radian) 10 hours forecast. 
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(f) Direction (radian) 12 hours forecast. 

 
(g) Direction (radian) 24 hours forecast. 

Figure 7. Direction forecasts of 1, 3, 6, 8, 10, 12, and 24 hours in radian units. 
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Figure 8. Training versus test MSE for wave direction forecasts in radian units. 

4.3.3. Comparison of Wave Direction Forecast in Degree and Radian Units 

The main objective of using two different direction units is to find the one with the least forecast 
error. When forecasting wave direction in both units of measure, the epoch loss will eventually be 
zero. The forecast for the next 10 hours has the lowest training and testing errors in both units. For 
an 8-hours forecast in a degree unit, the training and test MSE is much higher than for a radiant unit. 
For the remaining experiments, the errors of forecast in degree units are slightly lower. When 
comparing forecast in two different units, the training and test errors are very close because the error 
margins in the corresponding forecast hours are minimal. As can be seen from Tables 1 and 2, the 24-
hour forecasts in radian units are more expensive than the forecasts in degree units. 

4.3.4 Wave Speed Forecast 

The wave speed was measured in it is default unit (ms-1 ). This subsection analyzes the seven 
forecast experiments using the wave speed dataset. 

Table 3 shows the experimental results of wave speed forecasts. The forecast of wave speed for 
8 and 24 hours has the lowest training MSE of 0.0027, while the forecast for the next 1 hour has the 
highest training MSE. Conversely, the forecast for 3 and 12 hours has the lowest and highest test MSE, 
respectively. The learning curves are shown in Figure 9. In each of the seven experiments, the loss 
dropped to zero at some point. 

Table 3. Speed forecast. 

Speed Forecast (m/s) 
Hour Training MSE Test MSE No. of Epoch Max. trial Elapsed Time

1 0.0036 0.0083 1000 2  20m 32s
3 0.0033 0.0058 1000 2 39m 24s
6 0.0034 0.0448 1000 2 01h 08m 34s
8 0.0027 0.0154 1000 2 01h 22m 35s

10 0.0035 0.0046 1000 2  01h 48m 49s
12 0.0029 0.0625 1000 2 02h 08m 59s
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24 0.0027 0.0513 1000 2  05h 12m 45s

Figure 10 shows the training and test MSEs. The graph shows that the test MSEs are higher than 
the training MSEs in all seven-speed forecast experiments, which is similar to the two previous 
experiments in Figures 5 and 7, which followed the same pattern. The data set was shuffled in each 
experiment to allow the models to learn perfectly and avoid sampling bias. 

However, when we compared the training and test MSEs of forecasting wave speed and 
direction in two different units of measurement, the former had the least forecast errors when 
compared with the latter. As for the running cost, the elapsed time for the 24-hour speed forecast is 
higher than the others, as shown in Table 3. 

 
(a) Speed 1 hour forecast. 

 
(b) Speed 3 hours forecast. 
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(c) Speed 6 hours forecast. 

 
(d) Speed 8 hours forecast. 

 
(e) Speed 10 hours forecast. 
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(f) Speed 12 hours forecast. 

 
(g) Speed 24 hours forecast. 

Figure 9. Speed forecast of 1, 3, 6, 8, 10, 12, and 24 hours. 
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Figure 10. Training versus test MSE for wave speed predictions. 

4.4. Comparative Analysis of Time Series Forecasting Models 

To validate the performance of the proposed model, we used the study dataset, and air quality 
index dataset and ran two comparative experiments with other time series forecasting algorithms. 
We used five lookbacks for each experiment. Figures 11 and 12 comprise the comparative analysis of 
wave speed and direction forecast respectively. 

 

Figure 11. Comparative analysis of time-series forecast models for wave speed. 
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Figure 12. Comparative analysis of time-series forecast models for wave direction. 

The results of the comparative analysis from the above figures show that the newly proposed 
model outperforms the other time series forecasting models. 

Figure 13 illustrates the comparative analysis of time-series forecast models for the air quality 
index. The optimized LSTM (proposed model) outperformed other models. The two experiments’ 
results showed that the optimized LSTM performed better than the other models. 

 
Figure 13. Comparative analysis of time-series forecast models for air quality index. 

5. Future Research Direction 

The wave equation we used to model ocean wave speed in numerical simulations may need to 
be revised to capture ocean waves' complex behavior accurately. In the future, we will use higher-
order partial differential equations that can solve complex system problems more accurately. The 
optimized LSTM models proposed in this study were developed using univariate time series 
techniques, which limit the forecast of wave conditions to only one element or feature at a time.  As 
part of the feasibility and evaluation of marine energy harvesting, we plan to use advanced 
multivariate time series forecasting and optimization techniques in our future research. In addition, 
the data we used includes only 4925 data points. In our future study, we plan to collect more data 
from two or more stations, which could be three or four times the current dataset.  
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6. Conclusions 

This research used two numerical methods to model and simulate the wave speed and direction 
with sample data. We presented a novel univariate time series forecasting models, and make forecast 
for wave speed and direction. We found that the wave speed forecast had less error than direction 
during the experiment. The forecast of wave direction was performed using two different units of 
measurement. The forecast in degrees has less error than that in radians. However, the former is 
slightly less expensive to run when compared to the latter for the 24-hour forecast, despite the 
differences in prediction in the two units. The error margins and the time difference of the 
corresponding hours clearly show that each unit's forecast can generate less errors. However, the 
speed forecast is more expensive to run compared to direction. Our proposed model incorporates the 
robust LSTM network with the effective hyperparameter tuning optimization technique and creates 
a novel and promising approach for univariate time series forecasting.  

The proposed model’s extraordinary performance against three time-series forecasting models 
highlights its potential for practical application in Dynamic Ocean forecasting, sustainable port 
management and other fields such as finance, energy, etc. 
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